首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 436 毫秒
1.
Like most plants, pea (Pisum sativum L.) becomes tolerant to frost if it is first exposed to low non-freezing temperatures, a process known as cold acclimation. Cold acclimation is a complex process involving many physiological and metabolic changes. Two spring dry peas, two winter dry peas and one winter forage line were exposed to cold temperature in a controlled environment in two experiments, one using low light intensity and the other regular light intensity. Plants were harvested throughout the experiment and dry matter accumulation, water content, soluble and insoluble sugar concentrations were determined from shoot and root samples. Cold acclimation did not occur when temperatures were low if light intensity was low, even in winter peas. In contrast, with regular light intensity, the winter peas acquired more freezing tolerance than spring peas and a close relationship was found between the soluble sugar concentration of leaves just before the frost and the degree of freezing tolerance obtained by the different genotypes. Relationships between freezing tolerance and carbon partitioning between shoot and roots are discussed.  相似文献   

2.
T. Akar    E. Francia    A. Tondelli    F. Rizza    A. M. Stanca    N. Pecchioni 《Plant Breeding》2009,128(4):381-386
Five molecular markers associated to two frost tolerance QTLs ( Fr-H1 and Fr-H2 ) were tested both on nine Turkish accessions, classified by breeders as highly frost-tolerant, and on a previously described sample of 26 barleys, winter, facultative and spring. Accessions were characterized in terms of frost tolerance under both field conditions and artificial freezing test at −12°C. The Turkish lines resulted to be equal or superior to the most tolerant European genotypes tested, showing that they can be used to improve the frost tolerance of the EU barley germplasm. The marker Hv BM5A ( Vrn-H1 and Fr-H1 ) resulted to be the best predictor for assisted selection within this germplasm, because of its high correlation between allelic variation and phenotypic traits. Only Hv CBF4 of the three Hv CBF markers tested at Fr-H2 was associated to the trait, but at lower significance than HvBM5A . The PCR-based molecular marker of Vrn-H1 can thus be used in barley breeding not only for selection of facultative and winter types, but also for fast routine selection of frost tolerant genotypes.  相似文献   

3.
Changing climatic conditions in north-western Europe are accompanied by occasional extreme weather conditions. This requires breeding of winter oilseed rape cultivars which are resilient to diverse abiotic stress factors, e.g. frost, drought and heat. The degree of vernalization requirement of winter oilseed rape has been found to be related to frost tolerance and winter hardiness. Shoot elongation before winter in particular has been identified as one decisive factor for frost tolerance in winter oilseed rape. However, the relationship between vernalization requirement and shoot elongation before winter is not known. In the present study the genetic variation for shoot elongation before winter and vernalization requirement of 19 genetic diverse breeding lines and cultivars were analyzed. Autumn and spring sown field experiments in multiple environments were performed to determine shoot elongation before winter and vernalization requirement, respectively. In spring sown field experiments, genotypes with a low vernalization requirement were characterized by the occurrence of long bolting plants with flower buds. Large and significant genotypic variation was found for shoot length in the autumn sown and spring sown environment. Broad sense heritability was quite high for shoot length in the spring sown environment (h2?=?97%), whereas it was only of medium size for shoot length before winter (h2?=?62%). Although the correlation between shoot length before winter and shoot length in the spring sown environment was positive (Spearman’s rank rS?=?0.48*), a number of genotypes with reduced shoot elongation before winter and low vernalization requirement were identified. Results indicate that genotypes with a reduced shoot elongation before winter independent of their vernalization requirement can be selected in breeding programs.  相似文献   

4.
The growth of M. truncatula and M. aculeata genotypes collected from sites of contrasting altitudes and winter temperatures was compared under different temperature regimes. Genotypes collected from mild winter environments produced more shoot dry matter, had higher leaf area and lower specific leaf weight than those from cold environments; however these effects were largely related to seed size for M. aculeata. Only genotypes from mild environments were responsive to temperature.
Frost tolerance of the genotypes was tested using a laboratory freezing test based on seedling survival. There was a relationship between frost tolerance and winter temperature at site of collection for M. aculeata , with the most frost tolerant genotypes coming from high altitudes. All genotypes of M. truncatula demonstrated low survival rates following frost damage. Genotypes from high altitudes represent a promising source for breeding for first tolerance with greater variation m M. aculeata than M. truncatula.  相似文献   

5.
A major factor affecting spring canola (Brassica napus) production in Canada is killing frosts during seedling development in the spring and seed maturation in the fall. The objective of this study was to explore the possibility of producing spring canola lines with mutations that have altered biochemical pathways that increase cold tolerance. The approach was to generate UV point mutations in cultured microspores followed by chemical in vitro selection of individual mutant microspores or embryos resulting in measurable alterations to various biochemical pathways with elevated levels of key defense signaling molecules such as, salicylic acid (SA), p-Fluoro-d,l-Phenyl Alanine (FPA), and jasmonic acid (JA). In addition, since proline (Pro) is known to protect plant tissues in the cold-induced osmotic stress pathway, mutants that overproduce Pro were selected in vitro by using three Pro analogues: hydroxyproline (HP), azetidine-2-carboxylate (A2C); and, 3,4-dehydro-d,l-proline (DP). Of the 329 in vitro selected mutant embryos produced, 74 were identified with significant cold tolerance compared to their donor parents through indoor freezer tests at −6°C, and 19 had better winter field survival than winter canola checks. All chemically selected mutant doubled haploids with increased cold tolerance compared well with parent lines for all seed quality and agronomic parameters. Development of increased frost tolerant cultivars should allow for spring canola to be produced in western Canada without compromising seed quality.  相似文献   

6.
F. Rizza    D. Pagani    A. M. Stanca  L. Cattivelli 《Plant Breeding》2001,120(5):389-396
The efficiency of the excitation capture by open Photosystem II (PSII) reaction centres was measured by the Fv/Fm ratios in a collection of winter and spring oats in order to assess the effects of hardening and freezing on the functionality of PSII and also the suitability of a chlorophyll fluorescence‐based method to screen oat cultivars for frost tolerance. A significant reversible decrease in Fv/Fm was found in all genotypes during acclimation to low, non‐freezing temperatures. Fv/Fm analysis appears to be an attractive test for the evaluation of frost tolerance in oats, being rapid, non‐invasive and capable of monitoring a trait related to a crucial stage in the acquisition of frost tolerance. It is more sensitive and precise than other standard methods and highly correlated with field‐evaluated frost damage. The measurements made during recovery 1 or 2 days after stress when the visual symptoms are not yet expressed, were especially advantageous because of the large variability in genotype response. The r‐values (close to 0.8) were reduced due to the non‐standard behaviour of the winter cultivar ‘Aintree’. The cold acclimation response of this genotype has been analysed in detail and the limits of artificial freezing tests are discussed.  相似文献   

7.
Wintering ability in the field and resistance to different winter-stress factors under controlled environmental conditions were studied in a full-sib family of perennial ryegrass (Lolium perenne L.). Significant variation in tolerance to freezing and ice encasement, resistance to pink snow mould (Microdochium nivale) and also in winter survival and spring growth were found between the different genotypes. No strong correlations were found between the resistances to the different stress factors. These results indicate that resistance to different winter-stress factors is controlled by separate genes in perennial ryegrass. A low but significant positive correlation was found between spring growth of plants in the field after the first winter and both freezing tolerance and M. nivale resistance measured in controlled environments. Cold hardening seemed to influence freezing tolerance and M. nivale resistance differently in the different genotypes, since no distinct correlation in tolerance to freezing or resistance to M. nivale was found between unhardened and hardened plants. Tolerance or resistance to most of the winter stress factors measured was positively correlated with plant size. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Sutka  J. 《Euphytica》1994,77(3):277-282
Summary The frost tolerance of winter wheat is one component of winter hardiness. If seedlings are frost resistant, it means that they can survive the frost effect without any considerable damage. To study the genetic control of frost tolerance, an artificial freezing test was used. Frost tolerance is controlled by an additive-dominance system. The results of diallel analyses indicate the importance of both additive and non-additive gene action in the inheritance of this character. The dominant genes act in the direction of lower frost tolerance and the recessive genes in the direction of a higher level of frost tolerance. The results of monosomic and substitution analyses show that at least 10 of the 21 pairs of chromosomes are involved in the control of frost tolerance and winter hardiness. Chromosomes 5A and 5D have been implicated most frequently. The geneFr1 (Frost 1) was located on the long arm of chromosome 5A. Crosses between cultivars, chromosome manipulation and the induction of somaclonal variation may be suitable methods for broadening the gene pool for frost tolerance.  相似文献   

9.
Rapeseed yields in Argentina are low (averaging 1400 kg/ha nationwide) with a high inter-annual variability. One of the limiting factors for improving yields is the lack of information on the adaptability of the cultivars, especially in the main rapeseed-producing area, the southeastern Pampas. The objectives of this study were to (i) quantify and analyze the yield variability of winter and spring rapeseed hybrids introduced in Argentina, (ii) identify the main environmental factors that affect the yields of the spring and winter genotypes in the southeastern Pampas, and (iii) model and validate rapeseed yields from environmental variables in the pre- and post-flowering periods. Principal component analysis (PCA) and linear regression methods were used to analyze 129 data points from 16 comparative yield trials in eight sites of southeastern Pampas. The rainfed crops were sown between April and July and from 2007 to 2009. Pre- and post-flowering phases were recorded in each experiment; temperature, frost occurrences, rainfall and radiation were measured during each phase. Yield variability (600–3700 kg ha−1) was slightly lower in spring than in winter genotypes (CV 0.25 versus 0.38). Sixty percent of the winter genotype variability was explained by the first axis which was associated to the pre- and post-flowering durations, while 25% of the variability was explained by the second axis associated to yield. Almost 50% of the spring genotype variability was explained by the first axis associated to pre-flowering and total durations, while 27% of the variability was explained by the second axis in which post-flowering duration was associated to yield. Winter genotypes evidenced vernalization requirements that were either partially or not fulfilled, so, the longer the photoperiod, the longer the pre-flowering phase duration. In the critical period of 30 d post-flowering, yield was not associated to the photothermal quotient. In winter genotypes, yield was associated to a linear model which included rainfall during the crop cycle, radiation and pre-flowering temperatures (R2 = 0.50). The model was adequately validated with independent data (n = 116) from official trials. For spring genotypes, only the frost occurrences during the critical period were relevant (R2 = 0.26) and placing the flowering time after October decreased the risk of late frost damage. Water use efficiency (WUE) values ranged from 1.6 to 6.7 kg ha−1 per mm of rain without a clear trend between spring and winter genotypes for this trait. In conclusion, winter genotypes did not necessarily yield more than the spring materials. In addition, rainfall during the crop cycle and frost occurrences during flowering were the main limiting factors of the winter and spring genotype yields, respectively, in the southeastern Pampas.  相似文献   

10.
Winter‐hardiness is a complex trait limiting cultivation of winter barley (Hordeum vulgare ssp. vulgare) with respect to the regions of temperate climate. In the present studies, we verified whether inexpensive and fast physiological markers characterizing photosynthetic acclimation to cold may provide robust characteristics of winter barley genotypes for improved frost resistance. Freezing tolerance of 28 winter barley varieties and advanced breeding lines were tested for three winters in field‐laboratory experiment and under fully controlled conditions. To increase the environmental variability of freezing tolerance, a part of the plants were also de‐acclimated under semi‐controlled conditions and re‐acclimated in laboratory before freezing tests. After controlled cold acclimation, apparent quantum yield of photosystem II (Fv/Fm) as well as photochemical (qP) and non‐photochemical (NPQ) coefficients of chlorophyll fluorescence quenching were studied. Field‐laboratory method assessment of freezing tolerance gives distinct and even opposite results in subsequent years. Also de‐acclimation interacted with growth conditions in the field, giving different rankings of genotypes each year. The results obtained suggest that high level of freezing tolerance measured in laboratory, which is connected with photosynthetic acclimation to cold may be not sufficient for the expression of field resistance, especially when winter conditions are not favourable for cold acclimation.  相似文献   

11.
The cultivation of autumn sown sugar beet (winter beet) is supposed to result in a marked yield increase compared with spring sown sugar beet. Although the importance of the growth stage reached before winter for the survival of autumn sown sugar beet has already been shown, it is not clear to which extent osmotic and potentially frost protecting compounds may contribute to winter hardiness. The study thus aimed to analyse the acclimatization process of sugar beet to low temperatures and to identify compounds which are important for survival of frost. Field trials with autumn sown sugar beet were conducted at eleven environments in Germany from 2009/10 to 2012/13, which were accompanied by greenhouse experiments with controlled temperature regimes. In the field trials, the survival rates after winter varied from 0 % to 99 %, but only in four environments differences between the five genotypes occurred. During acclimatization, betaine, glutamine, proline and raffinose were markedly accumulated and osmolality was enhanced. In particular betaine, amino acids and osmolality showed a positive correlation to the survival rate and were thus identified as potentially frost protecting substances for sugar beet. In contrast, raffinose and proline seem to act rather as stress indicators as they were negatively related to survival. Possible frost protecting substances were identified which can be used in breeding to improve the winter hardiness of sugar beet.  相似文献   

12.
Frost tolerance is a main component of winter-hardiness and improving it would promote faba bean (Vicia faba L.) cropping in cool-temperate regions. In many species, leaf fatty acid composition was found to be related to frost tolerance. The objective of this study was to determine, in a representative sample of genotypes, the effect of hardening on leaf and stem (1) frost tolerance and (2) fatty acid composition, and to seek correlations between them. First leaf, second leaf and stem of 31 faba bean genotypes were analyzed after hardening and without hardening. High frost tolerance of known winter genotypes and several experimental lines was shown. Hardening had a significant, positive effect on frost tolerance of all three organs. Stems were on average more frost tolerant than leaves. Hardening induced significant changes in the fatty acid composition: oleic acid decreased significantly in leaves by 3.24% and in stems by 1.77%, whereas linolenic acid increased in leaves by 6.28% and in stems by 9.06%. In stems, correlations between frost tolerance and fatty acid composition were not significant. Correlation coefficients strongly indicated that non-hardened oleic acid content, changes in oleic acid and in linoleic plus linolenic acid content in leaves partly explained their frost tolerance; 0.347 (P < 0.1) < |r| < 0.543 (P < 0.01). The results corroborate the importance of using genetic differences in the fatty acid metabolism in breeding grain legumes for frost tolerance.  相似文献   

13.
Cultivars of European winter oilseed rape cultivated in the second half of the 1970s and in the mid-1990s were screened for their winter hardiness, frost resistance and vernalization requirement. A strong correlation between winter hardiness and frost resistance in both groups of rape has been noticed. Among oilseed rapes cultivated in the late 1970s, low erucic acid and particularly double zero cultivars were less winter hard than high erucic acid cultivars. Double zero cultivars were characterized by lower frost resistance and lower vernalization requirement. A significant correlation between vernalization requirement and both frost resistance and field survival has also been shown. Frost resistance of the 1990s (double zero) cultivars was higher than that of double low cultivars from the late 1970s. Their vernalization requirement was still small and did not correlate with either frost resistance or winter hardiness. It was concluded that reduction in the content of glucosinolates in the 1970s involved decrease in winter hardiness and vernalization requirement of cultivars. During the following 20 years winter hardiness of double low cultivars has been improved, but vernalization requirements have not changed. As a result no correlation between winter hardiness and vernalization requirement in contemporary canola cultivars has been observed.  相似文献   

14.
选育抗寒性强的品种是避免枣树受到低温气候伤害的最有效方法,因而,探寻测定枣树抗寒性的合适方法非常重要。以7个品种枣树1年生枝条为材料,利用电导率(EL)法和电阻抗图谱(EIS)法测定其抗寒性。研究了低温胁迫下枣树枝条EIS参数(单分布电路元素电阻率rr1;胞外电阻率re;胞内电阻率ri;弛豫时间τ;弛豫时间分布系数ψ)的变化,并对比分析了2种方法测定枣树抗寒性结果的相关性,以期确定快速测定枣树抗寒性的最佳参数。结果表明:在低温胁迫下,随着处理温度的降低,枣树枝条的各EIS参数均减小。通过EIS参数胞外电阻率re和弛豫时间τ拟合估算的抗寒性与EL法测定的抗寒性呈显著正相关,相关系数分别为0.840和0.879。结果表明冷冻处理后EIS参数reτ可以作为测定枣树抗寒性的参数。采用EIS法测定抗寒性省时、不需要温育、不破坏植株,具有更大的优越性。  相似文献   

15.
Radiant frost is a major abiotic stress, and one of the principal limiting factors for agricultural production worldwide, including Australia. Legumes, including field pea, faba bean, lentil and chickpea, are very sensitive to chilling and freezing temperatures, particularly at the flowering, early pod formation and seed filling stages. Radiant frost events occur when plants and soil absorb the sunlight during the day time and radiate heat during the night when the sky is clear and the air is still. Dense chilled air settles into the lowest areas of the canopy, where the most serious frost damage occurs. The cold air causes nucleation of the intracellular fluid in plant tissues and the subsequent rupturing of the plasma membrane. Among the cool season grain legume crops, chickpea, lentil and faba bean and field pea are the most susceptible to radiant frost injury during the reproductive stages. The more sensitive stages are flowering and podding. Frost at the reproductive stage results in flower abortion, poor pod set and impaired pod filling, leading to a drastic reduction in yield and quality. In contrast, in the UK and European countries, frost stress is related to the vegetative stages and, in particular, the effects of frost have been studied on cotyledon, uni/tri-foliolate leaf and seedling stages during the first few weeks of growth. Few winter genotypes have been identified as frost tolerant at vegetative stages. Vegetative frost tolerance is not related to reproductive frost tolerance, and hybrids from the vegetative frost-tolerant genotypes may not necessarily be tolerant at the reproductive stage. Tolerance to radiant frost has an inverse relationship with plant age. In the field, frost tolerance decreases from the vegetative stage to reproductive stage. Unlike wheat and barley, it is difficult to analyse and score frost damage in grain legume crops due to the presence of various phenophases on one plant at the reproductive stage. The extent of frost damage depends on the specific phenophases on a particular plant. However, current studies on genetic transformation of cold tolerant gene(s), membrane modifications, anti-freeze substances and ice nucleating or inhibiting agents provide useful information to improve our current understanding on frost damage and related mechanisms. The effects of frost damage on yield and grain quality illustrate the significance of this area of research. This review discusses the problem of radiant frost damage to cool season legumes in Australia and the associated research that has been carried out to combat this problem locally and worldwide. The available literature varies between species, specific climatic conditions and origin.  相似文献   

16.
Autumn‐sown winter‐type faba bean (Vicia faba L.) has been shown to have a yield advantage over spring sowing. Still, adoption of this overwintered pulse crop remains limited in temperate locations, due to inadequate winter hardiness. This research sought to understand how the prevailing temperature during emergence and seedling development, that is pre‐acclimation, influences freezing tolerance. Seedlings grown under a controlled “warm” 17/12°C (day/night) pre‐acclimation environment were initially less freezing tolerant than those grown under a “cold” 12/5°C temperature treatment. Stem and particularly root tissues were primarily responsible for slower cold acclimation, and there was a genotype specific response of above‐ground tissues to pre‐acclimation treatment. Both above and below‐ground tissues should be tested across a range of pre‐acclimation temperatures when screening faba bean germplasm for freezing tolerance.  相似文献   

17.
Winter‐grown canola (Brassica napus L.) production is limited mostly by frost and winter kill in the southern canola‐growing regions of the United States. Tolerance to cold and heat were assessed by studying percentage of pollen viability (PV), in vitro pollen germination (PG) and pollen tube length (PTL) for 12 field‐grown cultivars. Freshly collected pollen from all cultivars were incubated on artificial solid growth media at a constant temperature ranging from 10 to 35 °C at 5 °C interval for 30 h to determine PG and PTL. A modified bilinear model best described the temperature response functions of PG and PTL. Canola cultivars showed significant variability (P < 0.001) for PV (61.3 % to 89.7 %), PG (29.0 % to 48.2 %) and PTL (463 to 931 μm). The average cardinal temperatures, Tmin, Topt and Tmax, for PG and PTL were 6.4, 24.3 and 33.7 °C, respectively. Principal component analysis revealed that maximum PG, PTL, Tmin and Topt of both PG and PTL were the most important factors in determining cold tolerance, whereas Tmax of PG and PTL, and maximum PG and PTL were more responsible in separating the cultivars for heat tolerance. The canola cultivar, KS3077, was the most cold tolerant with the lowest Tmin and the widest temperature adaptability range, and the cultivar Kadore was the most heat tolerant with the highest Tmax for the PG. The identified cold‐ and heat‐tolerant cultivars may be useful in canola‐breeding programmes to develop cultivars suitable for a niche environment.  相似文献   

18.
Most durum wheat (Triticum durum) varieties possess only low winter hardiness due to their frost susceptibility. In North America and Central Europe, durum wheat is therefore typically sown in spring to circumvent the local winter conditions. However, the yield potential of durum in these regions could be much better exploited if durum varieties with increased frost tolerance were available, which could be sown in autumn. A factor limiting breeding for increased frost tolerance is the variation in the occurrence of frost stress across years. The ‘Weihenstephaner Auswinterungsanlage’ is a semi‐controlled test that exposes the plants to all weather conditions. Snow coverage of the plants, serving as frost protection, is prevented by the movable glass lid of the semi‐controlled test. In this study, different scorings for frost tolerance based on this semi‐controlled test were evaluated and compared with frost tolerance data in the field. Our results illustrate the potential of the ‘Weihenstephaner Auswinterungsanlage’ as an indirect selection tool for frost tolerance in durum breeding programmes, especially when regular frost tolerance data from the field are not available.  相似文献   

19.
Growing in Central Europe winter instead of spring durum wheat would substantially increase yield potential but is currently hampered by the lack of knowledge of frost tolerance present in elite material. The objectives of our survey were to (i) study the genetic variability and heritability of frost tolerance and its association with other important agronomic and quality traits in durum wheat, (ii) examine the potential to combine frost tolerance with high quality and high grain yield and (iii) investigate the consequences of the heritabilities and associations among traits on the optimum design of a multistage selection programme for winter durum wheat. We investigated 101 elite winter durum wheat lines and four commercial checks in field trials at four locations. Four agronomic as well as nine quality traits were recorded. In addition, frost tolerance was evaluated using a semi‐controlled test resulting in high‐quality phenotypic data. Genotypic variances (σ²G) were significantly larger than zero for all traits, and heritabilities were moderate to high. Several elite durum wheat lines exhibited a frost tolerance comparable to that of two frost‐tolerant Triticum aestivum varieties. Frost tolerance was not negatively associated with other important agronomic and quality traits. The high quality of the phenotypic data for frost tolerance evaluated in a semi‐controlled test suggests that this is a cost‐efficient approach to consider frost tolerance at early stages of a multistage durum wheat breeding programme.  相似文献   

20.
Cereal crops in the reproductive stage of growth are considerably more susceptible to injury from freezing temperatures than during their vegetative growth stage in the fall. While damage resulting from spring-freeze events has been documented, information on genotypic differences in tolerance to spring-freezes is scarce. Ninety wheat genotypes were subjected to a simulated spring-freeze at the mid-boot growth stage under controlled conditions. Spring-freeze tolerance was evaluated as the number of seeds per head at maturity after plants were frozen at −6 °C. Plants that froze, as confirmed by infrared (IR) thermography, died shortly after thawing and consequently the heads did not mature. Only in plants that had no visible freezing (super-cooled) were heads able to reach maturity and produce seeds. In plants that super-cooled four genotypes had significantly higher seed counts after being exposed to freezing than three with the lowest. In addition, significant differences between genotypes were found in whole plant survival among those that had frozen. Genotypes with high whole-plant freezing survival were not necessarily the same as the super-cooled plants with the highest seed counts. Spring-freeze tolerance was not correlated with maturity suggesting that improvement in freezing tolerance could be selected for without affecting heading date. Spring-freeze tolerance was not correlated with freezing tolerance of genotypes of plants in a vegetative state, either under non-acclimated or cold-acclimated conditions indicating that vegetative freezing tolerance is not a good predictor of spring-freeze tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号