首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 372 毫秒
1.
The effect of secondary salinization on photosynthesis was studied in fodder oat genotypes Kent, JHO-829, JHO-881, UPO-94 and OS-6 at the flower initiation stage. With an increase in the electrical conductivity (EC) of irrigation water, the net photosynthesis rate (PN) and the transpiration rate (E) of all the genotypes decreased. The intercellular CO2 concentration (Ci) increased in all genotypes at 10 dS m−1. Stomatal resistance (Rs) had a strong negative correlation with PN and E. The increase in Ci together with the increase in the Rs shows that at higher EC non-stomatal factors also start contributing to the limitation of photosynthesis. This study suggests that secondary salinization effects are strongly under stomatal control at lower saline water irrigation levels, but at higher levels non-stomatal factors may come into play.  相似文献   

2.
Crop management influences considerably the three components of grain yield, growth duration, growth rate, and harvest index (HI). Effects of seeding rate on these yield components in oats ( Avena sativa L.) was assessed in field experiments at the Viikki Experimental Farm, University of Helsinki, Finland (60°13'N) in 1991 and 1992. Three Finnish oat genotypes were evaluated; a long-strawed landrace cultivar, a moderately long-strawed modern cultivar, and a semi-dwarf breeding line. The following traits were measured: grain yield, days from sowing to yellow ripeness, number of tillers on main shoot, phytomass, vegetative phytomass, and their growth rates (PGR and VGR, respectively), panicle weight and its filling rate (PFR), HI, leaf area index (LAI), and at intervals, dry-matter accumulation in leaves and straw.
Increases in seeding rate significantly decreased growth duration and PGR of individual plants but increased PGR on a ground area basis. Seeding rate did not, however, affect HI. When seeding rate was increased from 200 seeds m−2 to 500 seeds m−2, reductions in vegetative phytomass, panicle weight, VGR, and PFR for individual plants ranged between 20 and 40 %, depending on genotype. At ≥600 seeds m−2 differences in these components between seeding rates were modest. However, PGR, VGR, and PFR per unit ground area increased with increasing seeding rates up to 600–700 seeds m−2. Moreover, the higher the seeding rate, the higher the peak LAI (2.7 maximum) and the earlier the canopy closure. Hence, our results showed that a seeding rate of 600–700 seeds m−2, which resulted in uniculm growth habit, is advantageous in terms of grain yield at high latitudes due to higher biomass accumulation and subsequently greater interception of PAR.  相似文献   

3.
The effect of plant water stress on net photosynthesis, leaf growth, yield and yield-related components were investigated in a single experiment in order to determine in which way water deficits affect sunflower yields.
Sunflower plants, grown under controlled temperature regimes, were stressed during budding, anthesis and seed filling by withholding water until the leaf water potential reached -1600 and -2000 kPa. Leaf area of unstressed plants significantly exceeded that of plants under severe stress during all growth stages investigated. The CO2 uptake rate per unit leaf area as well as the total uptake rate per plant, significantly diminished with stress, while this effect drastically increased during the reproductive phase of the plant. Although this resulted in significantly smaller heads and kernels, it did not affect the number of seeds borne in the inflorescence. Severe stress during anthesis and seed filling resulted in more empty kernels. Moderate and severe stress during budding significantly lowered both grain and oil yields while plants that experienced moderate stress during anthesis and seed filling significantly outyielded those under severe stress.  相似文献   

4.
The effect of varying seed rates (100–1000 seeds m−2) and nitrogen fertilizer (0–60 kg N ha-1) applied either in a single basal dose or in splits was investigated on a tall elongating, photosensitive rice variety, Nalini, under semi-deepwater conditions (0–100cm) during 1993 and 1994 at Cuttack, India. Seedling emergence was higher in 1993 (53.9 %) than in 1994 (44.1 %) and it increased proportionately with increasing seed rate, Increase in the number of tillers and panicles m−2 at higher seed rates was associated with a corresponding decrease in panicle weight. Regression analysis indicated a decrease of 0.91–1.28g in panicle weight for an increase of 100 panicles m−2. The grain yield of rice was significantly higher at 400 seeds m−2 in 1993 and at 600 seeds m−2 in 1994 than at low seed rates but further increase in seed rate did not increase the yield. Application of N fertilizer increased the panicle number and thereby grain yield significantly. The effect of basal and split applied N at active or maximum tillering stages as well as between 30 and 60 kg N ha−1 was not significant on the grain yield. The results suggest that a basal dose of 30kg N ha−1 and seeding density of 400–600 seeds m−2, resulting in 40–50 % seedling emergence and 150–200 panicles m−2, each with 2.0–2.5 g weight, may be adequate for optimum productivity of rice under semideepwater conditions.  相似文献   

5.
In six field experiments conducted over 2 years, the effect of one or two cuttings on grain yield of triticale (× Triticosecale Wittmack) were investigated. In addition, the relationships between triticale grain yield its components were analysed.
Grain yield of the uncut plots invariably exceeded the plots with one or two cuttings, regardless of the environment or year. The reductions in grain yield caused by one cutting ranged from 27 % to 60 % under rainfed conditions and 18 % to 20 % under irrigation. With two cuttings the reduction was 45 % to 70 % for rainfed, and 35 % to 48 % for irrigated conditions.
The yield components which most influenced grain yield of triticale under cutting treatment were the number of ears m−2 in all six experiments and the number of grains per ear under rainfed conditions. At the rainfed sites in 1989 cuttings diminished the number of ears m−2 mainly by increasing plant mortality. Nevertheless, at the rainfed sites of 1990 and at the irrigated site of both years, the reduction in the number of ears m−2 with cuttings was due principally to a lower survival of tillers per plant.  相似文献   

6.
施肥对旱作冬小麦植株水分变化与光合生理特性的影响   总被引:3,自引:0,他引:3  
刘芳  亓新华 《作物学报》1997,23(5):615-619
研究表明,中等以上肥力的冬小麦水浇地改为旱作时,通过合理施用有机肥和氮素化肥,可使土壤保持较高的含水量。随着有机肥用量的增加,植株叶片气孔导度变小,蒸腾速率与光合速率下降,叶片保水能力增强,提高了小麦植株的光合作用效率。与施用化肥相比,有机肥在降低植株叶片相对含水量、脱水速率方面作用显著。这些生理特性的改善,导致小麦产量提高11%,从而达到充分利用当地自然降水,节约地下水,降低生产成本,获得与水浇  相似文献   

7.
石新733小麦的水分生理特点及节水灌溉效应   总被引:10,自引:4,他引:6  
石新733是一个高产优质小麦新品种,为探明其是否适用于节水高产栽培,于2003—2004和2004—2005年度进行了节水灌溉对其水分生理性状和产量影响的田间试验。结果表明,石新733的叶片渗透调节能力比邯麦9、石麦9和衡7228的平均值高71.6%,叶水势比衡7228约高0.1 MPa。石新733的离体叶片失水速率较高;蒸腾速率、净光合速率和气孔导度与石麦9和邯麦9接近,均高于衡7228;胞间CO2浓度和蒸腾效率品种间没有明显差别。与灌5水处理相比,灌2水处理的叶水势和叶片气体交换参数均相近而灌浆盛期的光合功能和蒸腾效率较高。石新733的产量高于其他3个品种,其中,不灌水和灌2水处理分别比其他3个品种平均产量增加11.3%和7.0%。全生育期只灌拔节和抽穗开花期2水的节水处理比灌4水的常规灌溉处理增产5.6%,说明该品种可在节水高产栽培上应用。  相似文献   

8.
The responses of photosynthesis, transpiration, respiration, leaf conductance and cuticular transpiration to water vapour pressure deficit (VPD) have been simultaneously measured in single attached leaves of soybean in order to test the mechanism in the effects of air humidity on photosynthesis and transpiration. The results of present experiments have shown that the affecting mechanism of VPD or air humidity on the photosynthesis and transpiration is by means of controlling not only the stomatal behavior, but also the cultivars behavior, and the stomatal closure at high VPD or low air humidity is a function of the cuticular transpiration, rather than the stomatal transpiration.  相似文献   

9.
抽穗后冬小麦旗叶光合特性的变化对产量的影响   总被引:1,自引:1,他引:0  
为了探讨不同小麦品种之间的光合特性的差异及光合作用与经济产量的关系,本研究选取4个不同冬小麦品种分别在6个生育时期进行了光合特性的测定。结果表明:小麦旗叶6项光合特性指标随发育进程变化的趋势、变化程度基本相同,但不同品种在不同发育时期内光合特性指标的数值、变化程度不同;6项光合特性指标均与籽粒产量正相关;相关程度表现为绿叶面积>气孔导度>胞间CO2浓度>净光合速率>叶绿素含量>蒸腾速率;不同时期光合特性与籽粒产量的相关性顺序为灌浆中期>灌浆前期>灌浆后期>开花期>抽穗期>灌浆末期;在开花期至灌浆后期,维持和提高旗叶的绿叶面积、叶绿素含量、净光合速率、气孔导度、胞间CO2是提高小麦产量的基础。因此,在开展小麦高光效育种时,对种质资源材料进行光合特性测定和比较对育种工作具有非常重要的参考价值和指导意义。  相似文献   

10.
The effect of plant water stress on net photosynthesis and leaf growth were investigated in order to determine to what extent leaf water potential during vegetative growth and silking affects maize development.
Two commercial maize hybrids grown in pots in a glasshouse were subjected to leaf water potentials of -1300 and -1700 kPa during the eighth leaf stage and during silking to -1700 and -2300 kPa to previously unstressed, moderately and severely stressed plants. The effect of stress on inhibiting CO2 uptake rates and leaf areas, as well as the recovery after alleviating stress, were compared to that of unstressed plants.
No substantial differences in CO2 uptake rates were found between medium and long seasoned cultivars. The CO2 uptake rates per unit leaf area decreased to negative values under both moderate and severe stress conditions during both growth stages. During silking, the recovery of CO2 uptake rate was much lower than during the eight leaf stage. Leaf area decreased proportionally with increased stress but did not recover after alleviating stress on plants stressed during both the eighth leaf and silking stages.  相似文献   

11.
Peanut stands often face water deficits in the tropics and subtropics, especially in drought-prone areas of India. The effect of drought on peanut production has previously been studied. However, there is a lack of information on the post-stress recovery mechanism. The objective of this study was to investigate the recovery mechanism after relief of water stress. The effect of short-term drought applied (for 12 days) at the pre-flowering, peak flowering and pod-filling stages on chlorophyll (Chl) pigments, water use efficiency (Wue), quantum yield (Qy), root/shoot ratio (R:S), relative growth rate (RGR), net assimilation rate (NAR) and flower production during stress and subsequent post-stress recovery was examined. The leaf water potential (ψleaf) and leaf relative water content (RWC) in plants subjected to water deficit were reduced to 1/10 and 2/3, respectively, of the corresponding control values. Moisture deficit significantly reduced Chl a and b concentrations, the Chl a/b ratio, stomatal conductance, photosynthesis, Wue and Qy. However, a strong recovery of these traits was noted after rewatering, which led to onset of fresh growth on post-stress, with a marked increase in RGR and NAR and a flush of flowering. Drought significantly enhanced R:S, which accelerated post-stress recovery. Peanut stands exhibited excellent ecophysiological recovery with the post-stress onset of fresh growth. This strong recovery mechanism found in peanut stands suggests that peanut has high environmental plasticity.  相似文献   

12.
不同时期三个小麦主栽品种叶片光合作用的研究   总被引:8,自引:1,他引:8  
胡延吉  樊广华 《种子》1997,(4):15-19
不同时期三个小麦主栽品种不同层次叶片的最大光合速率均出现在盛花期以前。在灌浆期间,当前高产良种鲁麦14的光合速率下降速度较慢,比早期品种碧蚂1号和济南2号有一个较长的高光合持续期,这种差异在下部叶片表现得更为明显一些,尤其是倒3叶。从不同叶位叶片看,挑旗期参试品种均以倒2叶光合速率最高;盛花期以后,旗叶则逐渐占明显的优势。本文用叶片光合速率与叶面积的乘积,即全叶同化速率为指标,可较全面地反映不同品种叶片同化能力的大小。鲁麦14在灌装期间全叶同化速率占一定优势。叶片比叶重是鉴定筛选高光合速率个体的简单可靠的间接指标。叶片气孔阻力对光合速率有一定负效应,而叶片蒸腾对光合速率则有一定正效应。盛花期以前,叶片光合主要受气孔因素制约,而在生育后期,非气孔因素亦有很重要的作用。对小麦高产育种,尤其是光合特性的改良问题进行了讨论。  相似文献   

13.
A Field trial was conducted during 1988–89 and 1989–90 at Water Management Research Station, Memari. Bidhan Chandra Krishi Viswavidyalaya, Burdwan, to study the effect of three different irrigation regimes, namely rainfed (I1) (No irrigation), one irrigation (I2) at flowering and two irrigations (I3 at flowering and at sihqua formation stages) on the grain yield and water expenses on four different rapeseed-mustard cultivars, namely Pusa Bold, Pusa Baroni, Varuna and DIR 247. The variety DIR 247 recorded maximum grain yield (12.1 qha') followed by Pusa Baroni (11.8 q ha−1). The variety Varuna showed the lowest water use efficiency (48.1 kg ha−1 cm−1) while DIR 247 showed the maximum value of 57.0 kg ha−1 cm−1. The number of irrigations significantly increased the grain yield. Two irrigations, one at flowering and at siliqua formation stage increased grain yield by 28 % over the rainfed plots. During the crop growth period the actual water expenses among the cultivars in any moisture regime were more or less similar. The interaction between varieties and irrigation levels were, however, not significant.  相似文献   

14.
Twenty-two genotypes of grain sorghum were grown under drought conditions by omitting one irrigation during stages of before flowering period, kernel filling period, and physiological maturity period at Assiut Univ. Farm in 1987 and 1988 seasons. The results obtained revealed that considerable variation existed among genotypes for all the studied traits. The most effective moisture stress treatment in reducing grain yield, panicle weight and plant height was during flowering stage. While 1000-kernel weight was much affected by moisture stress during grain filling period. The genotype x year interaction (σ2gy) was large compared to genotype x irrigation treatment (σ2gl) indicated that genotypes responded differently when they were grown from year to year. The genotypic variance (σ2g) for all traits were large reflecting the importance of genetic variability. Both phenotypic and genotypic correlations among traits showed that plant height and 1000-kernel weight were highly correlated with grain yield, while leaf area index was low associated with plant height.  相似文献   

15.
The aim of this study was to identify the physiological characteristics which may affect the yield of six cool-season grain legume species grown in a water-limited Mediterranean-type climate in Western Australia. The rate of net photosynthesis, stomatal conductance and water relations were measured from flowering to complete leaf senescence in white lupin, chickpea, faba bean, field pea, grass pea and lentil. In irrigated plants, the midday leaf water potential was about −0.6 MPa in all species, while the maximum rate of leaf photosynthesis was 30 μmol m−2 s−1 for chickpea and white lupin, and below 20 μmol m−2 s−1 for the other species. With the development of water deficits, the leaf water potential in rain-fed plants decreased to about −3 MPa in chickpea and lentil and −2 MPa in the other species. Photosynthesis and stomatal conductance decreased markedly as the leaf water potential decreased below −0.9 MPa in all six species, including chickpea and lentil, which showed a high degree of osmotic adjustment. Despite the similarity in water use, restricted to the top 40 cm of soil, and water relations characteristics, yields varied markedly among species. Yields were strongly correlated with early biomass production and early pod development.  相似文献   

16.
Soybean ( Glycine max L.) plants, cv Richland, were grown during 30 days in a nutrient solution. After this period the plants were treated with a 50 μM Cd(NO3)2 solution. Sap flow rate and stomatal conductance were monitored during 4 consecutive days; at the end of this period relative water content and stomatal width and length were determined on fully expanded leaves. On the second day from the Cd treatment sap, flow rate and stomatal conductance in the treated plants were reduced to 60% of the control plants. Stomatal conductance kept on decreasing up to the fourth day. Cadmium decreased the leaf relative water content and the reduction in the stomatal closure was supported by an increase in the L/W ratio of the stomata. Root water uptake should be the primary mechanism reduced by Cd stress in soybean, and this reduction is consistent with the decrease in transpiration rate and with the stomatal closure.  相似文献   

17.
干旱区不同品种中华钙果光合特性比较研究   总被引:2,自引:2,他引:0  
不同中华钙果品种在西北干旱区叶片形态及光合特性的研究可为该区域高产优质节水品种筛选提供理论依据。通过测定叶片光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)和胞间CO2浓度(Ci)等光合性能指标及形态,分析不同中华钙果品种的叶片形态特征与光合特征及其相关关系。结果表明:(1)不同中华钙果品种叶长和叶宽均存着较大差异,叶面积大小表现为‘农大5号’>‘农大7号’>‘农大6号’>‘生态晚熟种’>‘生态早熟种’;(2)‘农大7号’的净光合速率及蒸腾速率均最大,其净光合速率显著高于‘农大6号’和‘生态早熟种’,蒸腾速率均显著高于其他品种,5种中华钙果的气孔导度及胞间CO2浓度均无显著性差异;(3)5种中华钙果净光合速率、蒸腾速率、气孔导度与叶面积之间存在正相关线性关系,胞间CO2浓度与叶面积之间存在负相关线性关系;(4)5种中华钙果的光合速率与气孔导度、蒸腾速率、叶片蒸汽压亏缺、叶片温度呈极显著正相关,与胞间CO2浓度呈极显著负相关。  相似文献   

18.
大豆光合午休原因的分析   总被引:13,自引:0,他引:13  
高辉远  邹琦 《作物学报》1994,20(3):357-362
研究了大豆光合午休过程中有关生理生态因素与光合速率的函数关系,并对叶温、叶片-大气水汽压亏缺(VPD)、气孔导度与光合速率之间的关系进行了通径分析。结果表明在光合午休的13:00时与15:00时这两个时刻,光合速率与VPD、叶温和气孔阻力呈极显著负相关,15:00时光合速率随VPD和叶温上升而下降的速率要大于13:00时的下  相似文献   

19.
为了探究模拟氮沉降条件下杉木幼苗光合及叶绿素荧光特征变化规律,从光合生理的角度探讨不同季节杉木幼苗对氮沉降的短期响应。选取杉木幼苗为实验对象,模拟氮沉降实验,设置4个处理水平对照(N0)、低氮(N30:30 kg/(hm2·a)、中氮(N60:60 kg/(hm2·a)、高氮(N90:90 kg/(hm2·a)。结果表明:添加氮以后,杉木幼苗的净光合速率(Pn),初始荧光产量(F0)、最大荧光产量(Fm)、最大PSII光能转换效率(Fv/Fm)、PSII潜在活性(Fv/F0)显著降低,水分利用率(Wue)显著增高(P<0.05)。随着氮沉降水平的增加,气孔导度(Gs)与蒸腾速率(Tr)呈现先升高后下降趋势,水分利用率呈现先下降后升高趋势。在中氮和高氮处理下,Fv/FmFv/F0值显著降低(P<0.05)。在冬季,净光合速率与气孔导度、蒸腾速率和胞间二氧化碳浓度呈极显著正相关(P<0.01),春季,净光合速率与气孔导度和蒸腾速率呈极显著正相关(P<0.01),与胞间二氧化碳浓度呈负相关。氮沉降累积达一定阈值后,增加蒸腾失水,从而降低植株的水分利用效率。在冬季,净光合速率主要受到气孔限制的影响,热耗散增加,PSII反应中心出现光抑制现象,到春季,过量的氮沉降累积破坏了幼苗的光合结构,导致胞间二氧化碳浓度上升而净光合速率下降,非气孔限制成为影响净光合速率的主要原因。中氮处理可能使叶绿体中PSII潜在活性减弱,光反应中心光合电子的传递能力降低,导致光合效率下降。  相似文献   

20.
本研究以高粱吉杂305和吉杂127为试验材料,研究苗期和灌浆期干旱-复水过程对高粱光合特性和物质生产的影响。结果表明,在苗期和灌浆期干旱胁迫下,2个高粱品种的光合作用受到了明显的抑制,其中净光合速率(Pn)、气孔导度(Gs)、胞间CO2浓度(Ci)、蒸腾速率(Tr)、最大光化学效率(Fv/Fm)、光化学淬灭系数(qP)、电子传递效率(ETR)和相对叶绿素含量(SPAD值)均出现了不同程度的下降,且吉杂305降幅低于吉杂127,而干旱使初始荧光(Fo)升高,且吉杂127升高幅度较大。2个时期干旱-复水后,吉杂305光合指标均有所恢复且与对照比较差异不显著,而吉杂127恢复程度有限,除苗期Pn、Ci,灌浆期Gs等指标外,其余光合指标与对照比较差异显著。经历2个时期干旱-复水导致高粱各器官的干物质量、单株子粒产量、单株生物产量和收获指数降低,吉杂127各产量指标的降幅均高于吉杂305,抗旱指数较低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号