首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An investigation into the glucosinolate profile of seed and leaf tissue of F1 hybrids from reciprocal crosses between B. napus‘Cobra’ and a synthetic B. napus line was undertaken to test hypotheses concerning the site of biosynthesis of seed glucosilates. The profile of the seed aliphatic glucosinolates was dentical to the maternal parent suggesting the absence of glucosinolate biosynthesis and glucosinolate interconversion within the embryo and the transfer of fully formed glucosinolates from maternal tissue into the developing seed. In cotyledons, while there was no evidence for de novo glucosinolate biosynthesis, there was evidence for side chain modication and the interconversion of existing glucosinolates. in true leaves, the glucosinolate profile of the reciprocal F1 hybrids were identical, and in accordance with that expected from the F1 genotype.  相似文献   

2.
The Inheritance of Aliphatic Glucosinolates in Brassica napus   总被引:2,自引:0,他引:2  
The inheritance of aliphatic glucosinolates was studied in crosses between synthetic B. napus lines and oilseed rape cultivars. Six unlinked loci are described which determine the aliphatic glucosinolate profile of B. napus. One locus regulates the presence or absence of propyl glucosinolates, while another regulates the expression of pentyl glucosinolates. Two loci regulate the removal of the terminal H3CS-group from the amino acid derivative to produce alkenyl glucosinolates as opposed to methylthioalkyl and methylsulphinylalkyl glucosinolates, regardless of the length of the alkyl chain. Likewise, another two loci regulate the hydroxylation of both butenyl and pentenyl glucosinolates. The functional alleles at one of the hydroxylation loci results in significantly more hydroxylation than those at the other locus. The large number of aliphatic glucosinolates which have been described in Brassica thus results from an interaction between genes which regulate side chain elongation and genes which modify the structure of the side chain, regardless of its length. The implications of this study for the biosynthesis of aliphatic glucosinolates, the origin of B. napus and the potential to manipulate the leaf and seed glucosinolate profile of oilseed rape are discussed.  相似文献   

3.
W. Rygulla    W. Friedt    F. Seyis    W. Lühs    C. Eynck    A. von Tiedemann    R. J. Snowdon 《Plant Breeding》2007,126(6):596-602
Resynthesized (RS) forms of rapeseed (Brassica napus L.; genome AACC, 2n = 38) generated from interspecific hybridization between suitable genotypes of its diploid progenitors Brassica rapa L. (syn. campestris; genome AA, 2n = 20) and Brassica oleracea L. (CC, 2n = 18) represent a potentially useful resource to introduce resistance against the fungal pathogen Verticillium longisporum into the gene pool of oilseed rape. Numerous cabbage (B. oleracea) accessions are known with resistance to V. longisporum; however, B. oleracea generally has high levels of erucic acid and glucosinolates in the seed, which reduces the suitability of resulting RS rapeseed lines for oilseed rape breeding. In this study resistance against V. longisporum was identified in the cabbage accession Kashirka 202 (B. oleracea convar. capitata), a zero erucic acid mutant, and RS rapeseed lines were generated by crossing the resistant genotype with two spring turnip rape accessions (B. rapa ssp. olerifera) with zero erucic acid. One of the resulting zero erucic acid RS rapeseed lines was found to have a high level of resistance to V. longisporum compared with both parental accessions and with B. napus controls. A number of other zero erucic acid RS lines showed resistance levels comparable to the parental accessions. In the most resistant RS lines the resistance and zero erucic acid traits were combined with variable seed glucosinolate contents. Erucic acid‐free RS rapeseed with moderate seed glucosinolate content represents an ideal basic material for introgression of quantitative V. longisporum resistance derived from B. oleracea and B. rapa into elite oilseed rape breeding lines.  相似文献   

4.
Y. S. Sodhi    A. Mukhopadhyay    N. Arumugam    J. K. Verma    V. Gupta    D. Pental  A. K. Pradhan 《Plant Breeding》2002,121(6):508-511
Analysis of the glucosinolate content and composition by high‐pressure liquid chromatography indicated that varieties of Brassica juncea bred and grown in India have a high glucosinolate content characterized by the presence of 2‐propenyl (allyl) and 3‐butenyl as the major and 4‐pentenyl as the minor fractions. In contrast, the B. juncea germplasm from other countries is characterized by the presence of 2‐propenyl as the major glucosinolate fraction, trace amounts of 3‐butenyl and a total lack of the 4‐pentenyl types. In order to transfer the low glucosinolate trait to Indian B. juncea, the inheritance of total glucosinolates was investigated using doubled haploid (DH) populations derived from F1 (DH1) and BC1 (BC1DH) of a cross between ‘Varuna’ (the most widely cultivated high glucosinolate variety of India) and ‘Heera’ (a non‐allyl type low glucosinolate line). A total of 752 DH1 and 1263 BC1DH gave rise to seven and 11 low glucosinolate (containing less than 18 μmol/g seed) individuals, respectively. On the basis of the frequency of the low glucosinolate individuals, the total glucosinolate was found to be under the control of seven genes. There was presence of both allyl and non‐allyl types in DH1 and BC1DH low‐glucosinolate individuals and absence of 3‐butenyl glucosinolate in some of the BC1DH low glucosinolate individuals, indicating segregation for these fractions in the population. The size of the segregating DH population proved to be crucial for precise determination of the number of genes controlling the trait. Because of the large number of genes involved, incorporation of low glucosinolate trait in Indian B. juncea should be approached through doubled haploid (DH) breeding.  相似文献   

5.
J. Zhao  J. Meng 《Plant Breeding》2003,122(1):19-23
A genetic linkage map of Brassica napus constructed from a cross between a low glucosinolate cultivar ‘H5200’ and a high glucosinolate line ‘NingRS‐1’ was used to identify loci associated with seed glucosinolate content and to understand the association between specific glucosinolate components and Sclerotinia resistance. Seed glucosinolate content was assessed by standard High pressure Liquid Chromatogram (HPLC) protocol. Seven components of seed glucosinolate, including four types of aliphatic glucosinolate, two types of indolyl glucosinolates and one aromatic glucosinolate were detected in the seeds. Three quantitative trait loci (QTLs) were identified for seed total glucosinolate content. From three to 15 loci were found to be responsible for different types of glucosinolates, and by comparing the overlapped intervals, eight genomic regions were defined. One of the nine loci associated with aliphatic glucosinolate content was found to be associated with Sclerotinia resistance on the leaf at the seedling stage, and one locus, responsible for 3‐indolyl‐methyl glucosinolate content, was probably linked with Sclerotinia resistance on the stem of the maturing plant. The association between seed glucosinolate content and Sclerotinia resistance is discussed.  相似文献   

6.
Glucosinolate levels in leaves were determined in a collection of 36 varieties of nabicol (Brassica napus pabularia group) from northwestern Spain grown at two locations. Crude protein, acid detergent fibre, and sensory traits were also assessed by a consumer panel. The objectives were to determine the diversity among varieties in total glucosinolate content and glucosinolate profile and to evaluate their sensory attributes in relation to glucosinolate content for breeding purposes. Eight glucosinolates were identified, being the aliphatic glucosinolates, glucobrassicanapin, progoitrin, and gluconapin the most abundant. Glucosinolate composition varied between locations although the glucosinolate pattern was not significantly influenced. Differences in total glucosinolate content, glucosinolate profile, protein, acid detergent fibre, and flavour were found among varieties. The total glucosinolate content ranged from 1.4 μmol g−1 to 41.0 μmol g−1 dw at one location and from 1.2 μmol g−1 to 7.6 μmol g−1 dw at the other location. Sensory analysis comparing bitterness and flavour with variation in glucosinolate, gluconapin, progoitrin, and glucobrassicanapin concentrations suggested that other phytochemicals are probably involved on the characteristic flavour. The variety MBG-BRS0035 had high total glucosinolate, glucobrassicanapin, and gluconapin contents at both locations and could be included in breeding programs to improve the nutritional value of this vegetable crop.  相似文献   

7.

以雪菊(Coreopsis tinctoria Nutt.)种子为试验材料,研究盐胁迫对雪菊种子萌发的影响。用不同浓度的NaCl、Na2SO4以及混合盐NaCl:Na2SO4:Na2CO3=2:7:1(质量比)处理雪菊种子。结果表明:盐胁迫使雪菊种子的发芽指数、发芽势和发芽率明显降低,且随着盐浓度的增加,抑制作用增强;3种盐对雪菊种子萌发的抑制作用强度依次为:混合盐>NaCl>Na2SO4;雪菊种子耐盐适宜范围为NaCl 0.78%、Na2SO4 0.84%、混合盐0.15%;耐盐半致死浓度为NaCl 1.34%、Na2SO4 1.41%、混合盐0.89%;耐盐极限浓度为 NaCl 2.23%、Na2SO4 2.31%、混合盐2.08%。盐胁迫解除后雪菊种子仍具有较高的萌发率。

  相似文献   

8.
Ethiopian mustard (Brassica carinata Braun) is a potential oil crop for the Mediterranean area. The objective of this study was to develop an efficient system of mutagenesis using ultraviolet (UV) light irradiation of isolated microspores from Brassica carinata. From the survival curve based on embryo yield after irradiation of the microspores with UV light, the LD50 was estimated to be an exposure of 8 min. Total content of glucosinolates and fatty acid composition were analysed in the seeds of the doubled haploid homozygous plants with the purpose of selecting lines with modified glucosinolate and erucic acid contents. Three groups of doubled haploid lines exhibiting low and high glucosinolate contents, and high erucic acid content have been identified from a population of 270 doubled haploid lines. In eight lines, the content of glucosinolates was reduced from an average of 80.6 mol g-1 seed to 37.5 mol g-1 seed, whereas in four lines, the content of glucosinolates was increased up to 99.2 mol g-1 seed. In six additional lines, the content of erucic acid was increased from 42.8% in the nontreated lines to 49.5% of the totalfatty acid composition in some of the mutant lines. All lines showed stablelevels of erucic acid in two generations, the M2 and M3.  相似文献   

9.
Inheritance of progoitrin and total aliphatic glucosinolate concentrations were investigated in oilseed rape, using parental, F1, F2 and first backcross generations, derived from a cross between resynthesized spring rape and a double-low spring rape cultivar. Progoitrin and total aliphatic glucosinolate concentrations were measured in mature seeds of single plants from these generations, using micellar electrokinetic capillary chromatography. For progoitrin, an additive/dominance model of gene action adequately explained the variation among the generation means, but for total aliphatic glucosinolate concentration, non-allelic interactions were also detected. Predictions based on estimates of the genetic parameters indicated that recombinant inbred lines, rather than second cycle hybrids, appeared to offer a better prospect of reducing glucosinolate concentrations in this material. Estimates of the minimum number of genes controlling these two characters were broadly in line with the number required for the known stages of their biosynthesis. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Brassica carinata A. Braun is a highly productive oilseed crop in the Ethiopian highlands, but the seed has a high 2-propenyl glucosinolate content, which is undesirable. The objective of this study was to introgress, through interspecific crosses, genes for low 2-propenyl glucosinolate content from the B genome of B. juncea and C genome of B. napus into the B. carinata B and C genomes and thus develop low glucosinolate B. carinata. The cross [(B. carinata×B. juncea) ×B. carinata] yielded plants that contained only ~ 20 μmoles of 2-propenyl glucosinolate, which was an 85% reduction compared with levels in B. carinata seed. Plants of the [(B. carinata×B. napus) ×B. carinata] cross had normal high concentrations of 2-propenyl glucosinolate. Backcross plants of both interspecific crosses also contained 3-butenyl and 2-hydroxy-3-butenyl glucosinolates. The results of these crosses suggested that genes for glucosinolate synthesis were located on B genome chromosomes of B. carinata because B. napus C genome introgressions did not result in reductions of total glucosinolate contents. The total alkenyl glucosinolate content of one F3 family of the B. juncea backcross was similar to that of the B. juncea parent. It was concluded that through further selection in this family, B. carinata plants could be identified that would be basically free of 2-propenyl glucosinolate, and have a low total alkenyl glucosinolate content.  相似文献   

11.
Synthetic lines of Brassica napus were derived by combining the genomes of B. atlantica and B. oleracea var. alboglabra, which were respectively resistant and susceptible to foliar infection by Leptosphaeria maculans, with a susceptible line of B. rapa. Resistance was expressed in the synthetic lines containing the genome of B. atlantica. The high levels of alkenyl glucosinolates which occur in leaves of B. atlantica, and which have been implicated in disease resistance, were also expressed within the synthetic lines, although the dominant glucosinolate had changed from sinigrin to glucobrassicanapin. Disease resistance and glucosinolate profiles did not co-segregate in F2 progeny from crosses between the synthetic lines.  相似文献   

12.
The presence of high levels of sinigrin in the seeds represents a serious constraint for the commercial utilisation of Ethiopian mustard (Brassica carinata A. Braun) meal. The objective of this research was the introgression of genes for low glucosinolate content from B. juncea into B. carinata. BC1F1 seed from crosses between double zero B. juncea line Heera and B. carinata line N2-142 was produced. Simultaneous selection for B. carinata phenotype and low glucosinolate content was conducted from BC1F2 to BC1F4 plant generations. Forty-three BC1F4 derived lines were selected and subject to a detailed phenotypic and molecular evaluation to identify lines with low glucosinolate content and genetic proximity to B. carinata. Sixteen phenotypic traits and 80 SSR markers were used. Eight BC1F4 derived lines were very close to N2-142 both at the phenotypic and molecular level. Three of them, with average glucosinolate contents from 52 to 61 micromoles g−1, compared to 35 micromoles g−1 for Heera and 86 micromoles g−1 for N2-142, were selected and evaluated in two additional environments, resulting in average glucosinolate contents from 43 to 56 micromoles g−1, compared to 29 micromoles g−1 for Heera and 84 micromoles g−1 for N2-142. The best line (BCH-1773), with a glucosinolate profile made up of sinigrin (>95%) and a chromosome number of 2n = 34, was further evaluated in two environments (field and pots in open-air conditions). Average glucosinolate contents over the four environments included in this research were 42, 31 and 74 micromoles g−1 for BCH-1773, Heera and N2-142, respectively. These are the lowest stable levels of glucosinolates reported so far in B. carinata.  相似文献   

13.
The levels of individual and total alkenyl glucosinolates in seeds of microspore-derived spontaneous diploid plants from low by high and low by low glucosinolate parent crosses were examined to assess the utility of haploidy in canola breeding. The distributions of lines in the populations supported previous proposals that alkenyl glucosinolate levels are under multigenic control. Levels of all of the individual glucosinolates were positively correlated and were significantly reduced in canola-quality material in comparison to rapeseed-quality material. The populations of microspore-derived lines from low × high crosses were skewed to high glucosinolate levels but the population from a low × low glucosinolate cross had a greater proportion of low glucosinolate lines. The former observations can be explained in terms of the dominance of genes for high glucosinolate levels in Brassica napus. The present findings contradict previous reports that androgenic lines have higher glucosinolate content than the parents and in fact, haploidy may select for low glucosinolate lines when crosses between low glucosinolate parents are used.  相似文献   

14.
A diversity arrays technology (DArT) map was constructed to identify quantitative trait loci (QTL) affecting seed colour, hairy leaf, seedling anthocyanin, leaf chlorosis and days to flowering in Brassica rapa using a F2 population from a cross between two parents with contrasting traits. Two genes with dominant epistatic interaction were responsible for seed colour. One major dominant gene controls the hairy leaf trait. Seedling anthocyanin was controlled by a major single dominant gene. The parents did not exhibit leaf chlorosis; however, 32% F2 plants showed leaf chlorosis in the population. A distorted segregation was observed for days to flowering in the F2 population. A linkage map was constructed with 376 DArT markers distributed over 12 linkage groups covering 579.7 cM. The DArT markers were assigned on different chromosomes of B. rapa using B. rapa genome sequences and DArT consensus map of B. napus. Two QTL (RSC1‐2 and RSC12‐56) located on chromosome A8 and chromosome A9 were identified for seed colour, which explained 19.4% and 18.2% of the phenotypic variation, respectively. The seed colour marker located in the ortholog to Arabidopsis thaliana Transparent Testa2 (AtTT2). Two QTL RLH6‐0 and RLH9‐16 were identified for hairy leaf, which explained 31.6% and 20.7% phenotypic variation, respectively. A single QTL (RSAn‐12‐157) on chromosome A7, which explained 12.8% of phenotypic variation was detected for seedling anthocyanin. The seedling anthocyanin marker is found within the A. thaliana Transparent Testa12 (AtTT12) ortholog. A QTL (RLC6‐04) for leaf chlorosis was identified, which explained 55.3% of phenotypic variation. QTL for hairy leaf and leaf chlorosis were located 0–4 cM apart on the same chromosome A1. A single QTL (RDF‐10‐0) for days to flowering was identified, which explained 21.4% phenotypic variation.  相似文献   

15.
The possibility of gene transfer between Brassica rapa and the two weedy species B. nigra and Sinapis arvensis was evaluated with the special concern on transgene escape from B. rapa to these two weedy species. B. rapa cultivar Tobin was reciprocally crossed to five and four strains of B. nigra and S. arvensis, respectively, using controlled cross. A single interspecific hybrid was obtained from the cross B. rapa×B. nigra, but no other cross was successful. The fertility of this hybrid on open pollination, selfing and backcrosses was investigated. The data of the present study and the information available to date indicate that gene transfer between B. rapa and B. nigra is possible. The chance of transgene escape from B. rapa to B. nigra depends essentially on whether natural cross can occur between these two species. Gene transfer between B. rapa and S. arvensis is at the most difficult, whereas trans-gene escape directly from B. rapa to S. arvensis appears very unlikely.  相似文献   

16.
17.
The glucosinolate make‐up of the edible parts of some Brassica oleracea L. crops has been investigated previously, but the leafy‐green collard (B. oleracea var. viridis) remains relatively unstudied on this topic. Due to this lack of information, a collection of US landraces was examined for glucosinolate content of leaves. The specific objectives of this examination were to compare levels of certain glucosinolates among the conserved collard landraces, identify any individuals with a distinct glucosinolate profile and determine the potential of collard as a target for chemoprotective‐based plant breeding. During winter 2010/2011, 81 collard landraces, four other viridis and four collard cultivars were evaluated in the field and harvested leaves were assayed for glucosinolates. In a subsequent study, 19 selected landraces plus the cultivars were included in a repeat trial in 2012/2013. Eighteen collard landraces contained relatively high levels of glucoraphanin in leaves in both years, and three (designated G 32575, G 32580, G 32586 in the US National Plant Germplasm System) were found to contain glucoraphanin in excess of 9.5 μmol/g DM. The examined landraces are rich sources of important aliphatic glucosinolates, previously thought to be most abundant in other B. oleracea vegetables.  相似文献   

18.
Microspore culture was employed to measure the relative efficiencies of anther culture and isolated microspore culture for the regeneration of embryoids and plants of Brassica napus. The yield of embryoids and plants was at least 10-fold greater from isolated microspores than from anther cultures. Approximately 1400 microspore-derived homozygous line's, the parental varieties and the corresponding F2 plants were grown in a field trial. Important agricultural characteristics, such as morphological homogeneity, growth rate, onset of flowering and seed setting were evaluated subjectively and seed yield and glucosinolate content of individual plants were determined. The relative concentrations of up to S different glucosinolates in these seeds were measured via an automated high performance liquid chromatography (HPLC) system. The alkenyl and indole glucosinolates, the two most important categories of glucosinolates, were found in varying proportions and were independently determined in these line's. Our results do not support the previously suggested connection between low concentrations of glucosinolates and weak growth and/or poor seed yield. Additionally, no evidence was found that the lines derived from isolated microspore culture were subjected to unexpected selection pressures that might adversely affect the diversity of the lines obtained. These results demonstrate that microspore culture is a powerful tool not only for genetic analysis bur also for practical plant breeding.  相似文献   

19.
Eight‐week‐old seedlings of Puccinellia tenuiflora were stressed by exposure to 1 : 1 molar ratio mixtures either of the two neutral salts NaCl and Na2SO4 or of the two alkali salts, NaHCO3 and Na2CO3. To identify the physiological mechanisms involved in this plant’s resistance to alkali stress, the relative growth rates, the quantities and compositions of organic acids accumulated and secreted through the roots into the rhyzosphere, the concentrations of inorganic ions, proline and other solutes accumulating in the shoots were measured. The results show that the organic acid constituents in the shoots and roots were much the same. These were predominantly malic acid, oxalic acid, citric acid and succinic acid. The total concentration of organic acids in the shoots increased strongly with increasing alkali stress. However, these either did not increase or they decreased slightly with increasing salt stress. Of the four organic acids, the concentration difference between salt‐ and alkali‐stressed plants was most striking for citric acid. This became the dominant organic acid component under alkali stress. Results show that proline is the main organic osmolyte, whereas the contribution of betaine to osmotic adjustment is insignificant under either salt or alkali stress. The main organic acid accumulated was not only an important organic osmotic regulator, but also an important negative charge contributor, playing important roles in ionic balance and pH adjustment. The concentrations of Na+, K+, Cl? and of organic acid were 80.7% of all solutes under salt stress. The concentrations of Na+, K+, Cl? and of organic acid were 85.4% of all solutes under alkali stresses. The ionic balance was disrupted by the strong increase in Na+ content under alkali stress. This perhaps explains why large amounts of the organic acids were accumulated. The organic acid concentration in the roots was lower than in the shoots. The roots secreted citric acid into the rhyzosphere only under alkali stress, secretion of the other organic acids was not detected. Therefore, citric acid secreted from the roots probably plays an important role in pH adjustment in the rhyzosphere of P. tenuiflora.  相似文献   

20.
Substituting the nuclear genome of Brassica rapa into the cytoplasmic background of Enarthrocarpus lyratus through backcross substitution helped in developing cytoplasmic male sterility (CMS). Alloplasmic male sterile plants had pale green leaves, small flowers with narrow petals and rudimentary anthers. Female fertility, low initially, improved considerably with advanced backcross generations. Male sterility expression was stable throughout the growing season. Except for EC 339014, all B. rapa accessions (38) evaluated were partial maintainers of the male sterility. Introgression of gene(s) for fertility restoration from the cytoplasm donor species was facilitated by homoeologous pairing between B. rapa and E. lyratus genomes, as was apparent from the very frequent occurrence of a trivalent in the monosomic addition plants (2n = 10 II + 1 I). Backcrossing of fertile monosomic addition plants with B. rapa led to the recovery of male fertile plants possessing the stable euploid chromosome number (2n = 20). These plants restored male fertility in crosses with different (lyr) CMS B. rapa genotypes, confirming the introgression of fertility restorer gene(s) from E. lyratus, the cytoplasm donor species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号