首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 464 毫秒
1.
[目的]通过研究不同施氮水平下常规稻、杂交稻的生长发育特征及产量形成过程,旨在明确常规稻、杂交稻的生长规律及其对氮素的响应差异。[方法]以江苏省沿江及苏南地区主推的常规稻品种‘镇稻11’和湖南地区广泛种植的杂交稻品种‘Y两优3218’为试验材料,研究了不同施氮水平(N0:0 kg·hm~(-2); N90:90 kg·hm~(-2); N180:180 kg·hm~(-2); N270:270kg·hm~(-2); N360:360 kg·hm~(-2))对‘镇稻11’和‘Y两优3218’的分蘖动态、生物量累积、产量形成以及氮素利用效率的影响。[结果]在不同施氮水平下,杂交稻在生育前期的生长速率均显著高于常规稻,而在开花—成熟期无显著差异。常规稻与杂交稻的生物量及产量均在施氮水平为180 kg·hm~(-2)时最高,2016和2017年平均分别为9 167和10 502 kg·hm~(-2)。在各施氮水平下,杂交稻的产量比常规稻显著增加15.62%~45.48%。常规稻与杂交稻对氮肥的利用效率均随施氮量的增加呈逐渐下降的趋势。与常规稻相比,杂交稻对氮素的吸收速率较快,地上部的氮素分配比例受水稻品种和氮水平的影响,2个品种水稻穗中的氮素分配在高氮条件下显著低于低氮处理。杂交稻穗中的氮素分配比例在低氮条件下(N0、N90)显著高于常规稻,在高氮条件下(N270、N360)低于常规稻。在施氮量大于等于180 kg·hm~(-2)时,杂交稻的氮肥农学效率显著低于常规稻。[结论]施氮对水稻的生物量和产量均有显著影响,与常规稻相比,杂交稻生物量及库容更大,导致杂交稻高产;同时杂交稻对氮素的利用效率更高,本试验模拟的常规稻和杂交稻最佳施氮量分别为133和76 kg·hm~(-2)。通过氮肥管理可以进一步提升杂交稻的产量并实现高产高效。  相似文献   

2.
施氮量对水稻产量、氮素吸收及土壤氮素平衡的影响   总被引:2,自引:0,他引:2  
为了研究施氮量对不同水稻品种的产量、氮素吸收及土壤氮素平衡的影响,2017—2018年在豫南稻区以5个籼稻品种为试验材料,设置5个施氮水平(0、82. 5、165、247. 5和330 kg·hm~(-2)),进行大田试验,测定水稻产量、氮素累积量,分析氮素利用率和土壤氮素平衡。结果表明,施氮显著提高水稻产量,郭陆滩试验点5个品种增产率41. 3%~82. 0%;洋河试验点5个品种增产率22. 5%~44. 8%。根据方程拟合结果郭陆滩试验点的5个品种推荐施氮量变幅为169~209 kg·hm~(-2),产量变幅为9 581~13 081 kg·hm~(-2),氮素累积量为143. 8~251. 6kg·hm~(-2),氮素利用率47. 1~57. 6 kg·hm~(-2);洋河试验点的5个品种推荐施氮量变幅为104~213 kg·hm~(-2),产量变幅为8 716~10 675 kg·hm~(-2),氮素累积量为105. 3~193. 0 kg·hm~(-2),氮素利用率35. 9~39. 8 kg·hm~(-2)。本试验设置中,在较高产量时,氮肥利用率维持在合理范围内条件下,洋河试验点施氮量151 kg·hm~(-2)为宜,郭陆滩试验点施氮量192 kg·hm~(-2)为宜。  相似文献   

3.
膜下滴灌棉田土壤氮素变化特征及合理施氮量   总被引:1,自引:0,他引:1  
通过2a田间滴灌试验,在6个不同施氮梯度水平下,研究施氮量与土壤无机氮储量、氮素盈余率的关系。结果表明,随着施肥量增加,土壤剖面60~100cm NO_3~--N质量分数显著增加,峰值达5.70mg/kg;土壤剖面0~100cm土层无机氮总储量在年际间呈累积增加趋势,并与施氮量的相关性随施肥期进程而增强。氮素养分平衡值与施氮量均呈指数函数变化规律,相关性强,显著高于其他氮素指标;氮素盈余率和施氮量的关系可以通过线性函数模型来拟合。选择优化施氮量,有利于降低棉田土壤无机氮的残留量,从而降低硝态氮向90cm以下土壤淋洗的风险。以棉花产量为指标,通过施氮量与氮素养分平衡值的关系得到的氮肥投入量为357.61~375.54kg/hm~2。综合考虑棉花高产和环境安全,南疆巴州棉区的合理施氮量为285.30~375.54kg/hm~2。  相似文献   

4.
【目的】研究不同施氮量下,尿素与缓释氮肥掺混对大田玉米生长、干物质累积量、产量、氮肥利用率和土壤硝态氮残留的影响,为作物高效施氮管理提供理论依据。【方法】试验选用玉米品种郑单958,设置了3种氮肥类型(尿素(U)、缓释氮肥(S)、尿素缓释肥3∶7掺混(SU))和4个施氮水平(N1(90 kg·hm~(-2))、N2(120 kg·hm~(-2))、N3(180 kg·hm~(-2))、N4(240 kg·hm~(-2))),以不施氮肥(N0)为对照,共13个处理。生育期内对玉米株高、茎粗和叶面积指数进行观测,并统计干物质累积量、产量及产量构成因素。【结果】氮肥类型与施氮量及两者交互作用对玉米生长指标、干物质累积量、产量及产量构成要素都有显著的影响。尿素掺混缓释氮肥(SU)在N3施氮量下玉米最大干物质累积量和氮素累积吸收量分别为17 927.9 kg·hm~(-2)和156.1 kg·hm~(-2),较其他处理分别提高了16.0%—61.7%和8.1%—45.2%。尿素掺混缓释氮肥(SU)在N3施氮量下,产量达到最高,为6 200 kg·hm~(-2),比尿素(U)N3处理和缓释氮肥(S)N2处理的产量分别增加了19.8%和20.7%;其中,缓释氮肥处理(S)和尿素掺混缓释氮肥处理(SU)在N2施氮量下比尿素处理施氮量减少30%时,产量无显著性差异。玉米的产量并不是随着施氮量的增加而增加,尿素(U)和尿素掺混缓释氮肥处理(SU)在N3施氮量时玉米产量比N4施氮量分别增加了19.7%和19.0%,缓释氮肥处理(S)中N2施氮量的玉米产量比N3和N4施氮量分别提高10.9%和26.5%。尿素掺混缓释氮肥(SU)N3处理玉米吐丝期后营养器官中氮素向籽粒中转运量最大,比尿素(U)N3处理和缓释氮肥(S)N2处理分别增加了14.7%和8.2%,有利于促进籽粒的增产。土壤硝态氮的累积量随着施氮量的增加而增加,但是尿素掺混缓释氮肥(SU)处理的土壤硝态氮累积量比尿素(U)处理和缓释氮肥(S)处理分别平均减少21.2%和9.5%,尿素掺混缓释氮肥(SU)处理土壤硝态氮含量主要分布在0—40 cm土层,不仅促进玉米的吸收,更减少土壤氮素向更深土层的淋失,提高耕作层的土壤养分。【结论】尿素与缓释氮肥掺混,施氮量180 kg·hm~(-2)是试验区玉米高效生产的最佳施氮量。  相似文献   

5.
在塔额盆地滴灌施肥条件下,以甜菜‘Beta796’为试验材料开展田间试验,设置施氮0 kg·hm~(-2)(N0),150 kg·hm~(-2)(N1)、210 kg·hm~(-2)(N2)和270kg·hm~(-2)(N3)4个处理,研究施氮对甜菜干物质与氮素积累及产量品质的影响规律,以期为区域高产高糖甜菜生产氮肥的科学施用提供理论依据。结果表明,施氮能增加甜菜叶面积指数、干物质积累量及氮素积累量,提高干物质及氮素的最大累积速率及平均积累速率,显著提高甜菜产量,降低甜菜块根的含糖量。施氮显著增加块根中α-氨基氮、Na~+含量,增加蔗糖糖蜜损失,降低蔗糖回收率。与N0处理相比,施氮能提高甜菜可回收蔗糖产量,但不同处理可回收蔗糖产量差异不显著。综合不同施氮量下甜菜产量、产糖量、品质与种植收益,塔额盆地滴灌条件下高产优质甜菜的氮肥推荐用量为210 kg·hm~(-2)。  相似文献   

6.
渭北旱地麦田配施有机肥减量施氮的作用效果   总被引:6,自引:0,他引:6  
为了探讨陕西渭北旱地冬小麦有机无机配施的减氮效应及机理,于2011年10月至2014年6月在陕西省渭南市白水县进行了连续三年的田间小区定位试验,探究不同氮肥用量(0、75、150、225、300 kg N·hm~(-2))与有机肥(猪粪30 t·hm~(-2))配施对冬小麦产量、氮肥利用率(NUE)、土壤硝态氮残留及土壤养分的影响,明确当地最适宜的有机无机配施比例。结果表明:有机无机配施处理的产量、地上部吸氮量和NUE较单施化肥处理分别提高6.9%、29.3%和34.3%,且以有机肥与150 kg N·hm~(-2)氮肥配施处理效果最佳;有机无机配施显著改善0~20 cm土壤养分状况,土壤有机质、全氮、速效磷和速效钾含量分别较单施化肥处理提高6.1%、8.2%、90.4%和94.8%,但当施氮量大于150 kg N·hm~(-2)时,配施有机肥显著增加0~200 cm硝态氮残留量(43.7~188.8 kg·hm~(-2)),加大硝态氮淋溶风险;有机肥分别与75、150 kg N·hm~(-2)氮肥配施相比单独施用150、225 kg N·hm~(-2)氮肥处理在产量上无显著差异,却显著提高了NUE(27.4%和45.3%),并降低60 cm土层以下硝态氮含量。综合上述研究结果,在渭北旱地冬小麦生产中,在有机肥(猪粪)30 t·hm~(-2)的基础上配施75~150 kg N·hm~(-2)的氮肥(有机氮∶无机氮=1∶0.46~0.91),可以保证小麦高产优质,并降低氮素淋溶风险。  相似文献   

7.
以贝加尔针茅草原不同土层土壤为研究对象,开展了连续6年的氮添加野外控制试验,8个氮素添加处理分别为N0(0 kg N·hm~(-2))、N15(15 kg N·hm~(-2))、N30(30 kg N·hm~(-2))、N50(50 kg N·hm~(-2))、N100(100 kg N·hm~(-2))、N150(150 kg N·hm~(-2))、N_200(200 kg N·hm~(-2))、N300(300 kg N·hm~(-2)),采用氯仿熏蒸提取法和Biolog生态板法,分析了不同氮添加量下草原土壤微生物生物量碳、氮及微生物群落功能多样性的变化规律。结果表明,长期添加无机氮素,土壤微生物生物量碳降低;高氮添加(N100、N150、N_200、N300)提高了微生物生物量氮,显著降低了微生物熵。培养96 h时,生态板的平均颜色变化率(AWCD)在0~10 cm土层大小顺序依次为N50N30N100N15N0N_200N150N300。相同氮添加量下,不同深度土层土壤微生物生物量碳、氮和AWCD值总体表现为0~10 cm土层高于10~20 cm土层。0~10 cm土层,高氮添加(N100、N150、N_200、N300)下,土壤微生物群落功能多样性指数H低于或显著低于对照(N0),均匀度指数E高于或显著高于对照,各处理间优势度指数D差异不明显。主成分分析结果表明,高氮处理、低氮处理及无氮添加下土壤微生物对碳源利用能力存在较大差异。土壤pH、有机碳、全氮、全磷、微生物生物量氮、微生物熵、微生物量碳氮比、硝态氮与土壤微生物群落功能多样性密切相关,100 kg N·hm~(-2)氮添加量是土壤微生物活性从促进到抑制的一个阈值。  相似文献   

8.
以Ⅱ优838为水稻供试品种,湖北潮土为供试土壤,通过2年稻麦轮作柱栽试验研究2种灌溉模式(FW:土表淹水3cm;CW:保持土壤湿润但土表不积水)和4个施氮水平(N0:0kg·hm-2,N1:126.0kg·hm-2,N2:157.5kg·hm-2,N3:210.0kg·hm-2)对水稻土渗滤液不同形态氮浓度变化动态的影响。结果表明:土壤渗滤液的总氮浓度随水稻生育期推移呈由高到低的变化趋势,氮素淋失风险主要存在于水稻移栽后的前40d左右;在稻麦轮作制中,前作小麦明显提高后作水稻土壤渗滤液氮浓度;硝态氮(NO3--N)和可溶性有机氮(SON)是土壤渗滤液氮素的主要形态,铵态氮(NH4+-N)所占比例较低;水稻移栽后20~30d左右出现土壤渗滤液NO3--N高峰,在高峰期土壤渗滤液的NO3--N浓度随施氮量增加而提高;减氮25%处理(N2)相对于常规施氮量处理(N3)显著提高氮肥利用率,并降低氮素淋失风险。  相似文献   

9.
为了解施氮量对不同品种水稻(Oryza sativa L.)氮素利用、光合效率及碳氮代谢的影响,以不同品种的水稻品种RH 003和wp 6为供试品种,氮肥运筹按基肥(50%)、分蘖肥(20%)和穗肥(30%) 3次施用,通过设置4个施氮水平(N用量设0,120,195,270 kg·hm~(-2))的田间小区试验,研究氮素水平对水稻产量和氮素利用效率的影响,并探讨氮素水平下水稻碳氮代谢关键酶活性的变化。结果表明,2个水稻品种的子粒产量随施氮量增加而显著增加,施氮后,2个品种剑叶的长度和宽度都大幅增长。从产量构成因子来看,在一定范围内,施氮肥增产主要是提高了品种的有效穗数和每穗粒数。随施氮量增加,植株地上部干质量显著增加,2个品种的氮肥农学利用效率和氮肥偏因素生产力却逐渐降低,在120或195 kg·hm~(-2)处理下,更有利于水稻品种获得最高的氮肥生理利用效率和氮素收获指数;与对照(0 kg·hm~(-2))相比,随施氮量增加,2个品种蔗糖合成酶活性变化幅度不大,而硝酸还原酶活性则表现了先增后降的变化趋势,显著高于对照处理,且在120 kg·hm~(-2)处理下,硝酸还原酶活性达最大。  相似文献   

10.
太湖流域不同施氮水平对水稻产量和土壤氮素的影响   总被引:4,自引:1,他引:3  
试验结果表明,太湖地区稻麦两熟制水稻产量与施氮量呈二次曲线关系,可用方程y=-0.00002x~2+0.0095x+9.0384(r=0.993~(**))来描述,当施氮量为237.5 kg/hm~2时,可获得最高理论产量10.17t/hm~2.不同生育时期植株的干物质积累量和氮素的积累量都随着施氮水平的增加而增大;氮肥表观利用率、生理利用率和农学利用率都随着施氮量的增加而降低;高肥处理432 kg/hm~2和540 kg/hm~2成熟期植株干物质积累量和氮素的积累量都较高,但因大量氮素滞留在茎鞘中而导致产量不高.土壤各层全氮含量随着深度的增加而减小;随着施氮量的增加,0~60cm各层土壤全氮含量增大,而60~100 cm各层变化趋势不明显;但当施氮量较高(大于324 kg/hm~2)时,土壤氮素累积与下渗,土壤各层全氮含量提高,易造成氮肥奢侈吸收与氮肥污染.  相似文献   

11.
不同施氮水平对春玉米氮素利用及土壤硝态氮残留的影响   总被引:19,自引:2,他引:17  
过量施用氮肥造成的环境问题日益严重,氮肥合理使用成为了人们研究的热点.通过研究不同施氮水平对春玉米氮索利用及土壤硝态氮残留的影响,为氮肥的合理利用提供依据.通过在北京市通州区农业技术推广站进行田间小区试验,研究了不同施氮量(0、50、100、200和300kg·hm~(-2))对春玉米产量及氮素利用效率、氮平衡和土壤硝态氮累积量的影响.结果表明:(1)春玉米在施氮量为200kg·hm~(-2)时达到最高产量,为9 006.4 kg·hm~(-2),不同氮肥水平的氮肥利用率在19.7%~25.8%之间,在100 kg·hm~(-2)时的利用效率最高,达到25.8%.(2)作物吸氮量随输入量的增加而增加,氮盈余主要以土壤残留为主,表观损失在氮盈余中的比例虽小,但随施氮量的增加而增加的趋势更加明显.(3)硝态氮在180cm土层中的累积量随氮素输入量的增加而显著增加,在300 kg·hm‘2时达到最高值,为195 kg·hm~(-2),在施氮水平为100 kg·hm~(-2)时作物生长的需要就基本上能够得到满足,而在高施氮水平下(200和300 kg·hm~(-2))时土壤中的硝态氮出现富集现象,对环境形成一定的威胁.  相似文献   

12.
为研究施用氮肥对同时含有有机碳及无机碳石灰性土壤碳释放的影响,在陕西杨凌进行田间试验,比较了不同施氮量(0、160、220 kg·hm~(-2))及其与硝化抑制剂(DCD)配合(N160、N220及N160+DCD、N220+DCD)对土壤pH值、矿质态氮含量和二氧化碳(CO_2)释放量的影响。结果表明:施用氮肥显著降低了耕层土壤pH;配施DCD后土壤pH降低幅度小于未加DCD处理;加入DCD使氮肥的硝化过程推迟了约20 d;未加DCD处理的土壤CO_2释放量随施氮量增加而增加,试验结束时(施肥37 d后)土壤CO_2累积释放量最高达到167.1 g·m~(-2)。与N0处理相比,N160和N220处理的土壤CO_2累积释放量显著增加,增幅分别为20.9%和25.7%;N160+DCD和N220+DCD处理显著降低了土壤CO_2累积释放量,比对应相同施氮量处理分别降低了13.5%和11.0%。上述结果说明施用氮肥会同时影响石灰性土壤有机碳及无机碳的释放,施用氮肥引起的土壤无机碳的释放值得关注。  相似文献   

13.
稻草还田与施氮量对水稻氮素吸收及产量影响   总被引:1,自引:0,他引:1  
以寒地水稻品种为试验材料,设置稻草不还田、0.5倍、1.0倍、1.5倍、2倍还田5个处理,N0(不施入尿素)、N1(150 kg·hm~(-2))、N2(300 kg·hm~(-2))3个氮肥施用水平,研究不同时期水稻氮素吸收情况、氮素积累量、氮素分配率以及水稻产量。结果表明,分蘖期稻草还田量增加抑制水稻氮素吸收及积累,抑制作用随施氮量增加而降低;幼穗分化期稻草还田促进水稻地下部分氮素吸收,在不同施氮量条件下,0.5倍还田处理氮素积累量达最高值;收获期水稻地上和地下部分氮素均向籽粒部分转移,稻草还田配施氮肥情况下水稻分蘖及有效分蘖提升,N1施肥水平下1.0倍还田处理产量达最高值,N2施肥水平下0.5倍还田处理达最高值,稻草还田不配施氮肥或配施氮肥情况下稻草还田过量均降低水稻产量。  相似文献   

14.
【目的】冬小麦-夏休闲是旱地重要的轮作模式之一,随着氮肥用量的增加,一季小麦收获后土壤中残留的硝态氮含量不断增加,夏季休闲期间集中降水的特点是否会导致硝态氮淋溶损失,这一问题值得关注。【方法】连续3年(2013—2015年)采集黄土高原南部长武和杨凌两地夏季休闲前后0—200 cm土壤剖面样品,测定土壤硝态氮含量,研究不同降水年和不同施氮量下黄土高原旱地夏季休闲期间土壤剖面硝态氮累积及淋溶特性。【结果】小麦收获后,长武0—200 cm土壤剖面硝态氮累积量在97—328 kg·hm~(-2),平均193 kg·hm~(-2);杨凌施氮量为120kg N·hm~(-2)及240 kg N·hm~(-2)时,土壤剖面硝态氮累积量分别为156 kg·hm~(-2)及366 kg·hm~(-2),增加施氮量土壤剖面累积硝态氮量显著增加。不同降水年夏季休闲前后硝态氮在土壤剖面的淋溶与降水量密切相关,长武降水量高的丰水年2013年(296 mm)休闲前位于40—60 cm深度的硝态氮累积峰在休闲后到达80 cm以下,淋溶作用明显。而降水量少的欠水年2014年(157 mm)休闲后土壤剖面未发生硝态氮的淋溶。降水量一般的平水年2015年(200mm)休闲后在0—100 cm土壤剖面会发生硝态氮向下淋溶,但是迁移深度不大。在降水量高的2013年夏季休闲后100—200 cm土壤剖面增加的硝态氮累积量是0—100 cm的2.5倍,而2014年夏季休闲后土壤剖面增加的硝态氮累积量主要出现在0—100 cm土壤剖面。杨凌2013年试验期间降水量低(仅220 mm,属欠水年),休闲后两个施氮处理的土壤剖面硝态氮累积峰甚至出现轻微上移;同为欠水年,2015年降水量有所增加(288 mm),休闲后0—100 cm土壤剖面中发生硝态氮下移达到20—40 cm。而降水量更高的2014年(346 mm,平水年),休闲后土壤剖面中硝态氮累积峰较休闲前下移了60—80 cm。相比休闲前,降水量低的2013年夏季休闲后土壤剖面增加的硝态氮累积量主要出现在0—100 cm土壤剖面,淋溶作用弱。而降水量高的2014年施氮处理100—200 cm土层硝态氮的累积增加量显著高于0—100 cm土层,其中施氮240 kg N·hm~(-2)处理0—100 cm土壤剖面硝态氮累积量显著下降,有大量硝态氮被淋溶到100—200 cm土层。【结论】黄土高原旱地小麦收获后0—200 cm土壤剖面硝态氮累积量高。夏季休闲期间降水量是影响黄土高原旱地土壤剖面硝态氮淋溶的关键因素,降水量高的年份土壤剖面硝态氮淋溶作用明显。夏季休闲期间长武遇上丰水年土壤中硝态氮淋溶风险大,而杨凌遇上平水年就会出现硝态氮淋溶风险。  相似文献   

15.
施氮模式对番茄氮素吸收利用及土壤硝态氮累积的影响   总被引:4,自引:0,他引:4  
采用田间小区试验,以番茄为指示植物,研究不同施氮模式:农民习惯施肥(N-farmer)、减施化肥氮26%(74%N-farmer)、减施化肥氮26%结合调节土壤C/N(74%N-farmer+S)、减施化肥氮26%结合调节土壤C/N和采用滴灌(74%N-farmer+S+D)、减施化肥氮45%结合调节土壤C/N和采用滴灌(55%N-farmer+S+D)的集成模式对设施番茄氮素吸收利用及土壤硝态氮累积的影响.结果表明,55%N-farmer+S+D模式下番茄产量最高为108 349 kg·hm~(-2),产投比最高为26.1;与N-farmer模式相比,74%N-farmer、74%N-farmer+S、74%N-farmer+S+D和55%N-farmer+S+D模式的氮素利用率和氮素农学利用效率均有增加,其中55%N-farmer+S+D模式的氮素当季利用率为9.56%.氮素农学效率为43.67 kg·kg~(-1),均显著高于N-farmer模式(P<0.05);氮肥生理利用效率在各施氮模式间没有显著差异,55%N-farmer+S+D模式的效率最高为598.06 kg·kg~(-1);55%N-farmer+S+D模式的氮素果实生产效率和收获指数分别为493.81 kg·kg~(-1)和53.84%,均高于N-farmer模式.氮平衡结果表明,N-farmer模式的表观损失最高,55%N-farmer+S+D模式显著低于N-farmer模式;相同土壤剖面中不同模式硝态氮含量随番茄生育进程均呈先增高后降低的趋势;番茄盛果期和拉秧期,74%N-farmer+S、74%N-farmer+S+D和55%N-farmer+S+D模式在0~100 cm剖面累积的硝态氮含量均低于N-farmer模式,拉秧期N-farmer模式累积的硝态氮含量最高达705.24 kg·hm~(-2),74%N-farmer+S+D模式累积的硝态氮含量最低为453.75 kg·hm~(-2);番茄在3个不同生育期,土壤硝态氮多累积在0~40 cm土层,硝态氮的相对累积量约为50%.综合以上分析结果,集成模式55%N-farmer+S+D具有明显优势,能够提高氮肥的吸收和利用效率,减少土壤硝态氮的残留.  相似文献   

16.
在江苏泰州姜堰高砂土上,通过15N标记技术,研究施氮方式和施氮水平对小麦产量和氮肥利用率的影响。结果表明,氮肥1次条施的最佳施氮量和最高产量分别为160 kg·hm~(-2)和5.67 t·hm~(-2),均明显低于分次施用的240 kg·hm~(-2)和6.33 t·hm~(-2)。80~160 kg·hm~(-2)施氮量时,小麦地上部分各部位吸氮量无显著差异;240 kg·hm~(-2)施氮量时,分次施用的小麦籽粒、秸秆和地上部分吸氮量比1次条施分别增加12.3%(P0.05)、28.5%(P0.05)和16.4%(P0.05)。分次施用条件下,肥料氮小麦吸收率随施氮量增加而增加;1次条施条件下,肥料氮小麦吸收率随施氮量增加呈减少趋势。80 kg·hm~(-2)施氮量1次条施的氮肥损失率比分次施用减少11.6%(P0.05),160 kg·hm~(-2)施氮量1次条施的氮肥损失率与分次施用无显著差异,240 kg·hm~(-2)施氮量1次条施的氮肥损失率比分次施用增加17.0%(P0.05),氮肥表观利用率的变化与氮肥损失率相反。  相似文献   

17.
为研究水分调控对设施栽培下白菜肥料氮素利用的影响,采用~(15)N稳定性同位素示踪技术,设计不同施氮量(115 kg/hm~2和230 kg/hm~2)及不同土壤水分控制下限(分别占田间持水量60%、70%和80%),分析不同水氮处理下白菜各器官生物量累积、氮素利用及其与影响因子之间的互动响应关系。结果表明,水分调控和氮肥施用存在协作效应,该协作效应在根系生物量上的作用尤为明显;同时,在230 kg/hm~2施氮量处理下,水氮协作效应对叶生物量累积影响显著;115 kg/hm~2施氮量条件下,白菜氮肥利用效率明显高于相同水分控制条件下230 kg/hm~2施氮量处理;115 kg/hm~2和230 kg/hm~2施氮量均以70%水分控制下限氮肥利用效率最高,分别达到60.1%和49.9%;氮肥利用效率与~(15)N投入量呈极显著负相关(r=-0.988),与根系生物量呈极显著正相关(r=0.948)。实际生产中,推荐以70%土壤水分控制下限作为白菜高效利用氮肥(尿素)的水分控制指标。  相似文献   

18.
本研究以‘新饲玉13号’为材料,研究在滴灌春小麦-青贮玉米一年两作体系下的复播青贮玉米适宜的氮肥施用量。在滴灌条件下设置5个施氮水平(N1:104.4 kg/hm~2,N2:174.0 kg/hm~2,N3:243.6 kg/hm~2,N4:313.2 kg/hm~2,N5:382.8 kg/hm~2),以未施氮为对照(CK),分析施氮量对复播青贮玉米鲜草产量、氮素吸收利用和土壤硝态氮含量的影响。结果表明,随施氮量的增加,青贮玉米的植株干物质重、氮含量、氮累积量和鲜草产量呈增加趋势,而青贮玉米的氮肥当季回收利用率、氮肥农学效率和氮肥生产效率呈下降趋势;收获期在0~100 cm土层内,不同施氮处理的土壤硝态氮含量均表现为随土层加深逐渐降低,但施氮量大于243.6 kg/hm~2时,土层深度100 cm处硝态氮大量积累,有向下淋洗的风险。利用一元二次方程拟合产量与施氮量之间的关系,明确了在该试验土壤肥力条件下青贮玉米鲜草最高产量的施氮量为244 kg/hm~2,经济施氮量为238 kg/hm~2。  相似文献   

19.
为了探明江苏扬州地区黑麦草草地土壤剖面氮素的运移规律,提高黑麦草植株对氮素的吸收利用效率,研究了扬州地区1年生黑麦草人工草地中不同施氮水平(0、100、200和300 kg/hm2,分别表示为N0、N100、N200和N300)下土壤中硝态氮含量和分布动态、植株氮素含量等变化情况.结果表明:第1次刈割和第2次刈割黑麦草茎、全株中氮素含量均以N200处理较高,茎中氮素含量分别为2.48%、2.8%,全株为3.68%、2.35%,叶中氮素含量均以N300处理较高,分别为4.02%和3.95%.在1年生黑麦草不同生长时期和不同深度土层中硝态氮含量差异显著,不同时期土壤中硝态氮含量大多随施氮量的增加而增高.随施氮量增加,硝态氮在60~140 cm土层内累积量增加.第1批(2008-12-03)0~140 cm土壤中硝态氮累积量为115.06~282.49 kg/hm2,以后各取样时期土壤中硝态氮累积量依次降低,第3批(2009-03-05)最少,为64.78~111.55 kg/hm2.当施氮量大于200 kg/hm2(超过黑麦草植株含氮量)时,会导致刈割时NO3--N在根层土壤剖面的显著积累,而黑麦草产量、植株氮素含量等均不增加显著.  相似文献   

20.
【目的】根系是玉米吸收氮素营养的主要器官。在大田条件下,对夏玉米根系生长分布、根系与土壤硝态氮空间吻合度对不同水氮处理的响应,以及根系与土壤硝态氮空间吻合度指标的有效性进行研究,用以了解其时空分布及与土壤氮分布的吻合情况对玉米氮素吸收利用的影响。【方法】2011—2015年,设置不灌水+不施氮(W0N0)、不灌水+300 kg N·hm~(-2)(W0N1)、不灌水+360 kg N·hm~(-2)(W0N2)、大喇叭口期灌水+不施氮(W1N0)、大喇叭口期灌水+300 kg N·hm~(-2)(W1N1)、大喇叭口期灌水+360 kg N·hm~(-2)(W1N2)共6个水氮处理。各施氮处理下拔节期施氮30%、大喇叭口期施氮70%。大喇叭口期灌水量为750 m~3·hm~(-2)。在2015年玉米生长季,分别于玉米拔节期、大喇叭口期、吐丝期、吐丝后20 d和成熟期在玉米种植行和行间采集0—50 cm土体样品(每10 cm一层),测定夏玉米根长密度、根干重密度、土壤硝态氮含量,并计算根系与土壤硝态氮空间吻合度。在成熟期采集植株样品,分析玉米氮素吸收量。【结果】随着玉米生育进程,种植行和行间0—50 cm土壤剖面夏玉米根长密度、根干重密度和硝态氮含量均表现出先升高后降低的趋势,根长密度和根干重密度峰值出现在吐丝后20 d,而土壤硝态氮含量峰值出现在大喇叭口期。在0—360 kg·hm~(-2)的范围内,夏玉米根长密度和吐丝期之前土壤硝态氮含量随施氮量的增加而增加,但玉米根干重密度和吐丝期之后土壤硝态氮含量先升高后降低,峰值出现在施氮300 kg·hm~(-2)处理。大喇叭口期灌水可以提高夏玉米生育后期根长密度和根干重密度,但降低了土壤硝态氮含量。随着土层加深,种植行夏玉米根长密度与土壤硝态氮空间吻合度(RLD1-N)以及根干重密度与土壤硝态氮空间吻合度(RWD1-N)总体呈降低趋势,行间夏玉米根长密度与土壤硝态氮空间吻合度(RLD2-N)以及根干重密度与土壤硝态氮空间吻合度(RWD2-N)总体呈先增加后降低趋势,峰值出现在10—30 cm土层。随着玉米生育进程,各土层RLD1-N、RWD1-N和RWD2-N以及0—40 cm土层RLD2-N呈先升高后降低变化趋势。与不施氮处理相比,施用氮肥提高了RLD1-N、RLD2-N、RWD1-N和RWD2-N。施氮量从300 kg·hm~(-2)增加至360 kg·hm~(-2)时,降低了0—30 cm土层RLD2-N、0—20 cm土层RWD1-N以及拔节至吐丝期间RLD1-N和0—20 cm土层RWD2-N,提高了40—50 cm土层RLD2-N、20—50 cm土层RWD1-N以及吐丝期之后的RLD1-N和RWD2-N。夏玉米种植行和行间根长密度和根干重密度与其硝态氮含量的吻合度与产量极显著正相关,但与氮素利用效率极显著负相关,且其相关性优于根长密度和根干重密度与产量及氮素利用效率的相关性。【结论】在大田条件下,施用氮肥可以提高夏玉米根长密度、根干重密度、土壤硝态氮含量以及夏玉米根系与土壤硝态氮空间吻合度。但施氮量超过300 kg·hm~(-2)时会降低夏玉米生育前期上部土层的夏玉米根系与土壤硝态氮空间吻合度。根系与土壤硝态氮空间吻合度可以作为研究夏玉米氮素利用效率的有效指标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号