首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
A Dactylis glomerata L. genotype that produces somatic embryos in vitro was tested for the ability to sexually transmit the embryogenic trait. Reciprocal crosses were performed between the embryogenic and two non-embryogenic genotypes. Leaf segments from 69 F1 plants were cultured on Schenk and Hildebrandt medium amended with 30 μM 3,6-dichloro-o-anisic acid (dicamba). Somatic embryogenesis was expressed in 39 of the F1 plants. The embryogenic parent was female for 18 of these plants and male for the other 21. The 39:30 ratio of embryogenic: non-embryogenic fits an expected 1:1 for tetrasomic inheritance of a dominant nuclear gene.  相似文献   

2.
Summary In alfalfa (Medicago sativa) regeneration is genotype-specific. In order to study the genetic control of somatic embryogenesis and to constitute a synthetic cultivar characterized by its high regeneration ability, 2 embryogenic plants selected from the cv. Adriana were selfed, intercrossed and also crossed in both directions with 5 non-embryogenic genotypes of the same cultivar.Progenies of all crosses were scored for their regeneration ability and results indicate that somatic embryogenesis is under the control of 2 dominant loci. However some non-embryogenic genotypes prevent regeneration when crossed with embryogenic ones and this characteristic is not under the control of a single dominant gene.When plants chosen for their capacity to regenerate within F1 and S1 progenies were freely intercrossed the regeneration efficiency dropped to 2% (1 plant out of 50). This result indicates that if the genetic background of the population is changed the regeneration is greatly affected and therefore some other mechanism could play a role in determining plant regeneration.  相似文献   

3.
M. Bencheikh  A. Gallais 《Euphytica》1996,90(3):257-264
Summary Six lines of Pisum were tested in vitro for their ability to produce somatic embryos from apices. Significant quantitative variation was observed. Inheritance of the ability to form somatic embryos was studied using a diallel cross among six different lines. About 80% of the observed genotypic variation was due to additive effects. There is a tendency for the favourable genes to be recessive. It appears that there are two genetic systems involved. Analysis of the distribution of F3 families means from a cross among two extreme lines seems to indicate the presence of a few major genes in the control of somatic embryogenesis of pea.  相似文献   

4.
F. J. Novak    S. Daskalov    H. Brunner    M. Nesticky    R. Afza    M. Dolezelova    S. Lucretti    A. Herichova  T. Hermelin 《Plant Breeding》1988,101(1):66-79
Sixteen inbred lines and one hybrid of manse were tested for their capability of somatic embryogenesis, and fully developed plants could be regenerated, from ten inbred, lines. The highest frequency of plant regeneration was expressed in the inbred line CHI 31, and when this line was crossed with a recalcitrant, non-regenerating line, the F1 and BC hybrids were regenerable. The results of reciprocal crosses demonstrated that dominant nuclear genes and cytoplasmic factors are primarily responsible for the heritable determination of embryogenic callus proliferation and in vitro regeneration of maize plants. Somaclonal and radiation-induced variability was studied in maize to assess their nature and potential contribution to plant breeding., The inbred line CHI 31 possessing a high in vitro capacity of somatic embryo formation was used as experiments.] material. CHI 31 plants were selfed and twelve-day old zygotic embryos irradiated with 60Co gamma radiation in situ. Mature caryopses were harvested and assigned as M1 material. In another series, immature zygotic embryos (size 1.2—1.5 mm) were cultured in vitro on N-6 medium supplemented with 2,4-D (2.5 μM), and somatic embryos regenerated into plants; these were transplanted into soil and self-pollinated. Regenerants from non-irradiated cultures were grown as R1 generation, while regenerants from irradiated explants were considered as M1R1 generation. The genetic variability was evaluated in the M2, R2 and M2R2 generations, respectively, and compared with a non-treated seed control. Irradiation induced a variety of chlorophyll and morphological variants segregating in the M; generation; however, the frequency of deviant types obtained in the R: generation (somaclonal variation) was significantly exceeding the one derived from the M2 populations. The combination of expert irradiation and in vitro regeneration was most effective for the manifestation of chlorophyll and morphological o if types in the M2R2 generation, and increased drastically the frequency of early flowering variants. Differences in the segregation patterns of mutant phenotypes amonsister somaclones in the R3 and M3R3 generations indicate a different genetic basis, of plants originating from the same explant. This phenomenon suggests a mutational sectoring of the callus during culture. Radiation induced and somaclonal variation exerted a similar spectrum of chlorophyll and morphological deviants.  相似文献   

5.
In order to identify the markers linked to microspore embryogenic ability in Brassica crops, RAPD segregation analyses were performed in a microspore-derived (MD) population and a F2 population derived from F1between ‘Ho Mei’ (high responsive parent in microspore embryogenesis) and ‘269’ (low responsive parent) in Chinese cabbage, and between ‘Lisandra’ (high responsive parent) and ‘Kamikita’ (low responsive parent) in oil seed rape. After 230 and 143 primers were screened, a total of 148 and 52markers were detected to be polymorphic between the parents in Chinese cabbage and oilseed rape, respectively. Twenty-seven percent of the markers in the MD population showed a significant segregation distortion in both crops. Of the markers showing segregation distortion in the MD population, 71–75% of the markers followed the expected Mendelian segregation ratio in the F2 population. When the relationships between such distorted markers and microspore embryogenesis of the F2 population were examined, 7 and 3 markers were identified to be associated with embryogenic ability in Chinese cabbage and oilseed rape, respectively. These markers showed additive effects on embryo yields, and the plants having more alleles of the high responsive parent produced higher embryo yields. These markers maybe useful in marker-assisted selection for improving microspore responsiveness straits in Brassica crops. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Summary In the course of experiments performed to obtain haploid wheat plants in which 2,4-dichlorophenoxyacetic acid (2,4-D) was applied to developing spikes, it was found that three cultivars showed a different ability to produce polyembryos (Thatcher 20.19%, Chris 7.06%, Dollar 0%). This behaviour was related to their capacity to form somatic embryos. Diploid immature embryos cultured in vitro after 2,4-D treatment, gave a higher frequency of embryogenic callus in Thatcher and Chris than in Dollar. As the common factor in both experiments was the 2,4-D treatment we propose that the three cultivars showed a differential sensitivity to 2,4-D.  相似文献   

7.
New aspects of soybean somatic embryogenesis   总被引:4,自引:0,他引:4  
Somatic embryo formation from immature cotyledons was improved in the following ways: by cutting into sections, supplementing culture media with spermine and using solid/liquid/solid type of culture. Cut cotyledons of the eight genotypes examined expressed a higher ability for somatic embryogenesis than whole cotyledons. Of the three polyamines tested, spermine considerably stimulated and putrescine slightly inhibited induction of somatic embryos. The ability of embryoid formation on medium with spermidine depended on the genotype. The solid/liquid/solid type of culture was better than the continuous solid culture. The best nitrogen ion content for the subculture of somatic embryos was 10 mM NH4NO3 and 30 mM KNO3. The possibility of using these modifications in Agrobacterium transformation is discussed.  相似文献   

8.
Summary Immature embryos of seven rye inbred lines were cultured on modified MS medium containing 3 mg/dm–3 2,4-D. According to thein vitro response lines were divided into four groups: (1) those producing non-embryogenic callus (NEC) from above 30% of the embryos and having a high rate of non-responding (NR) embryos, (2) those producing non-embryogenic callus (NEC) from the majority of embryos, (3) those producing NEC by the majority of embryos with a high percentage of calli regenerating roots, (4) those producing embryogenic callus (EC) and regenerating plants by above 50% of the embryos. The inheritance of these response types was analysed in F1, F2, and F3 generations of crosses of some lines. The results obtained indicate that EC production and both plant and root regeneration are determined by recessive genes whereas the reduced ability for NEC production most probably by dominant genes. The lack of response is controlled by at least two interacting genes.  相似文献   

9.
Vikrant  A. Rashid 《Euphytica》2001,120(2):167-172
Somatic embryos differentiated directly on the rachis of immature inflorescences of Paspalum scrobiculatum L. cv. PSC 1 on culture to MS or N6 medium supplemented with different concentrations (4.5–22.5 μM) of 2,4-dichlorophenoxyacetic acid (2,4-D). Direct embryogenesis on the rachis of inflorescence explants forms the first instance in graminaceous plants. Highest frequency of direct embryogenesis (34%and 30% cultures, respectively) was possible on N6 medium supplemented with 4.5 μM of 2,4-D and MS medium fortified with9.0 μM of 2,4-D. Other tissues of the explant, floral-primordia, only after an initial phase of callusing differentiated into somatic embryos; indirect embryogenesis. Somatic embryogenesis, direct as well as indirect, was resolved by scanning electron microscopy. The somatic embryos germinated and developed into plantlets on regeneration medium. Interestingly, one week incubation of somatic embryos on activated charcoal (0.5%) fortified basal medium, supported high potential for ‘germination’ on transfer to charcoal-free basal medium. This beneficial effect of activated charcoal on regeneration of somatic embryos into plantlets is the first record in the Gramineae. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Genetic control of somatic embryogenesis in cotton petiole callus cultures   总被引:8,自引:0,他引:8  
Summary Three commercial varieties (Acala SJ-5, Coker 312 and Paymaster 303) and three exotic accessions (T1, T25 and T169) of cotton (Gossypium hirsutum L.) were tested for ability to undergo somatic embryogenesis. Sections of split petiole were cultured on 3 media and evaluated for embryogenesis after 180 days. Embryogenic T25 and Coker 312 plants were selected and crossed in a diallel with non-embryogenic Acala SJ-5, Paymaster 303, T1 and T169 plants. F1, F2 and BC1 populations were generated and tested for embryogenesis on a medium of MS salts and vitamins (1962) plus (per liter) 4.0 mg NAA, 1.0 mg Kn, 30 g glucose, 100 mg myo-inositol, 2.0 g Gelrite and 0.75 g MgCl2. Segregation for both occurrence and magnitude of embryogenesis was observed, suggesting the action of more than one gene.  相似文献   

11.
Wheat (Triticum aestivum L.) breeders often utilize alien sources to supply new genetic variation to their breeding programs. However, the alien gene complexes have not always behaved as desired when placed into a wheat background. The introgressed genes of interest may be linked to undesirable genes, expressed at low levels or not at all. The short arm of rye (Secale cereale L.) chromosome one (1RS) contains many valuable genes for wheat improvement. In order to study rye gene response to varying copy number, wheat lines were constructed which contained zero, two or four doses of 1RS. The meiotic behavior of rye chromosome 1R, and wheat/rye translocation chromosomes, 1AL/1RS and 1BL/1RS was studied in the F1 hybrids between wheat lines carrying 1R or the translocation chromosomes. The IRS arm was transmitted at a very high frequency; 98 % of the F2 plants had at least one of the chromosomes with a IRS arm. In addition, 44 % of the F2 plants received at least one copy of the chromosomes from each parent. Analysis of the meiotic behavior of the IRS arm suggested that few euploid wheat gametes were formed. Therefore, most of the pollen must have contained IRS. It is unknown whether the lack of euploid wheat pollen could account for the high transmission frequency of the rye chromosomes. There may have been differential survival of the embryos receiving the rye chromosome as well.  相似文献   

12.
Five populations of lemon plants [Citrus limon (L.) Burm] obtained from undeveloped ovules through different tissue culture procedures were examined for the presence of somaclonal and irradiation-induced genetic variation. Tested groups were: (1) nucellar seedlings; (2) organogenic, regenerated via adventitious buds from nucellar seedling internodes; (3) embryogenic population, regenerated from non-irradiated nucellar callus via somatic embryogenesis; (4) embryogenic population, regenerated from irradiated nucellar callus via somatic embryogenesis; and (5) protoplast-derived, regenerated via somatic embryogenesis. Genomic DNA samples from 360 plants (72 from each group) were screened for polymorphism among RAPD fingerprints amplified by 10 decamer primers. Among all tested plants, genetic variation was detected only within the group of plants recovered from irradiated embryogenic calli. Out of 72 plants from that group, three had RAPD fingerprints different from the rest of the population, and fourth plant was found to be cytochimeric, consisting of diploid and tetraploid cells as revealed by flow cytometry. In all other populations of regenerated plants, we did not come across any plants with changed ploidy level.  相似文献   

13.
Summary The possibility of producing agronomically-useful somaclones via organogenesis and somatic embryogenesis from callus cultures of pea (Pisum sativum L.) was studied. Organogenic calli were induced from immature leaflets on MSB medium with NAA and BAP. Embryogenic calli were derived either from immature zygotic embryos (using 2,4-D) or from shoot apices (using picloram) of aseptically-germinated seedlings.The seed progenies (T1 to T3-generation) of primary regenerants were grown in field conditions and their phenotypic variation was evaluated and compared with control, non-tissue culture-derived plant material. In addition, electrophoretic analyses of selected isoenzyme systems and total proteins have been done. The results do not show dramatic changes in qualitative and quantitative traits. The evaluation of at least two future generations (T4, T5) is planned.Abbreviations BAP 6-benzylaminopurine - IBA indole-3-butyric acid - MSB medium (mineral salts after Murashige & Skoog, 1962, vitamins after Gamborg et al., 1968) - NAA -naphthalene-acetic acid, picloram-4-amino-3,5,6-trichloro picolinic acid - 2,4-D 2,4-dichlorophenoxyacetic acid - ORG organogenesis - SE somatic embryogenesis  相似文献   

14.
Summary Experiments upon in vitro culture of immature durum wheat embryos, harvested at different growth stages, were made in two consecutive years. Callus formation and plantlet regeneration were obtained. The ability to form callus and the degree of morphogenetic processes varied with the different hormonal treatments used and with the age of the embryos. In the first year the best response for callus growth was observed with 2,4-D 2 mg l-1 plus adenine 50 mg l-1 or 2,4-D 5 mg l-1 alone in the more mature embryos (15 and 20 days after anthesis). On the contrary, NAA 5 mg l-1 had a greater shoot regeneration effect. In the next year, at all 2,4-D concentrations and for the two different ages of the embryos tested, all embryos formed callus. Regeneration of plantlets was obtained in higher percentage in calli originated from the more developed embryos. The effect of changed media upon plantlet regeneration was studied after callus transplant.Investigation by cytophotometry and chromosome counts on different calli showed, practically in all cells, a diploid condition. A histological analysis demonstrated embryogenic somatic characteristics in many samples of callus. The pattern of organogenesis seemed to be via adventitious bud formation but structures resembling embryoids were also observed in the callus.  相似文献   

15.
A protocol was established for high frequency cyclic somatic embryogenesis for different varieties of cassava. An efficient plant regeneration system was developed for the high cyanogenic variety PRC60a. Linamarin content and linamarase activity were determined in various tissues of secondary somatic embryos and regenerated plants of PRC 60a. Both linamarin and linamarase activity were not detected in embryogenic callus, roots induced from callus and somatic embryo tissues. The stems and leaves of regenerated plants (in vitro) and storage roots and leaves of mature plants (in vivo), however, contained variable amounts of linamarin and linamarase activity whereas in the non storage root tissues (in vitro) only linamarin was detected. The present study suggested that the linamarin biosynthetic pathway may be absent or not switched on in the embryogenic callus and somatic embryos. The ploidy level and somatic chromosome number of the regenerated plants were found to be same as the source plants. The availability of this regeneration system would be useful not only for investigating cyanogenesis but also for genetic manipulation in cassava. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Somatic embryogenesis (SE) is a critical step leading to plant regeneration in tissue culture of many plant species. The objective of the present study was to analyze the inheritance of SE in cotton (Gossypium hirsutum L.) using leaf petioles as explants. A high embryogenic callus (HEC)—producing line, W10, was selected by petiole callus culture from a commercial Chinese cotton cultivar CRI24 and crossed with a non embryogenic line, TM-1 and a low embryogenic (LEC) commercial Chinese cotton cultivar, CRI12, respectively. The parental lines, F1 and F2 were grown in field conditions for sources of leaf petioles as explants. The F1 plants were similar to the HEC parent in embryogenic callus (EC) induction, indicating that high EC ability is dominant. The classical Mendelian analysis showed that the high EC ability in the HEC line W10 is controlled by two independent dominant genes with complementary effect, designated Ec 1 and Ec 2 , while the LEC line CRI12 contains one dominant gene Ec 2 . A joint segregation analysis confirmed that SE ability in cotton is controlled by two major genes with epistatic effects along with other polygenes. A SSR marker analysis identified three quantitative trait loci (QTLs) on two linkage groups, one of which harbored a major QTL (qEc1) which is assigned to the major gene Ec 1 . This qualitative and quantitative genetic study has provided an incentive to fine map the genes responsible for SE towards the isolation of the SE genes in cotton.  相似文献   

17.
Intergeneric hybridization between Brassica species and Crambe abyssinica   总被引:1,自引:0,他引:1  
A protocol for high frequency callus induction and plant regeneration from sunflower (Helianthus annuus L.) anthers is described. Different variables using Murashige & Skoog (MS) basal medium supplemented with 2.0 mg/l α-naphthaleneacetic acid (NAA) and 1.0 mg/l N6-benzyladenine (BA) were tested for their ability to enhance the frequency of anther callusing and subsequent embryogenesis. Of these, agar concentration, sucrose concentration, carbohydrate source had significant effect on callusing, while differences due to incubation under dark vs light conditions, cold pretreatment of capitula for 1 to 6 days prior to anther inoculation and genotype on callusing were non-significant. However, all these factors exerted highly significant influence on embryogenesis when calli from the various media were transferred to medium supplemented with 0.1 mg/l NAA and 0.5 mg/l BA. With the procedure developed, callusing as high as 100% and embryo formation at a frequency of 44% was achieved. Although complete embryos were formed the frequency of their conversion to whole plantlets was low (14.3%). Hence, the embryogenic pathway was bypassed to obtain multiple shoots by transferring embryogenic calli with developing embryos to MS medium supplemented with 0.5 mg/l BA. Elongated shoots rooted on half-strength MS medium supplemented with 0.5 mg/l NAA. Cytological analysis of embryogenic callus and somatic embryos revealed haploids at a frequency of 30% while that of rooted plants showed haploid regenerants at a frequency of 8.3%. Nevertheless, the frequency of putative haploid plants could be enhanced through mass multiplication using nodal explants of the regenerants. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
An investigation was made to discover the influence of dicamba on the somatic embryogenesis of winter wheat cultivars-. Immature embryos of Triticum aestivum cv, ‘Sage’, ‘Caribo’ and ‘Kanzler’ were cultured, on modified N6-medium with the addition of 1 mg/13,6 dichlor-2-methoxy benzoe acid (dicamba). The young embryos were placed with the embryo axis on to the medium. Under this condition the scutella of the embryos at different stage of development produced compact calli and embryoids which regenerated plants with a high frequency (70 %) four to: six weeks later. The results suggest that dicamba could be of value in the induction of somatic embryogenesis.  相似文献   

19.
Summary This article reports the culture and plant regeneration of Tripsacum dactyloides. Mature embryos of Tripsacum dactyloides dactyloides were used to obtain embryogenic callus cultures. Currently, 180 normal plants have been regenerated from these cultures. Callus was initiated on MS medium supplemented with dicamba (10 mol or 20 mol) and sucrose (3% or 6%), and plants were regenerated on hormone free MS medium containing 2% sucrose. No significant differences were found in callus initiation frequency or in embryogenic response of cultures on the four combinations of sucrose and dicamba tested. The embryogenic cultures have been maintained for 9 months (12 subcultures) and have retained regeneration capacity. Plants regenerated from tissue culture of maize-by-Tripsacum hybrids could be useful in maize improvement.  相似文献   

20.
Plant regeneration from protoplasts of Iris germanica L.   总被引:1,自引:0,他引:1  
K. Shimizu  T. Yabuya  T. Adachi 《Euphytica》1996,89(2):223-227
Summary Protoplasts were isolated enzymatically from suspension cultures derived from embryogenic calli induced by leaf base culture of Iris germanica. In protoplast culture, the effects of glucose concentration, different sugars and combinations of 2,4-D and KIN on protoplast division and colony formation were examined. N6 medium supplemented with 0.1–1 mg/l 2,4-D, 1 mg/l KIN, 200mg/l casein hydrolysate, 250 mg/l proline, 0.2 M glucose and 20 g/l agarose was suitable for protoplast division and colony formation. When colonies formed were transferred onto hormone-free MS medium, many plantlets were regenerated through somatic embryogenesis. Thus, we could establish a plant regeneration system from protoplasts of I. germanica.Contribution from the Laboratory of Plant Breeding, Faculty of Agriculture, Miyazaki University, Japan, No. 95.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号