首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
【目的】明确β-葡聚糖诱导珍珠龙胆石斑鱼的免疫响应机制,为β-葡聚糖作为免疫增强剂在水产饲料中的应用提供理论依据。【方法】以珍珠龙胆石斑鱼为研究对象,通过在饲料中添加100 mg/kg β-葡聚糖进行养殖试验,饲 养8周后采样分别进行生长性能、血清生化指标、转录组测序和肠道菌群组成分析。【结果】饲料中添加β-葡聚糖显著...  相似文献   

2.
循环水养殖密度和氨氮对斜带石斑鱼生长和免疫力的影响   总被引:5,自引:2,他引:3  
选取平均体重为146.3 g/尾的斜带石斑鱼450尾分成3个密度组进行饲养,分别为低密度组D1(100尾/m3,14.6 kg/m3)、中密度组D2(150尾/m3,21.7 kg/m3)和高密度组D3(200 尾/m3,29.5 kg/m3),比较不同养殖密度引起的水质变化对斜带石斑鱼的生长性能、摄食率和免疫力的影响。结果表明:水体中氨氮含量随斜带石斑鱼养殖密度的增加而增加(P<0.05);斜带石斑鱼的摄食率随水体中氨氮浓度的增加而显著下降(P<0.05)。随着养殖密度的增加,斜带石斑鱼的生长速度呈现负相关性,各试验组的特定生长率分别为1.07、0.66、0.47;各实验组斜带石斑鱼体重也出现显著性差异(P<0.05),各实验组的尾均增重量分别为118.5 g、63.3 g和44.1 g;养殖密度对斜带石斑鱼的饵料系数和成活率无显著影响(P>0.05);斜带石斑鱼的免疫指标血清溶菌酶(LZM)、碱性磷酸酶(AKP)和超氧化物歧化酶(SOD)随养殖密度的增加而下降,随养殖时间的延长呈现出先上升后下降的趋势。阐明了养殖密度引起养殖水质状况的改变,继而影响斜带石斑鱼摄食率的变化,从而造成石斑鱼的生长性能出现显著性差异,可能是养殖密度对斜带石斑鱼生长性能影响的机制之一。  相似文献   

3.
海带多糖对珍珠龙胆石斑鱼生长性能和免疫力的影响   总被引:1,自引:0,他引:1  
为了探究海带多糖对珍珠龙胆石斑鱼生长性能和免疫力的影响,在石斑鱼膨化颗粒配合饲料中添加0.6%海带多糖投喂平均体重(275.55±29.79)g·尾-1的珍珠龙胆石斑鱼,结合养殖场实际生产,试验组和对照组各设2口面积30m2水泥池,每口放养约1 800尾,在封闭式循环水饲养系统饲养66d。试验结果表明,添加海带多糖的试验组比对照组增重率提高29.03%(P0.05),特定生长率提高23.88%(P0.05),饲料系数降低15.20%(P0.05);试验组石斑鱼每增重1kg的饲料成本比对照组减少1.96元,饲料成本降低了12.54%;试验组与对照组石斑鱼肌肉营养成分差异不显著(P0.05);试验组珍珠龙胆石斑鱼免疫活性(碱性磷酸酶AKP、溶菌酶LZM、总超氧化物歧化酶T-SOD)比对照组显著提高(P0.05)。研究表明,海带多糖具有提高珍珠龙胆石斑鱼生长性能、增强机体免疫力的作用。  相似文献   

4.
<正>石斑鱼新品种珍珠龙胆2009年在市场上推广后,由于其具备一定的抗病能力及生长速度较快,再加上繁育、养殖及各饲料企业针对这一品种研发饲料的力度不断加大,使珍珠龙胆的市场份额进一步增加,并逐渐成为石斑鱼市场的主要品种。随着珍珠龙胆的强势崛起,原本以青斑、老虎斑等品种为主的  相似文献   

5.
[目的]为墨吉明对虾(Fenneropenaeus merguiensis)工厂化养殖提供理论依据.[方法]试验设置4个养殖密度(120、180、240、300尾/m2),在养殖环境相同的条件下养殖30 d后对4个养殖密度条件下的墨吉明对虾进行生长性状测量及存活率统计,研究不同养殖密度对墨吉明对虾生长及存活率的影响,探讨墨吉明对虾最适养殖密度.[结果]不同养殖密度对墨吉明对虾体长和体质量增长有显著影响(P<0.05).G120组的体长和体质量的增长速度显著优于其他密度组,增长率(GR)和增重率(WGR)分别高达36.54%和158.53%;墨吉明对虾的特定生长率(SGR)与密度的呈负相关(P<0.05),随着养殖密度的增大,特定生长率逐渐下降,G300组的特定生长率最低,为(2.09±0.57)%,与其他密度组特定生长率差异极显著(P<0.01);饵料系数(FCR)与养殖密度之间呈显著正相关(P<0.05),即随着养殖密度的增加,饵料系数逐渐增大,G300组的饵料系数仅为3.37±0.53,低于其他3组.不同养殖密度对墨吉明对虾的存活率有显著影响(P<0.05),当养殖密度高于240尾/m2时死亡率高达40%,严重影响墨吉明对虾的存活率.[结论]当养殖密度为120尾/m2时,虽然各测量指标最大,但空间利用率较低,不利于墨吉明对虾工厂化养殖,养殖密度为180 ~ 240尾/m2时,各生长性状测量值相对较高,且有利于墨吉明对虾工厂养殖空间利用率,因此应选180 ~ 240尾/m2作为墨吉明对虾工厂化养殖最适养殖密度.  相似文献   

6.
养殖密度和水温对沙塘鳢生长的影响   总被引:1,自引:0,他引:1  
研究养殖密度和水温对沙塘鳢生长的影响,分别设置20、40、60、80、100尾/m3 5个养殖密度和18、22、26、30℃及自然水温5个温度处理,30 d的养殖试验结果表明:养殖密度和水温对沙塘鳢的摄食和生长都有显著影响,沙塘鳢存活率、日增重、特定生长率随养殖密度的增大而降低,饵料系数随养殖密度增大呈上升趋势,其中20尾/m3生长最快,40尾/m3组经济效益最佳;随着水温的升高,沙塘鳢日增重、特定生长率均呈现先升高后下降的趋势,其中26℃水温处理组生长最快.  相似文献   

7.
【目的】研究鱼粉代乳对7~21日龄小尾寒羊羔羊生长及血液生化指标的影响。【方法】选取12只初生重为(3.45±0.72)kg的小尾寒羊公羔随机分为两组,每组6只,喂给牛奶粉代乳或鱼粉代乳,测定羔羊的体增重和血液生化指标。【结果】鱼粉代乳羔羊的干物质自由采食量和平均日增重分别下降了38.0%(P0.01)和35.8%(P0.01);鱼粉代乳组的血糖、尿素氮、白蛋白、球蛋白和总蛋白含量分别下降42.6%(P0.01)、12.6(P0.05)、34.7(P0.01)、32.2(P0.01)和33.6(P0.01)。【结论】鱼粉代乳组的自由采食量、平均日增重和血液生化指标均低于牛奶粉代乳组。  相似文献   

8.
【目的】研究利用水泥池高密度养殖两广地区特色淡水养殖品种黄颡鱼的养殖模式,为养殖户因地制宜开展黄顙鱼养殖提供技术指导。【方法】从广东地区引进规格为2.5g-3.5g/尾全雄黄颡鱼苗3万尾,分别在三口面积同为72m~2的内循环水泥池中养殖,对其养殖密度、饲料选择、投喂方式、水质调控、病害防控、生长性能等因素进行研究,从而总结出适合的养殖模式。【结果】内循环水泥池中高密度饲养黄颡鱼,养殖周期7个月,72m~2单池产量超过1100kg,与传统池塘养殖黄颡鱼的667m~2产量相近(1200kg/667m~2),个体平均规格超过150g,养殖成活率90%以上。【结论】内循环水泥池高密度饲养黄颡鱼,可以提高养殖效益和商品鱼质量。  相似文献   

9.
【目的】探明适合川东北稻区应用的稻田甲鱼循环生态高效共生模式,以提升稻田综合种养殖的经济效益,促进养殖户增收,推进四川省生态养殖产业发展。【方法】根据中华鳖的放养规格、放养密度和养殖周期设计4个试验组共12个稻田甲鱼处理模式,分析各模式对水稻及中华鳖生长性状及产量的影响。【结果】试验组的水稻产量最高达456.37kg/667m~2,符合有机水稻种植平均产量(300~400kg/667m~2)的标准,中华鳖产量最高达270.05kg/667m~2;中华鳖的生长受放养密度的影响较大,其增重率最高达314.16%、特定生长率最高达0.292%、日增重为最高达2.252g。经济效益最高的养殖模式为中华鳖投放规格0.45kg、投放密度200尾/667m~2、养殖周期600d,年平均经济效益达19 868.04元/667m~2,投入产出比1∶2.39。【结论】稻田甲鱼模式水稻产量基本达到有机水稻种植产量标准,且中华鳖生长正常,经济效益可观,投资回报率高,能显著提升稻田利用综合效益。  相似文献   

10.
在高位池中研究了不同养殖密度(每667 m2为5万,7万,9万和12万尾)对凡纳滨对虾(Litopenaeus vannamei Boone)生长、存活率、产量、饵料系数,及对水体中氨氮、亚硝态氮的影响。结果显示,随着养殖密度的增大,凡纳滨对虾日增重率和成活率逐渐降低,饵料系数出现先减小后增大的U形变化趋势,总产量提高,但个体重量和体长逐渐下降;在水温较高的7-8月,水体氮污染物浓度迅速升高。在同时考虑养殖效益和环境生态效益的条件下,少量换水模式养殖密度应控制在7万尾。  相似文献   

11.
密度胁迫对凡纳滨对虾生长及非特异性免疫因子的影响   总被引:1,自引:0,他引:1  
 【目的】分析由不同放养密度引起的密度胁迫对凡纳滨对虾(Litopenaeus vanname)生长和非特异性免疫因子的影响,以及主要水质因子的变化特点,探讨密度胁迫与水质因子对工厂化高密度养殖条件下对虾生长的作用机制。【方法】设置2个养殖系统,第一系统设置150、300、600和900尾/m3 4个养殖密度,形成密度胁迫梯度;第二系统采用较低养殖密度(30尾/m3),养殖用水来自对应的第一系统的排放废水,目的是分离水质因子与密度胁迫对对虾生长的影响。【结果】第一系统各处理凡纳滨对虾的体长增长、体重增长、存活率、SGRL和SGRW均受养殖密度的显著影响(P<0.05),表现为各项指标随养殖密度的增加而降低。第二系统的存活率、体长增长、体重增长、酚氧化酶(PO)活力、过氧化物酶(POD)活力、抗菌活力(Ua)和溶菌活力(Ul)高于第一系统对应处理,而超氧化物歧化酶(SOD)活力低于第一系统,系统间水质因子的差异不显著。【结论】凡纳滨对虾(体长<7.6 cm或体重<6.1 g)养殖密度为150~900尾/m3时,造成对虾生长和非特异性免疫因子差异的主要原因是密度胁迫,水质因子的作用是次要的。  相似文献   

12.
为探讨不同盐度对脊尾白虾的生长、摄食及饲料转化率的影响,设置0、1%、2%、3%、4%等5个盐度梯度,检测存活率、体重增长量、摄食率、特定生长率、饵料转化率等指标。结果表明,随着盐度增加,脊尾白虾的存活率、特定生长率、摄食率和饵料转化率等指标先升高后降低。盐度在0~2%时,各指标不断升高;盐度在2%~3%时,各指标变化不大;盐度在3%~4%时,各指标不断降低。说明盐度2%~3%更有利于脊尾白虾的生长及饵料利用。  相似文献   

13.
[目的]研究似鲇高原鳅在循环水系统中的最适养殖密度,为人工繁殖似鲇高原鳅的规模化养殖提供参考数据.[方法]似鲇高原鳅初始体重为(88±5)g/尾,养殖密度为1.27、2.54、3.81、5.08、6.35、7.62和8.89 kg/m2,研究不同养殖密度对似鲇高原鳅特定生长率、增重率、饵料系数、存活率、脏体比和肝体比等指标的影响.[结果]养殖鱼类群体体长和体重等指标出现分化,养殖密度与肝体比和脏体比呈负相关,循环水养殖适宜密度为6.35 kg/m2.[结论]不同养殖密度差异体现在肝体比和脏体比方面,从成本和效率出发,综合增重率、饵料系数等生长指标,推荐养殖密度为6.35 kg/m2,养殖上市前应该进行适当肥育,以增加经济效益.  相似文献   

14.
为研究两种蛋白水平下添加虾蛋白肽对珍珠龙胆石斑鱼幼鱼生长性能和抗氧化指标的影响,设计6种饲料,以440、480 g/kg两种饲料蛋白与0、10和20 g/kg 3种虾蛋白肽添加量配制。结果显示,相同蛋白水平下,石斑鱼的终末均重和增重率均随着虾蛋白肽水平的上升而先上升后下降,10 g/kg虾蛋白肽组显著高于0、20 g/kg虾蛋白肽组;虾蛋白肽添加量相同时,480 g/kg饲料蛋白组显著高于440 g/kg饲料蛋白组。蛋白质效率、肌肉粗蛋白和粗脂肪含量、血清AST和ALT活力、肝脏CAT和T-AOC活力的变化规律与增重率类似。饵料系数、血糖含量和肝脏MDA含量的变化规律则与之相反。试验结果表明,在不同蛋白水平的饲料中添加虾蛋白肽均能促进珍珠龙胆石斑鱼幼鱼的生长,并提高其抗氧化能力,但添加量过高会产生抑制作用,因此,虾蛋白肽适宜添加量为10 g/kg。  相似文献   

15.
【目的】分析长丝(Pangasius sanitwongsei)人工养殖条件下的生长特性,为我国南方地区人工培育长丝繁殖亲本及大规模推广养殖提供参考依据。【方法】于室外水泥池中人工养殖长丝25个月,初期投喂水蚯蚓或团状鳗鱼饵料,然后逐渐过渡到投喂含38%粗蛋白的人工配合颗粒浮性饵料,养殖水温维持在20~34℃,在养殖的第1、13和25个月分别测量其体重、体长、体宽、体高及吻宽等指标,并进行生长特性分析。【结果】在整个人工养殖试验过程中,长丝摄食状况良好,生长速率较快,未见发病死亡现象。试验早期的长丝体长与体重(L-W)相关式为y=0.044x2.2719,其参数b(2.2719)与3.000相差较大,即人工养殖长丝在此阶段为非等速生长,生长缓慢;试验后期L-W相关式为y=0.052x2.7262和y=0.0018x2.9786,两者的参数b接近于3.000,表明人工养殖长丝在这段时间为等速生长,生长较理想。在试验后期,长丝的体重与体长均在快速增加,说明鱼体仍处于生长时期,尚未达到性成熟。【结论】长丝对人工养殖环境表现出较强的适应性和良好的抗病性,适宜在我国南方地区进行规模化人工养殖。  相似文献   

16.
为了揭示高位池养殖珍珠龙胆石斑鱼(Epinephelus lanceolatus ♂ × Epinephelus luscoguttatus ♀)氮磷的利用与收支情况,阐明其在养殖过程中水质的变化以及氮磷的来源和去向,对3个高位养殖池中的珍珠龙胆石斑鱼、池塘水、进排水以及投入的饲料进行了为期55 d的定期采样和分析。结果显示,(1)3个池塘养殖期间溶氧均值为8.64~9.55 mg/L;氨氮、亚硝酸盐、硝酸盐、磷酸盐均呈不规则波动,总氮和总磷的质量浓度分别在6.14~7.11和0.38~1.41 mg/L波动;(2)珍珠龙胆石斑鱼存活率高,增重率为96.0%~227%,饲料转化系数为0.55~0.90,对饲料氮和磷的利用率分别为47.0%~59.0%和52.0%~63.0%。(3)3个池塘在监测期间饲料氮输入占比为61%~66.8%,饲料磷输入占比为66.9%~71.0%。鱼体产出是池塘中氮磷输出的主要方式,占氮输出的43.0%~60.9%;占磷输出的45.0%~67.7%;其余部分氮磷分别以排水、底泥沉积和其他方式输出。结果表明,在珍珠龙胆石斑鱼高位养殖中,池塘氮磷含量较高,饲料氮磷输入是池塘中氮磷输入的主要方式,鱼体产出是池塘中氮磷输出的主要方式,其次为池塘养殖期间的换水排放,因此,需采取适当的方式对水产养殖水排放进行管理,才能尽可能地减少养殖尾水对附近水域的影响。  相似文献   

17.
【目的】研究鲻鱼混养密度与网箱围隔对鱼虾混养效果和水质的影响,为今后发展推广鱼虾混养模式提供科学依据。【方法】分别在3.2 m×3.2 m的室内水泥池放养800尾虾苗(处理I)、800尾虾苗+1.0 kg鲻鱼(处理II)、800尾虾苗+2.0 kg鲻鱼(处理III)、800尾虾苗+3.0 kg鲻鱼(处理IV)、800尾虾苗+2.0 kg鲻鱼(处理V),处理V用网箱将鲻鱼隔离在网内而对虾可通过,探讨凡纳滨对虾与鲻鱼混养对鱼虾生长、饲料效率、能量效率和蛋白质效率及水质的影响。【结果】收获时,凡纳滨对虾的体长、体重、产量、增重率、特定生长率及鲻鱼的体重、增重率、体重特定生长率均随鲻鱼混养密度增加而呈下降趋势;采用网箱围隔相对其他混养处理能够明显改善对虾的生长状况,但仍显著低于单养对虾处理(P〉0.05,下同)。【结论】凡纳滨对虾混养鲻鱼能有效提高饵料利用率,但由于鲻鱼抢食虾料而影响对虾生长;采用网箱围隔混养在一定程度上能改善对虾生长,却未能提高饵料利用率。因此,凡纳滨对虾混养鲻鱼时,二者间的合理放养密度有待下一步探究。  相似文献   

18.
为进一步探索乌鳢池塘养殖最佳容量,设置3个养殖密度(15 000尾/hm~2、30 000尾/hm~2和45 000尾/hm~2),采用冰鲜鱼和配合饲料2种饵料饲喂乌鳢,通过比较分析56 d养殖后的生物学指标、生态学指标、品质指标、鱼类福利指标和经济效益的差异,提出池塘养殖乌鳢的最佳养殖容量。结果表明:随着养殖密度的增加,养殖水体中TN和TP显著增加(P0.05),COD_(Mn)有所下降,且配合饲料投喂组水质状况要优于冰鲜鱼投喂组;不同放养密度乌鳢的增重率和特定生长率存在显著性差异(P0.05),冰鲜鱼投喂组乌鳢的增重率和特定生长率显著高于饲料投喂组(P0.05),各试验组乌鳢的肥满度无显著性差异(P0.05);不同养殖密度和投喂不同饲料对乌鳢肌肉综合性营养无显著性作用(P0.05);不同试验组乌鳢肝脏的3种免疫相关酶活性无显著性差异(P0.05),但ACP和AKP呈现随着养殖密度的增加酶活下降的变化趋势;纯利润分析结果显示高密度冰鲜鱼组效益最高,且随着养殖密度增加利润出现显著性差异(P0.05)。投入产出比分析结果显示低密度冰鲜鱼组显著高于其他试验组(P0.05)。综合评价指标体系结果显示,乌鳢池塘最佳养殖容量为650 g/m~3(冰鲜鱼投喂)和545 g/m~3(饲料投喂)。  相似文献   

19.
半封闭循环水养殖系统中高体革鯻养殖密度研究   总被引:2,自引:1,他引:1  
在半循环水养殖系统中研究了养殖密度对体重为50~100 g的高体革鯻苗种的影响。试验设置3个密度组:低密度组100尾/m3(5 kg/m3)、中密度组260尾/m3(13 kg/m3)和高密度组360尾/m3(18 kg/m3)。研究表明:各密度组中试验鱼的生长表现出了明显的差异,生长效率、特定生长率和日增重随着养殖密度的升高而明显降低;大小变动系数和饵料系数随着养殖密度的升高而明显增加。对试验鱼的生理指标分析表明,试验初期,密度对试验鱼血清中的皮质醇、补体C3、谷草转氨酶(ALT)和谷丙转氨酶(AST)有显著影响;试验结束时,3个密度组试验鱼血清中的皮质醇、谷草转氨酶和谷丙转氨酶没有明显差异。综合对检测指标的结果分析,认为本试验条件下,体重50~100 g的高体革鯻幼鱼的比较适宜的养殖密度是260尾/m3。研究亮点:(1)高体革鯻是近年来逐渐引起关注的优良淡水养殖品种,比较适合高密度集约化养殖,但关于其适宜养殖密度的研究尚未见报道。研究高体革鯻幼鱼的适宜养殖密度,希望为生产提供理论基础。(2)不仅分析了常规的生长指标和生理指标,将部分生产指标一并纳入分析,作为评价养殖密度适宜性的标准。  相似文献   

20.
在海南临高后水湾海域的抗风浪网箱养殖基地,采用60 m周长的高密度聚乙烯(HDPE)圆形双浮式抗风浪网箱,分别设置40,45,50,55,60尾·m~(-3)水体5个密度梯度养殖卵形鲳鲹,研究了养殖密度对大型网箱养殖卵形鲳鲹养殖效果的影响。结果表明,在40~50尾·m~(-3)密度范围内,养殖密度对成活率和利润率影响不明显(P0.05),成活率高达80%以上,利润率也达到了45%以上,而后,随密度增加均显著降低;饵料系数随密度增加而升高,最低40尾·m~(-3)组(1.72),最高60尾·m~(-3)组(1.93);商品鱼a级比率随密度增加而下降,b,c级则上升;单位成本在40~45尾·m~(-3)间随密度增加而下降(P0.05),之后呈现上升趋势(P0.01),最高为60尾·m~(-3)(18.08元·kg~(-1)),最低为45尾·m~(-3)(16.43元·kg~(-1));利润在40~50尾·m~(-3)间随密度增大而增加(P0.01),而在50~60尾·m~(-3)间随密度增大快速下降(P0.01),最高利润为50尾·m~(-3),高达185.49元·m~(-3),最低为60尾·m~(-3),仅123.85元·m~(-3)。因此,为了控制养殖风险,获得最好的经济效益,建议养殖密度控制在45~50尾·m~(-3)水体。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号