首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
I. Leonova    A. Borner    E. Budashkina    N. Kalinina    O. Unger    M. Röuder  E. Salina 《Plant Breeding》2004,123(1):93-95
The tetraploid wheat Triticum timopheevii Zhuk (AtAtGG) is known as a source of genes determining resistance to many diseases. An introgressive line 842, with durable resistance to leaf rust was established by crossing T. aestivum cv. ‘Saratovskaya29’ with T. timopheevii ssp. viticulosum and used for mapping leaf rust resistance genes. Molecular analysis of the line 842 with polymorphic microsatellite markers detected introgressions of T. timopheevii into the homoeologous group 2 chromosomes of common wheat. Transloca‐tion breakpoints of introgressed fragments were localized between the markers Xgwm95 and Xgwm817 on chromosome 2A, as well as Xgwm1128 and Xgwm1067 on chromosome 2B. Linkage analysis demonstrated the association of disease resistance at the seedling stage with chromosome 2A. The gene was found to be linked with marker Xgwm817 at a genetic distance of 1.5 cM. The alien leaf rust resistance gene was temporarily designated as lrTt1.  相似文献   

2.
A disease (powdery mildew, leaf rust) resistant line was selected from the progenies of a Triticum aestivum × Triticum timopheevii amphiploid produced at Martonvásár. This line was previously identified with C-banding as a 6G(6B) substitution. In order to detect the 6G chromosome in a wheat background, fluorescence in situ hybridization (FISH) and microsatellite marker analysis were used. Ten microsatellite markers of the 43 tested generated PCR products that were polymorphic between chromosomes 6B and 6G, and four showed length-polymorphism. The FISH hybridization pattern of 6G from T. timopheevii was identified using a combination of four repetitive DNA probes (Afa-family, pSc119.2, pTa71, (GAA)7). Genomic in situ hybridization (GISH) technique, capable of labelling the At and G genomes separately, was used on the same slides to differentiate the At and G genomes in T. timopheevii. The At and G genomes of T. timopheevii were grouped on the basis of the GISH patterns and a cyclic intergenomic translocation involving 6At-1G-4G was detected in T. timopheevii accession TRI667. The presence of 6G in the substitution line was demonstrated using FISH with the four repetitive DNA probes. Chromosome 6G was clearly identified and its FISH pattern was different from that of 6B in the parental wheat cultivar Fleischmann-481. According to field tests, the 6G(6B) substitution line has resistance to leaf rust.  相似文献   

3.
Two major genes controlling leaf pubescence were mapped on chromosomes 4BL (Hl1) and 7BS (Hl2 Aesp ) in wheat (Saratovskaya 29) and a wheat/Aegilops introgression line (102/00I), respectively, together with quantitative trait loci (QTLs) determining hairiness of the leaf margin (QHl.ipk-4B, QHl.ipk-4D) and auricle (QPa.ipk-4B, QPa.ipk-4D) on the long arms of chromosomes 4B and 4D, respectively. The QTLs on chromosome 4D were contributed by a synthetic wheat and, therefore, originated from Aegilops tauschii. The homoeologous group 4 wheat/A. tauschii genes/QTLs detected in the present study were aligned with the barley pubescence genes Hln/Hsh and Hs b and the hairy peduncle rye gene Hp1. The locus seems to be pleiotropically responsible for the pubescence of different plant organs in different species of the Triticeae. Another homoeologous series may be present on the short arms of the homoeologous group 7 chromosomes, based on the results of an allelic test cross between the Chinese local cultivar Hong-mang-mai carrying Hl2 and the wheat/Aegilops speltoides introgression line 102/00I.  相似文献   

4.
To complement previously developed recombinant chromosomes 1R.1D, two series of translocations involving the Glu-D1 gene from chromosome ID to chromosome 1A were produced in hexaploid triticale. These series involve seven independent transfers of allele d encoding for high molecular weight glutenin subunits 5+10 and ten independent transfers involving allele a encoding for HMW glutenin subunits 2 + 12. The frequency of homoeologous recombination between chromosomes 1A and 1D was within the range observed for pairs of homologues in wheat, supporting earlier observations that homoeologous recombination in triticale is frequent. Recombined chromosomes 1A.1D can be used to introduce the Glu-D1 gene to durum wheats, and to manipulate the dosage of Glu-D1 in hexaploid triticale and bread wheat.  相似文献   

5.
Summary Meiotic instability was studied in four strains of common wheat derived from crosses involving a Triticum timopheevi derivative, C.I. 13093, and the common wheat varieties Cheyenne and Minturki. A wide range in the percentage of normal cells at six stages of meiosis, MI, AI, dyad, MII, AII, and quartet, was found. The date of sporocyte sampling influenced meiotic irregularities at six stages of meiosis. Florets from the same spikes differed in the percentage of normal cells at all the meiotic stages except MII. Plants within strains differed significantly at the MI and quartet stages only. Except at AI stage, spikes collected on the same day did not differ significantly. Apparently, environment during premeiotic phase determined the extent and the pattern of meiotic instability in spikes of these strains.Chromosome counts were taken on 213 of the highly aberrant PMC at MI. Among these, 44 different chromosome numbers ranging from 4 to 76 per cell were recorded. Cells with deviating numbers from 22 to 28 were the most frequent (30.52 percent). Chromosome numbers 12, 17, 21, 22, 24, 26 and 28 occurred in 43.9 percent of the aberrant PMC, and the number of cells with these chromosome numbers ranged from 9 to 15.The metaphase 1 chromosome pairing in deviating PMC was not related to the number of chromosomes in these PMC. Apparently, deviating PMC had a random assortment of chromosomes. In aberrant PMC and others with apparently normal chromosome numbers (but irregular meiosis) homeologous chromosomes may pair. Functional gametes from such cells may perpetuate meiotic instability that had persisted in these three advanced generation common wheat strains of hybrid origin.  相似文献   

6.
The responses to salt stress in NFT (nutrient film) hydroponics of ‘Chinese Spring’ wheat and a number of its aneuploids involving the chromosomes of homoeologous group 5 were studied. This showed that the absence of chromosome 5D allowed plants to survive better than in the euploid condition. Much of this response could be related to the effects of Vrn3, which conditions the spring habit of ‘Chinese Spring’. The ability to survive relatively high levels of stress was promoted by the group 5 homoeologue from Thinopyrum bessarabicum.  相似文献   

7.
Genomic in situ hybridization (GISH) and restriction fragment length polymorphism (RFLP) were used to identify the Leymus multicaulis (XXNN, 2n = 28) chromosomes in wheat-L. muliticaulis derivatives. Fifteen lines containing L. multicaulis alien chromosomes or chromosomal fragments were identified. All alien chromosomes or fragments in these 15 lines were from the X genome and none were from the N genome. Eleven L. multicaulis disomic addition lines and four translocation-addition lines were identified with chromosome rearrangements among homoeologous groups 2, 3, 6 and 7. Only homoeologous group 1 lacked rearrangements in addition or translocation chromosomes. The results revealed that translocation in non-homoeologous chromosomes widely exists in the Triticeae and therefore it is necessary to identify the alien chromosomes (segments) in a wheat background using these combined techniques. During the course of the work, probe PSR112, was found to detect X genome addition lines involving L. multicaulischromosomes. This may prove to be a valuable probe for the identification of alien chromosomes in a wheat background. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
Summary Alien dominant genes of spring habit were introgressed into bread wheat. The introgression was undertaken by simple crossing of winter bread wheat to related spring species or genera, followed by backcrossing to winter bread wheat, and did not involve the use of the ph mutants or embryo culture. The introgressed genes were located mostly on chromosomes of homoeologous group 5, and were allelic to the known Vrn genes in bread wheat. Nevertheless three groups of lines were discovered with the genes possibly located on other chromosomes. These genes were non-allelic to each other and to known Vrn genes and were designated Vrn6 Sc , Vrn7 Sc (introgressed from Secale cereale) and Vrn8 Ts (from Triticum sphaerococcum).  相似文献   

9.
The genetic distances between two cultivated wheat (Triticum aestivum L.) varieties (Martonvásári 9, Martonvásári 15), a Martonvásári 9 line possessing the crossability gene krl, and 21 accessions of T. timopheevi Zhuk. and T. araraticum Jakubz. were estimated, based on agro-morphological, physiological and biochemical analysis of data. Cluster analysis based on Mahalanobis' D2 values was applied. All 21 accessions of T. timopheevi and T. araraticum could be classified into eight clusters. Clusters I and II consisted of all the T. timopheevi, while T. araraticum was located in six clusters. Discriminant analysis was applied to test significant differences between cluster pairs. The genetic distance (GD) based on the electrophoretic data of gliadins indicated two types of electrophoregrams in T. timopheevvi, distinguished as groups A and B. T. araraticum accessions were variable as regards the spectra. Mean, minimum and maximum GD were estimated within and between different wheat groups based on acid polyacrylamide gel electrophoresis.  相似文献   

10.
A hybrid between an induced tetraploid of Hordeum chilense (2n = 28 = HchHchHchHch) and Triticum aestivum var. ‘Chinese Spring’ (2n = 42 = AABBDD) has been produced to test gene effects of this wild barley on homoeologous pairing in wheat. Cytological investigations in metaphase I have shown that the hybrid, which is perennial like H. chilense but morphologically more similar to the wheat parent, possesses the expected genome composition HchHch ABD and a stable euploid chromosome number of 2n = 35. Pairing among the homologous H. chilense chromosomes was almost complete. The level of non-homologous chromosome association proved to be lower than the range of pairing known from euhaploids of ‘Chinese Spring’.  相似文献   

11.
Y. Kaneko    N. Nagasawa    S. W. Bang  Y. Matsuzawa 《Plant Breeding》2002,121(2):171-173
Eight plants of the putative double monosomic addition line (DMAL, 2n= 20) were developed by crossing a monosomic chromosome addition line of radish [f(A)‐type monosomic addition line (MAL) (2n= 19)] carrying the f chromosome of Brassica rapa (2n= 20, AA) with another [e(C)‐type MAL (2n= 19)] having the echromosome of Brassica oleracea (2n= 18, CC). The homoeological relationships between the two alien chromosomes were investigated by morphological, cytogenetic and random amplified polymorphic DNA (RAPD) analysis. Seventeen morphological traits that were not present in the radish cv. ‘Shogoin’ were observed in both MALs and these traits were substantially exhibited in DMAL plants. At the first metaphase of pollen mother cells (PMCs), the two parental MALs showed a chromosome configuration of 9II +1I, demonstrating impossibility of recombination between the R and the added chromosomes. The DMALs formed 10II in approximately 73% of PMCs, with one bivalent showing loose pairing between two chromosomes differing in size. In an attempt to identify the two MALs by RAPD‐specific markers using 26 selected random primers, 13 and 20 bands were specific for the f(A)‐type and the e(C)‐type MALs, respectively; 12 bands were common to both MALs (26.7%). In conclusion, the f chromosome of B. rapa is homoeologous to the e chromosome of B. oleracea. The genetic domain (genes) for 17 morphological traits are linked to each homoeologous chromosome bearing 27% of the corresponding RAPD markers.  相似文献   

12.
Summary A genotype of the diploid species Avena longiglumis (Cw 57) has been shown to modify the genetic control of diploid-like chromosome pairing in the cultivated oat, A. sativa (2n=6x=42) leading to increased homoeologous chromosome pairing in 4x hybrids between the two species (Rajhathy & Thomas, 1974). The Cw 57 genotype has a similar effect in increasing homoeologous chromosome pairing in amphiploids combining diploid and hexaploid genomes including associations between alien chromosomes and their corresponding pairs in hexaploid species. The effect of the Cw 57 genotype is probably in altering the specificity of chromosome pairing in the early stages of meiosis. The use of the Cw 57 genotype to induce homoeologous chromosome pairing as a technique for the transfer of desirable alien variation into the cultivated oat is discussed.  相似文献   

13.
Summary The tolerance of aluminum (Al) of disomic substitution lines having the chromosomes of the D genome of Triticum aestivum L. cv. Chinese Spring individually substituted for their homoeologues in T. turgidum L. cv. Langdon was investigated by the hematoxylin method. The disomic substitution lines involving chromosome 4D were more Al tolerant than Langdon. The tolerance was found to be controlled by a single dominant gene, designated Alt2, that is in the proximal region of the long arm of chromosome 4D. The locus was mapped relative to molecular markers utilizing a population of recombinant chromosomes from homoeologous recombination between Chinese Spring chromosome 4D and T. turgidum chromosome 4B. Comparison of the location of Alt2 in this map with a consensus map of chromosomes 4B and 4D based on homologous recombination indicated that Alt2 is in a vicinity of a 4 cM interval delineated by markers Xpsr914 and Xpsr1051. The Alt2 locus is distal to marker Xpsr39 and proximal to XksuC2. The Altw locus is also proximal to the Knal locus on chromosome 4D that controls K+/Na+ selectivity and salt tolerance. In two lines, Alt 2 and Knal were transferred on a single 4D segment into the long arm of T. turgidum chromosome 4B.  相似文献   

14.
Elymus tsukushiense Honda (syn. Roegneria kamoji C. Koch) (2n = 6x = 42, StsStsHtsHtsYtsYts) is a hexaploid species, distantly related to bread wheat Triticum aestivum L. em Thell (2n = 6x = 42, AABBDD). Apart from the delineation of evolutionary relationships, this species is a potential source of resistance to scab, a devastating disease of wheat caused by Fusarium graminearum Schw. A standard C-banded karyotype was established identifying all 21 chromosome pairs of E. tsukushiense. By using C-banding and genomic in situ hybridization analyses, three wheat-E. tsukushiense chromosome addition lines, one ditelosomic addition line, and one disomic substitution line were identified in BC2 progenies from wheat × E. tsukushiense hybrids. Twenty DNA markers specific for the seven homoeologous groups of the Triticeae were used to determine the homoeology of the added E. tsukushiense chromosomes. The E. tsukushiense chromosomes in the addition lines NAU702, NAU703, and NAU701 were identified as belonging to homoeologous groups 1, 3, and 5, and thus, were designated as 1Ets#1, 3Ets#1, and 5Ets#1, respectively. NAU751 was identified as a disomic substitution line with chromosome 3A of wheat replaced by chromosome 3Ets#1. Line NAU702 has a high level of resistance to scab and will be used in chromosomal engineering and development of improved wheat germplasm for scab resistance breeding. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Summary The wheat varieties Chinese Spring, Marquis and Thatcher and five intervarietal Chinese Spring substitution lines for chromosomes 2B (2 lines), 2D (2 lines) and 4A*, differing from the recipient variety in alleles for hybrid dwarfing genes and/or the photoperiodic response genes were analysed for tissue culture response (TCR). It could be demonstrated that only chromosome 2B has a major effect on TCR. Allelic variation at the hybrid dwarfing loci seems to have no effect on tissue culture performance, even in the combination D1D2D3 which gives the grass dwarf phenotype. Also the allelic constitution at the Ppd loci, gave no indication for a direct major effect of those alleles, however there seems to exist genetical factors for TCR on the homoeologous group 2 chromosomes which may be closely linked to the Ppd loci.  相似文献   

16.
Summary The advent of molecular marker systems has made it possible to develop comparative genetic maps of the genomes of related species in the Triticeae. These maps are being applied to locate and evaluate allelic and homoeoallelic variation for major genes and quantitative trait loci within wheat, and to establish the pleiotropic effects of genes. Additionally, the known locations of genes in related species can direct searches for homoeologous variation in wheat and thus facilitate the identification of new genes. Examples of such analyses include the validation of the effects of Vrn1 on chromosome 5A on flowering time in different crosses within wheat; the indication of pleiotropic effects for stress responses by the Fr1 locus on chromosome 5A; the detection of homoeologous variation for protein content on the homoeologous Group 5 chromosomes; and the detection of a new photoperiod response gene Ppd-H1 in barley from homoeology with Ppd2 of wheat.  相似文献   

17.
Previous studies in several Triticeae species have suggested that salt tolerance is a polygenic trait, but that genes on some chromosomes confer better tolerance to salt stress than others. This suggests an intriguing possibility that there may be a similar basis for salt tolerance in the species of the tribe Triticeae. In this study, chromosomal control of the tolerance to sudden salt stress, measured as the mean rate of leaf elongation in solution cultures with a single increment of 200 mM NaCl, was investigated in the genomes of cultivated barley (Hordeum vulgare L.), rye (Secale cereale L.), and Dasypyrum villosum (L.) Can-dargy by using disomic addition lines of individual pairs of chromosomes or chromosome arms of each of the three species in the ‘Chinese Spring’ wheat genetic background. It was observed that the chromosomes of homoeologous groups 3, 4, and 5 in barley, 5 and 7 in rye, and 4 and 6 in D. villosum carry loci with significant positive effects on salt tolerance. Increased doses of chromosomes of group 2, however, reduce or do not increase the tolerance to salt stress. These results are in agreement with a previous study of the tolerance of this salt stress regime in wheat and wheatgrass Lophopyrum elongatum. A ranking analysis of the chromosomal effects within each genome of the five Triticeae species investigated in this and previous studies revealed that the chromosomes of homoeologous groups 3 and 5 consistently confer large positive effects on the tolerance of sudden salt stress, while the chromosomes of homoeologous group 2 in increased dose have no or negative effects on the tolerance. This strongly suggests that species of the tribe Triticeae share some common genetic mechanisms of tolerance of sudden salt stress. The findings in this study give credence to the proposal that wild relatives can be exploited in the development of wheat cultivars with greater tolerance to salt stress.  相似文献   

18.
The use of hexaploid triticale as a crop for human consumption has been limited by its inferior bread-making quality. To ameliorate this problem, a segment of chromosome ID of breadwheat with the Glu-D1d allele encoding for high molecular weight glutenin subunits 5 7plus; 10 was translocated to chromosome 1R of the hexaploid triticale ‘Rhino’ through a combination of a centric break-fusion translocation followed by 5D(5B)-induced homoeologous pairing. The resulting recombinant chromosome 1R has a small interstitial segment of ID with the Glu-D1d allele. The maximum physical length of the translocated segment is estimated at about 16.5 % of 1DL. Frequency of translocations involving the long arms of homoeologous group-1 chromosomes in the analyzed progeny suggested that homoeologous recombination in triticale was substantially higher than that previously reported in hexaploid wheat.  相似文献   

19.
The distal region of the short arm of chromosome 3S from Aegilopslongissima, which carries the powdery mildew resistance gene Pm13, was introgressed into common wheat. Due to suppression of recombination between this region and corresponding wheat homoeologous segments, a possible strategy to construct a genetic map around the Pm13 gene was based on crosses between a wheat addition line carrying the Ae.longissima 3S chromosome and the corresponding 3S addition lines of Ae.searsii and Ae. variabilis. The efficiency of this strategy was evaluated by scoring recombination frequencies inprogenies derived from these crosses. Recombination between 3S chromosomes fromAe. searsii and Ae. longissimawas very low, whereas 26.5% recombinant alien chromosomes were obtained from the cross involving the Ae. variabilisand Ae. longissima 3S addition lines. These data were used to construct a3S chromosome map that resulted largely colinear to the consensus map of the homoeologous group 3 of wheat. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Agropyron cristatum exhibits resistance to Blumeria graminis f. sp. tritici. Disomic and ditelosomic chromosome addition lines of A. cristatum in ‘Chinese Spring’ wheat were utilized to determine which A. cristatum chromosomes carry resistance gene(s). Resistance is conferred by gene(s) on chromosome arms 2PL and 6PL. The availability of molecular markers capable of detecting these chromosome arms in a wheat background would be very useful for marker-assisted introgression of 2PL and 6PL chromatin into common wheat. With this aim, 170 wheat conserved orthologous set (COS) markers (92 and 78 from wheat homoeologous groups 2 and 6 respectively) were assessed for their utility in A. cristatum. A total of 116 (68.2%) COS markers successfully amplified product in A. cristatum and 46 (40.0%) of these markers were polymorphic between A. cristatum and common wheat. From marker loci mapping on wheat homoeologous group 2 chromosomes, 23 markers (34.9%) were polymorphic between A. cristatum and common wheat and from them 13 markers were assigned to chromosome arm 2PL and six markers were mapped to chromosome 4P of A. cristatum showing that this chromosome is related to wheat homoeologous group 2. From marker loci mapping on wheat homoeologous group 6 chromosomes, 23 (46.0%) markers were polymorphic between A. cristatum and common wheat and from them 17 markers were located on chromosome 6P, six of them were mapped to chromosome arm 6PS and five to chromosome arm 6PL, respectively. The specific COS markers allocated on the long arms of chromosomes 2P and 6P may have a role in marker-assisted screening in wheat breeding for powdery mildew disease resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号