首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Summary A self-fertile trigeneric hybrid in the Triticeae involving species from the Hordeum, Triticum and Secale genera has been produced. The trigeneric hybrid was obtained by crossing octoploid triticale (x Triticosecale Wittmack) with octoploid tritordeum (H. chilense × T. aestivum amphiploid). The trigeneric hybrid presented a genome constitution AABBDDRHch and 2n=8X=56 chromosomes. The cytogenetical analyses showed no chromosome instability nor homeologous pairing between Hordeum and Secale chromosomes. In the F2 generation the chromosome number ranged from 42 to 52. Within this range, the plants with smaller numbers of chromosomes were more frequent. A preferential transmission of rye chromosomes could be inferred.  相似文献   

2.
Two amphiploids, AF-1(Triticum aestivum L. cv. Anyuepaideng–Secale africanum Stapf.) and BF-1 (T. turgidum ssp. carthlicum–S. africanum), were evaluated by chromosomal banding and in situ hybridization. The individual S. africanum chromosomes were identified in the BF-1 background by sequential C-banding and genomic in situ hybridization (GISH), and were distinguishable from those of S. cereale, because they exhibited less terminal heterochromatin. Fluorescence in situ hybridization (FISH) using the tandem repeat pSc250 as a probe indicated that only 6Ra of S. africanum contained a significant hybrid signal, whereas S. cereale displayed strong hybridization at the telomeres or subtelomeres in all seven pairs of chromosomes. Extensive wheat–S. africanum non-Robertsonian translocations were observed in both AF-1 and BF-1 plants, suggesting a frequent occurrence of chromosomal recombination between wheat and S. africanum. Moreover, introgression lines selected from the progeny of wheat/AF-1 crosses were resistant when field tested with widely virulent strains of Puccinia striiformis f. sp. tritici. Three highly resistant lines were selected. GISH and C-banding revealed that resistant line L9-15 carried a pair of 1BL.1RS translocated chromosomes. This new type of S. africanum derived wheat–Secale translocation line with resistance to Yr9-virulent strains will broaden the genetic diversity of 1BL.1RS for wheat breeding.  相似文献   

3.
生物素标记的重复DNA序列与黑麦染色体的原位杂交   总被引:3,自引:0,他引:3  
钟少斌  张德玉 《作物学报》1995,21(6):691-694
本研究以两个黑麦重复DNA序列pSc119.1和pSc119.2作探针进行原位杂交,研究其在小麦和黑麦杂色体上的分布及在检测黑麦染色质中的应用。实验结果表明:pSc119.1分布于所有黑麦染色体的长短臂上,但在小麦染色体上几乎检测不到杂交信号,证明pSc119.1对黑麦染色体具有专化性。进一步用该探针与小麦品种“Amigo”的体细胞染色体进行原位杂交,可明显检测出其中一对含IRS的染色体。pSc1  相似文献   

4.
Graham J. Scoles 《Euphytica》1985,34(1):207-211
Summary An inbred line of rye (Secale cereale L.) has been found to carry a gene for hybrid necrosis. This gene was detected in crosses with a highly crossable wheat (Triticum aestivum L.) genotype which carries the gene Ne2. This appears to be the first report of a gene for hybrid necrosis being present in the rye genome.  相似文献   

5.
Summary Expression of 17 rye traits in 24 bread wheat x rye and 8 durum wheat x rye crosses was studied, using a self-compatible, homozygous, dwarf rye. Rye showed epistasis for hairiness on the peduncle in all the crosses of Triticum aestivum and T. durum wheats with rye. Dark greenness of leaves of rye was expressed in all the durum wheat x rye and in some of the bread wheat x rye crosses. Similarly, absence of auricle pubescence, a rye trait, was expressed in most of the durum wheat x rye crosses but not in the bread wheat x rye crosses, indicating the presence of inhibitors for these traits frequently on the D genome and rarely on the A and/or B genome of wheat. Most of the wide hybrids resembled rye fully or partially for intense waxy bloom on the leaf-sheath and for the absence of basal underdeveloped spikelets. Similarly, most of the amphihaploids resembled rye for the anthocyanin in the coleoptile, stem and node. The presence of some inhibitors on A and/or B genome of wheat was indicated in some of the wheat genotypes for the expression of rye traits viz. intense waxy bloom, anthocyanin in node and absence of basal underdeveloped spikelets. Enhancement in the level of expression of the intensity and length of bristles on the mid-rib of the glume of the hybrids might be due to wheat-rye interaction. Less number of florets/spikelet as in rye showed variable expression in different wheat backgrounds. Some other rye traits like absence of auricles, terminal spikelet and glume-awn were not expressed in the wheat background. The expression of some of the rye genes might have been influenced by their interaction with Triticum cytoplasm and/or the environment.  相似文献   

6.
We produced 15 dissection lines of common wheat carrying segments of chromosome 1R of wild rye (Secale montanum) (1Rm) by the gametocidal system. Using the 1Rm dissection lines and previously established 24 dissection lines of chromosome 1R from cultivated rye (Secale cereale cv. ‘Imperial’) (1Ri), we conducted cytological mapping of 97 markers that were amplified in the 1Ri addition line. Sixty‐eight of the 97 markers were amplified in the 1Rm addition line. To reveal what structural differentiation occurred in chromosome 1R during domestication, we compared the cytological map of chromosome 1Ri with that of chromosome 1Rm, and also with the previously published cytological map of chromosome 1R from wheat cultivar ‘Burgas 2’ (1RB). There was one discrepancy in marker order in the satellite region between chromosomes 1Ri and 1RB, while there were four discrepancies in marker order between chromosomes 1Ri and 1Rm. These results suggested that during the domestication of rye, some intrachromosomal rearrangements had occurred in chromosome 1R, although this chromosome is regarded as the most stable chromosome in the rye genome.  相似文献   

7.
Liu Shubing  Wang Honggang 《Euphytica》2005,143(1-2):229-233
Among the progenies of a hybrid between common wheat Triticum aestivum L. cv. Yannong 15 and Thinopyron intermedium, plant E99018 was identified with the chromosome number 2n = 42 and stable agronomic traits. An analysis of the metaphase chromosome pairing indicated that it formed 21 bivalents but that 2 univalents were present in the F1 hybrid of this plant with common wheat. Resistance verification by race 15 and with mixed races of Blumeria graminis f. sp. tritici at the seedling and adult stages showed that at both stages, the plant was immune to powdery mildew. In situ hybridization with the genomic Th. intermedium and the St genome DNAs as probes and wheat DNA as a block has shown that it contained a pair of Th. intermedium chromosomes. On the basis of the hybridization pattern of the St genome probe to the critical chromosome, a conclusion was reached that this pair of chromosomes belonged to the E genome. Therefore, plant E99018 was a spontaneously formed substitution line. An analysis by 116 SSR markers indicated that the substituted wheat chromosome was 2D and the most likely substitution in E99018 is 2E(2D).  相似文献   

8.
Rye (Secale cereale L. and S. strictum) offers potential to increase the genetic variability and to introduce desirable characters for wheat improvements. Cytogenetic techniques have been used to screen wheat lines containing rye chromatin. These techniques are not adequate since they are highly technical and time consuming. They are not suitable for breeding programs that require rapid screening of large numbers of genotypes. The main objective of this study was to develop and characterize ISSR and SCAR markers that can distinguish wheat from rye genome. Total DNA from wheat, rye, and triticale accessions from different provenances were amplified with ISSR primers in PCR assays. Three wheat-diagnostic sequences were identified. In addition three rye-diagnostic ISSR markers of which, one marker specifically diagnostic for Secale strictum were characterized. Pairs of primers flanking these specific sequences were designed to produce SCAR markers. Two SCAR markers were rye genome-specific. One SCAR was present in all the seven rye chromosome, and another was specific to rye chromosomes two, three, four, and seven. These newly developed ISSR and SCAR markers should be useful to wheat breeders screening genotypes that may contain rye chromatins.  相似文献   

9.
Genomic in situ hybridization (GISH) and restriction fragment length polymorphism (RFLP) were used to identify the Leymus multicaulis (XXNN, 2n = 28) chromosomes in wheat-L. muliticaulis derivatives. Fifteen lines containing L. multicaulis alien chromosomes or chromosomal fragments were identified. All alien chromosomes or fragments in these 15 lines were from the X genome and none were from the N genome. Eleven L. multicaulis disomic addition lines and four translocation-addition lines were identified with chromosome rearrangements among homoeologous groups 2, 3, 6 and 7. Only homoeologous group 1 lacked rearrangements in addition or translocation chromosomes. The results revealed that translocation in non-homoeologous chromosomes widely exists in the Triticeae and therefore it is necessary to identify the alien chromosomes (segments) in a wheat background using these combined techniques. During the course of the work, probe PSR112, was found to detect X genome addition lines involving L. multicaulischromosomes. This may prove to be a valuable probe for the identification of alien chromosomes in a wheat background. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
Tritordeum (X Tritordeum Ascherson et Graebner) is a synthetic amphiploid belonging to the Triticeae tribe, which resulted from crosses between Hordeum chilense and wheat. It presents useful agronomic traits that could be transferred to wheat, widening its genetic basis. In situ hybridisation with total genomic DNA from H. chilense and cloned, repetitive DNA sequences (pTa71 and pAs1) probes were used to discriminate the parental origin of all chromosomes, to analyse the chromosome pairing and to identify the chromosomes in pollen mother cells (PMCs) at metaphase I of the tritordeum line HT251 (HchHchDD, 2n = 4x = 28). The H. chilense total genomic DNA and the ribosomal sequence pTa71 probes, allowed the unequivocal discrimination of the 14 chromosomes of Hch genome-origin and the 14 chromosomes of D genome-origin. Chromosome pairing analysis revealed meiotic irregularities such as reduced percentage of PMCs with complete homologous pairing, high frequency of univalents, most of H. chilense-origin and a reduced frequency of intragenomic multivalents from both genomes. The H. chilense genome revealed high meiotic instability. After individual chromosome identification at metaphase I with the pAs1 probe, we found the occurrence of pairing between chromosomes of different homoeology groups. The possible interest of the tetraploid tritordeum in the improvement of other Triticeae species is also discussed.  相似文献   

11.
Y. B. Wang  H. Hu  J. W. Snape 《Euphytica》1995,81(3):265-270
Summary Heptaploid hybrids between octoploid triticale and wheat were backcrossed as female parents with wheat to examine the rye chromosome distribution in the resultant progenies using genomic in situ hybridization (GISH). One hundred and one backcross (BC) seeds were examined and whole rye chromosome additions and substitutions, wheat/rye centric and noncentric translocations and rye telocentric chromosomes were detected. Dicentric wheat/rye translocated chromosomes were also observed. Comparisons were made with previous results on the rye chromosome distribution from male gametes of the same cross and differences were found, where in the female derived population a deficit of plants with more than two rye chromosomes was apparent relative to the anther derived population.  相似文献   

12.
Using the marker information of 275 F2 plants quantitative traits determining morphological and yield characters were studied analyzing F3progenies grown in four different experiments at three sites. The map constructed contains 113 markers including the major dwarfing gene Ddw1 with an average distance of about 10 cM between adjacent markers. Of the 21 QTLs detected ten were found to map on chromosome 5RL in the region of Ddw1. Beside the expected effects on plant height and peduncle length that are most probably due to the presence of the major dwarfing gene, additional effects on yield characters and flowering time were discovered in that region which may be caused by pleiotropic effects of Ddw1. An additional supposed gene cluster consisting of four QTLs controlling flowering time and yield components was discovered in the centromere region of chromosome 2R. Further loci are distributed on chromosomes 1R (1), 4R (1) 6R (3) and 7R (1). The map positions of the quantitative trait loci detected in rye are discussed in relation to major genes or QTLs determining agronomically important traits in other cereals. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
N. Jouve  F. Diaz 《Euphytica》1990,47(2):165-169
Summary The EST-6 leaf esterase phenotypes from euploid, nullisomic-tetrasomic and rye chromosome addition and substitution lines of common wheat were determined using polyacrylamide gel electrophoresis. Evidence is presented to demonstrate that Est-6 is a new set of genes, that are expressed in the leaf. The Est-6 gene set were clearly distinguished from the Est-5 genes which are expressed in the grain. The three homoeoallelic loci, Est-A6, Est-B6 and Est-D6, were located on chromosomes 3A, 3B and 3D. An Est-R6 gene was located on chromosome 6R is involved in rye. Some considerations concerning homoeology between homoeologous group 3 of wheat and the rye chromosome 6R are made.  相似文献   

14.
Cytology and gene expression of an amphiploid between Aegilops tauschiiL., native to China, and Secale silvestre L. were studied to reveal the genomic interaction between the donor species. High frequencies of aneuploids were observed in the progenies of the amphiploid, indicating its cytological instability. Feulgen staining and Giemsa-C banding showed that only the nucleolar organizing region from chromosome 5D of Ae. tauschii existed in the amphiploid (2n = 28). The nucleolus of S. silvestre was not observed. Endosperm storage protein electrophoresis indicated most gliadin and glutenin genes from both parents were expressed in the endosperm of the amphiploid. When inoculated by wheat stripe rust and powdery mildew isolates,the amphiploid did not express the resistance from its Secale parent,suggesting the presence of disease resistance suppressor(s) in the D genome of Ae. tauschii as well as nucleolar organizer suppressors. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
B. S. Jalani  J. P. Moss 《Euphytica》1981,30(1):105-112
Summary Different wheat genotypes (T. aestivum) were crossed with rye to ascertain the site or sites of manifestation of the crossability genes, Kr 1 and Kr 2. By using fluorescence microscopy, it was found that the order of increasing proportion of wheat micropyles containing pollen tubes is strongly correlated with the levels of crossability with rye. High crossable genotypes have more micropyles containing pollen tubes than those of the low crossable ones. Most of the inhibition or retardation of pollen tubes occurred between the style base and top of the embryo sac, expecially with the low crossable genotypes where both Kr-genes are present. The results also indicate that Kr 1 is a greater inhibitor than Kr 2. Seed set is also highly correlated with the number or proportion of micropyles having pollen tubes. Alternate pollinations seem to support the view that rye pollen tubes do not reach the micropyles of the low crossable genotypes, and hence when repollinated with wheat selfed seeds are produced.  相似文献   

16.
Hugh Wallwork 《Euphytica》1989,40(1-2):103-109
Summary Fifteen triticale and wheat-triticale hybrid lines were evaluated for resistance to the take-all fungus Gaeumannomyces graminis var. tritici and compared with five wheat and two rye lines in inoculated field and pot trials. The triticale and wheat-triticale hybrid lines varied in rye chromosome number and degree of resistance expressed. One line, Venus with seven pairs of rye chromosomes consistently showed levels of resistance intermediate between wheat and rye. A trend was observed where increasing rye chromosome content led to greater resistance but exceptions showed that variation within triticales could not be ascribed to rye chromosome content alone.  相似文献   

17.
Summary In this study a new trigeneric hybrid involving species from the Triticum, Secale and Leymus was produced by crossing octoploid triticale (Jinsong49) with octoploid tritileymus (950059). The chromosome constitution of the parental amphiploid, trigeneric hybrid and its progenies were studied. Genomic in situ hybridization (GISH) analysis showed that Jinsong49 and 950059 had 44 wheat chromosomes, and 12 rye chromosomes, 12 L. mollis chromosomes respectively. The mean meiotic configuration of trigeneric hybrid F1 was 13.17 I + 20.82 II + 0.37 III + 0.02 IV. GISH results indicated the trigeneric hybrid F1 had 6 rye chromosomes and 6 Leymus chromosomes. In the selfed derivatives of the trigeneric hybrids, while the number of selfed generation increased, the mean number of chromosomes tends to decrease gradually and slowly. GISH results revealed that most plant tested in the progeny population had 8–12 rye chromosomes, and no Leymus chromosomes were detected. The results indicated that rye chromosomes can be preferentially transmitted in the progenies of trigeneric hybrid than Leymus chromosomes.  相似文献   

18.
Summary The Sr27 translocation in WRT238 was found to consist of chromosome arms 3RS of rye and 3AS of common wheat. An attempt was made to purposely produce compensating translocations having 3RS and a wheat homoeologous group 3L arm. To achieve this, plants, double monosomic for 3R and a wheat homoeologous group 3 chromosome, were irradiated (7.5 Gy gamma rays) or left untreated before being used to pollinate stem rust susceptible testers. Segregation for stem rust resistance was studied to identify F2 families with Sr27-carrying translocated chromosomes, these were confirmed by means of C-banding. Compensating translocations 3RS3AL and 3RS3BL) were obtained readily and at similar frequencies from untreated and irradiated plants (respectively, 7.2% and 9.3%). Both translocation types have impaired transmission and segregate approximately 3: 2 (present: absent) in the F2.  相似文献   

19.
Lange  Wouter  Wojciechowska  Barbara 《Euphytica》1976,25(1):609-620
Summary The crossing of common wheat (Triticum aestivum L.) with rye (Secale cereale L.), and especially the action of the crossability genes of wheat, was studied using the readily crossable wheat cv Chinese Spring (genotype kr 1 kr 1 kr 2 kr 2 >), the poorly crossable wheat cv Hope (genotype Kr 1 Kr 1 Kr 2 Kr 2 ), as well as the disomic substitution line of chromosome 5B of Hope into Chinese Spring (CS/Hope 5B, genotype Kr 1 Kr 1 kr 2 kr 2 ). By comparing crossability and actual fertilization, the poor crossability with rye of both cv Hope and the CS/Hope 5B substitution line was shown to result from absence of fertilization. Studies of pollen grain germination and pollen tube growth showed that the dominant alleles of the crossability genes manifested themselves through retardation and eventually inhibition of pollen tube growth at the style base and in the ovary wall. In Hope the growth of all pollen tubes was inhibited, whereas in CS/Hope 5B rarely fertilization was achieved. The recessive alleles of the crossability genes do not seem to have an influence on the growth of rye pollen tubes in wheat pistils.  相似文献   

20.
Ear emergence time and response to vernalization were investigated in 12 alien substitution lines in which a pair of chromosomes 5A of recipient spring wheat cultivars was replaced by a pair of chromosomes 5R of Siberian spring rye ‘Onokhoiskaya’. The recipients were 12 spring cultivars of common wheat, each carrying different Vrn genes. Spring rye ‘Onokhoiskaya’ had the Sp1 (now called Vrn-R1) gene for spring growth habit located on chromosome 5R, but its expression was weaker. The Vrn-R1 gene had no effect on growth habit, ear emergence time and response to vernalization in wheat-rye substitution lines. Ears emerged significantly later in the 5R(5A) alien substitution lines than in the recipient wheat cultivars with the Vrn-A1/Vrn-B1/vrn-D1 or Vrn-A1/vrn-B1/Vrn-D1 genotypes. No difference in ear emergence time was found between most of the 5R(5A) alien substitution lines and the cultivars carrying the recessive vrn-A1 gene. The presence of the Vrn2a and Vrn2b alleles at the Vrn2 (now called Vrn-B1) locus located on wheat chromosome 5B was confirmed.The replacement of chromosome 5A by chromosome 5R in wheat cultivars ‘Rang’ and ‘Mironovskaya Krupnozernaya’, which carries the single dominant gene Vrn-A1, converted them to winter growth habit. In field studies near Novosibirsk the winter hardiness of 5R(5A) wheat–rye substitution lines of ‘Rang’ and ‘Mironovskaya Krupnozernaya’ was increased by 20–47% and 27–34%, respectively, over the recurrent parents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号