首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
应用2003~2012年湖北省天门市耕地面积、农作物产量、农田投入等统计数据,对农田生态系统碳吸收、碳排放和碳足迹进行了定量测度分析。结果表明,10a来,农作物碳吸收量、碳吸收强度呈现出随着年份的递进而逐年增加的态势,分别由2003年的787.90×10~3t C、7.24tC/hm~2增加到2012年的1 144.01×10~3t C和10.35tC/hm~2;农田投入碳排放量及碳排放强度则呈先升后降再上升的变化趋势,变化范围分别为(89.04~106.12)×10~3t C/a和0.82~0.98tC/(hm~2·a),化肥为主要碳排放源;农田生态系统为碳汇,其碳足迹呈现出随着年份的递进而逐年减少的态势,由2003年的48.81×10~3hm~2减少至2012年的37.70×10~3hm~2,占同期耕地面积比重的34.12%~44.85%,明显小于区域生态承载力。  相似文献   

2.
潍坊市农田生态系统碳源(碳汇)及其碳足迹变化   总被引:4,自引:0,他引:4  
以山东省潍坊市为研究区,以种植面积、农作物产量及农业投入等相关数据为基础,定量测算2003—2012年潍坊市农田生态系统的碳源(碳汇),分析期间碳足迹的变化。结果表明:1)2003—2012年,潍坊市农田生态系统碳吸收总量小于碳排放总量,二者的比例为1∶7.4,碳排放强度增长率从0.055%减少到0.048%,碳吸收强度增长率从1.18%增加到1.98%。10年间农田生态系统碳吸收量和碳排放量分别增长了10.69%和7.02%,碳吸收增长率高于碳排放增长率,农田系统具有较强的碳汇功能。2)蔬菜是主要的碳汇,占比为73.31%,6种碳排放途径中,农田灌溉是主要的碳源,占比为87.32%。3)农田生态系统碳足迹从2003年的38.990万hm2减少到2012年38.769万hm2,碳足迹平均占生态生产性土地面积的1.456%,比例较低。10年间碳足迹强度均值为0.14 hm2/万元,2003—2012年潍坊市农田生态系统每增加1万元的产值可以制造0.14 hm2的碳足迹。  相似文献   

3.
贵州喀斯特农田生态系统碳足迹时空差异研究   总被引:1,自引:0,他引:1  
【目的】探明贵州省碳排放、碳吸收与碳足迹现状,可以为贵州省农田生态系统减源增汇以及农业的可持续发展提供参考。【方法】依据2007—2016年贵州省和贵阳、遵义、六盘水三市农业投入、农作物产量、耕地面积等数据,对贵州省不同尺度农田生态系统碳排放、碳吸收和碳足迹进行估算,分析变化规律并探讨其影响因素。【结果】①2007—2016年贵州省及贵阳、遵义、六盘水三市农田生态系统的碳排放量均呈逐年增长趋势,其中化肥施用产生的碳排放量所占比例最大,分别为68%、73%、81%、72%;2016年贵州省化肥单位面积碳排放达到298.23 kg/hm~2。②碳吸收量表现为"上升下降式"波动变化,总体呈增长趋势,其中,水稻碳吸收量所占比例最高,平均为50.9%,但呈减少趋势,蔬菜增幅较大,达到47%。③贵州省农田生态系统存在较大碳生态盈余,农田生态系统碳足迹呈现不断增加趋势。【结论】尽管农业碳吸收量远大于碳排放量,但化肥与农膜所占碳排放比例较大,应是未来农业减源的重点。  相似文献   

4.
重庆市农田系统碳源/汇特征及碳足迹分析   总被引:2,自引:0,他引:2       下载免费PDF全文
利用1998-2010年重庆市农田生产投入和农作物产量等数据,采用碳足迹模型方法,对重庆市农田系统的碳 排放量、碳吸收量及碳足迹进行了估算.结果表明:(1)1998-2010年重庆市农田系统碳排放量增加了27.65万t,贡 献比例最大的主要碳汇类型为农田化肥施用和农业灌溉;(2)13年间重庆市农田系统碳吸收量增加了1143.95万t, 其中蔬菜、水稻和高粱吸收量最大.(3)重庆市农田系统2010年的碳足迹为9.07万hm2,总体呈下降趋势,处于碳生 态盈余状况,种植结构变化有利于增强农田系统的固碳功能.  相似文献   

5.
福建省农田生态系统碳源/汇时空变化及其影响因素分析   总被引:1,自引:0,他引:1  
准确估算农田生态系统的碳排放和碳吸收对制定合理的农业减排措施具有重要意义.基于1991-2010年福建省农作物产量、耕地面积、农业投入等农业活动水平数据,对福建省农田生态系统的碳源汇进行估算,并分析碳源汇的时空变化特征及其影响因素.结果表明,1991-2010年福建省农田生态系统碳吸收总量总体呈下降趋势,从1991年的1161.14×104t减少到2010年的672.13×10^4t,减幅为42.11%,年平均递减5.89%;碳排放总量呈增加的趋势,从1991年的114.05×10^4t增加到2010年的195.10×10^4t,增幅达71.07%,年均递增2.87%;碳汇量总体呈降低趋势,从1991年的1047.09×10^4t降低到2010 年的477.03×10^4t,减幅为54.44%,年均递减8.36%;福建省农田生态系统单位耕地面积碳吸收呈下降的趋势,而单位耕地面积碳排放基本保持不变.2010年南平市的碳吸收量和碳汇量最大,漳州市的碳排放量最大,而厦门市的碳吸收量、碳排放量和碳汇量均最小.碳源汇影响因素相关性分析表明,碳吸收与水稻、小麦、甘蔗产量呈极显著正相关;碳排放与钾肥、复合肥、农药、农机动力、柴油使用均有极显著的正相关性.研究结果能够为福建省低碳农业发展提供科学参考.  相似文献   

6.
基于生态足迹思想提出碳足迹和碳承载力概念,对甘肃省1995-2009年化石能源消费的碳排放和植被的碳承载力进行定量分析。结果表明:甘肃省化石能源消费的碳足迹由1995年的2 466.12×104 t C增长到2009年的4 464.47×104 t C;煤炭消费的碳足迹最大,其次为石油,天然气比重最小,2009年的比重分别为81.54%、15.20%和3.26%;碳承载力由1995年的1 158.89×104 t C增长到2009年的1 472.19×104 t C,其中,森林的碳承载力最大,其次为草地,农田最小;甘肃省能源消费碳足迹远高于生产性土地的碳承载力。伴随着碳足迹的高增长率,碳赤字持续增大。  相似文献   

7.
兴安落叶松天然林生物生产力及碳储量研究   总被引:1,自引:0,他引:1  
在兴安落叶松原始林试验区草类-落叶松林、藓类-落叶松林、杜香-落叶松林各设置2块标准地,在其中进行草本植物、藓类、灌木、乔木和枯枝落叶等地上生物量调查,根据实测数据建立生物量计算回归模型,计算各林型生物量与碳储量、平均生产力与年固碳量.结果如下:草类、藓类、杜香-落叶松林生物量分别为196.494 2t/hm2、162.293 5t/hm2、148.858 Ot/hm2,平均生产力为1.18t·hm-2·a-1~-2.79t·hm-2·a-1之间;碳储量分别为95.8001t/hm2、76.484 5t/hm2、73.127 5t/hm2,年固碳量为0.57t·hm-2·a~1.37 t·hm~·a-1之间.  相似文献   

8.
黄土丘陵沟壑区治沟造地工程碳效应分析   总被引:1,自引:0,他引:1  
为研究黄土丘陵沟壑区治沟造地工程碳效应,运用IPCC碳排放测算方法以及国家地质调查总局制定的《多目标区域地球化学调查规范》中的采样方法实地采样,分析治沟造地工程中土地平整、灌溉与排水、田间道路工程、农田防护与生态环境保护等主要工程及工程实施后土地利用类型变化导致的碳排放。结果表明:延安市南泥湾镇治沟造地工程施工导致的碳排放量为3.76 t·hm-2,表现为碳源效应。其中对碳排放贡献最大的是土地平整工程,碳排放量为2 335.50 t,农田防护工程碳排放最小,不产生碳排放。治沟造地工程实施后土地利用类型变化使碳储量增加95.34 t·hm-2,表现为碳汇效应。其中耕地面积增加使碳储量增加了1 119.72 t·hm-2,水田的碳储量增加量最多,为716.54 t·hm-2;园地、交通运输用地、水域及水利设施面积减少导致碳储量减少了1 024.38 t·hm-2,水域及水利设施用地碳储量减少量最多,为807.50 t·hm-2。治沟造地工程实施后土地利用类型变化的碳储量抵消了工程施工产生的碳排放,碳储量为91.58 t·hm-2。研究表明,治沟造地工程总体上表现为碳汇效应,有利于区域碳储量的增加。  相似文献   

9.
为黔北喀斯特山区的低碳农业持续发展提供理论依据,采用农田系统碳汇计算方法,研究遵义市近60年农田碳汇及碳足迹。结果表明:遵义市60a农田系统的年均固碳能力呈波动趋势,年均固碳量为274.61万t;农田碳汇强度为4.55t/hm~2,其中,1959—1961年碳汇强度为3.30t/hm~2,农田碳汇强度增加速度为0.04t/(hm~2·a),1961—2000年农田碳汇强度增速为0.10t/(hm~2·a),2001—2008年农田碳汇强度呈降低趋势。遵义市农田碳足迹总体呈增加趋势,平均为2.40×104hm~2;遵义市60a不同农作物对固碳的贡献水稻最大,为60.89%;玉米其次,为17.07%,小麦第三,为8.29%;研究期间内,水稻的碳汇贡献由最初的78.29%降至50.33%。遵义市农田碳汇随着农业碳投入的变化而变化,在农田管理年投入碳大于20万t后,遵义农田碳汇无显著变化;遵义农田管理碳投入小于20万t时,农田碳汇呈显著增加趋势,增速为10.44万t/万t。  相似文献   

10.
山西农田生态系统碳源/汇时空差异分析   总被引:4,自引:0,他引:4  
【目的】分析山西省农业碳循环过程,为该省的农作物布局,以及利用农业结构调整固碳减排提供科学依据。【方法】运用山西省11个地区2000-2006年作物产量、种植面积、农业投入等统计数据,对山西省各地区农田生态系统部分碳源/汇进行了分析。【结果】(1)山西省农田生态系统碳吸收总量从2000年以来呈现波动增加趋势,碳吸收总量从2000年的2 010万t增加到2003年的2 330万t,上升近11%,但从20世纪初期以后开始呈现下降趋势,从2003年的2 330万t下降到2006年的2 230万t;2006年运城和临汾主要以小麦碳吸收为主,其余各市都以玉米碳吸收为主,其中玉米的碳吸收量和单位面积碳吸收量呈增长趋势,稻谷、高粱的碳吸收量和单位面积碳吸收量呈明显下降趋势。(2)山西省农田生态系统碳排放总量从2000年以来呈逐渐增加趋势,增长了8.8%;估算的3种主要碳排放途径中,肥料生产导致的间接碳排放所占比例较大,增速较快,增长近13%,农业机械生产和灌溉过程碳排放变化不大;2006年山西晋城和运城的碳排放量最高,都达到了碳排放总量的22%,单位面积碳排放量也呈逐年增加趋势。(3)山西省农田主要碳吸收量大于主要途径碳排放量。【结论】山西省农田作物具有较大的碳吸收功能,其中小麦和玉米的农田碳吸收功能较强,但其碳排放的增速也很明显,说明山西省农业投入的增加和机械化程度的提高,削弱了农田生态系统的碳汇功能。  相似文献   

11.
2006—2015年重庆市农田生态系统碳足迹分析   总被引:1,自引:0,他引:1  
利用2006—2015年重庆市农业生产统计数据,对全市农田生态系统碳排放、碳吸收和碳足迹进行估算、分析,探讨造成碳排放和碳吸收变化的影响因素。结果表明:在所有排放因子中,氮肥的排放量和占比均最高,约为50%,但有逐年下降的趋势,由2006年的51.35%下降到2015年的47.32%;水稻是重庆市第一大农作物,也是生态系统中碳吸收第一大来源,截至2015年,其全生育期碳吸收量达到4.099 5×106 t,占全市农田生态系统碳吸收量的39.16%;农田生态系统碳足迹占同时期播种面积的比例也呈现下降趋势,由2006年的19.78%下降到2015年的17.44%,即农田生产产生的碳排放需要全市约1/5的播种面积来消纳;重庆市农田生态系统处于碳盈余状态,2015年达到了2.727 2×106 hm2,重庆市农田生态系统的碳汇功能逐年提高。  相似文献   

12.
广东省农田生态系统碳足迹时空差异分析   总被引:1,自引:0,他引:1  
以广东省为例,通过1992要2011 年化肥、农药、农膜使用量、灌溉面积、农业机械总动力、农作物产量等 统计数据,估算了区域农田生态系统碳吸收、碳排放及碳足迹的时空特征。结果表明院近20 年来,广东省农作物碳吸 收总量总体处于下降趋势,从1992 年的4 017.02 万t 减少到2011 年的2 925.42 万t,减幅达到27.17%,年均递减 1.66%。而碳排放基本上呈现逐渐增加的趋势,排放总量从1992 年的224.05 万t 增加到2011 年的261.69 万t,增幅 为16.80%。广东省农田生态系统碳足迹呈现波动增加的趋势,2011 年比1992 年增长了89.76%,年平均增长率为 3.43%,碳足迹占同期生产性土地面积比例逐渐增大,2011 年达到8.95%。广东省农田生态系统表现为碳生态盈余, 且生态盈余占同期生产性土地面积比例逐步减小。各地区之间的碳足迹区域差异也较大。  相似文献   

13.
河南省农田生态系统碳源/汇研究   总被引:7,自引:0,他引:7  
采用1992-2007年河南省各地市主要农作物产量、耕地面积及农业投入等数据,对农田生态系统碳源/汇进行了测算,分析了碳源/汇及碳汇强度的时空变化特征,并提出了相应的碳增汇对策和建议。结果表明:1992-2007年,河南省农田生态系统碳吸收、碳排放及其强度均呈明显增加的趋势,碳吸收明显大于碳排放,河南省农田生态系统碳汇功能不断增强;化肥施用带来的间接碳排放成为主要的碳排放源;1992年以来,农田生态系统碳汇量呈明显增加的趋势,区域单位面积产量越大,碳汇强度也越高;河南省农田生态系统碳汇强度自东北到西南逐渐降低,平原地区明显大于山区。  相似文献   

14.
农田生态系统具有碳源和碳汇功能,是陆地生态系统的重要组成部分,探究农田碳足迹进而为农田生态系统的可持续发展提供参考。基于2000—2020年四川省以及21个市(州)的农田生产投入和农作物产量等数据,构建农田生态系统碳足迹模型,对碳足迹、碳生态效率的时空变化特征和影响因素进行探讨。结果表明,2000—2020年四川省农田生态系统碳排放量呈先波动上升后下降的趋势,拐点发生在2016年,其中土壤翻耕、化肥使用为碳排放量的主要贡献因素,占比分别为44.74%、30.22%。碳吸收量呈先减后增的趋势,2006年碳吸收量减至最低值,气象灾害是主要影响因素。水稻、玉米、小麦对碳吸收量的贡献较大。农田生态系统碳足迹呈先波动增长后持续下降的变化,2006年为最大值。2000—2020年四川省农田生态系统均为碳生态盈余状态,碳生态效率年均为5.150 kg C/kg CE。从空间上看,四川省农田生态系统碳排放、碳吸收、碳足迹、碳生态效率均呈现西北低、东南高的分布格局;单位面积碳足迹却呈现西北高、东南低的分布,空间差异和变化幅度差异均较大,主要是因为各地区农业生产条件和发展水平不同。应因地制宜,从农资投入、...  相似文献   

15.
原始阔叶红松林碳素储量及空间分布   总被引:3,自引:0,他引:3  
运用森林生态学典型样地法设立标准地并获取野外数据,采用重铬酸钾-硫酸氧化湿烧法测定了植物、土壤中的碳。对阔叶红松林两个类型碳素密度及储量的比较结果表明:阔叶红松林主要树种不同器官中碳素密度变化范围为0.3316~0.5032g·g-1;枫桦红松林生态系统总的碳储量为456.03t·hm-2,其中生物碳储量为55.13t·hm-2,土壤碳储量为400.89t·hm-2;椴树红松林生态系统的碳储量为321.80t·hm-2,其中生物碳储量为101.77t·hm-2,土壤碳储量为220.03t·hm-2;阔叶红松林有机碳年净固定量为3.61t·hm-2·a-1。  相似文献   

16.
采用2003~2010年四川省兴文县农业投入和产出相关农业数据,对农田生态系统的碳源/汇现状特征进行了研究。结果表明:①2003~2010年兴文县农田生态系统碳吸收量呈持续增加趋势,2010年碳吸收量达183 487.22 t,比2003年提高了8.76%。②2003~2010年兴文县农田生态系统排放量总体呈增加的趋势,从2003年的10443.06 t增加到2010年的11955.70 t,化肥施用是导致碳损失的主要途径。③兴文县农田生态系统的碳吸收大于碳排放,具有较强的碳汇能力,但碳排放的增长大于碳吸收的增长,对农田碳汇培育形式压力。  相似文献   

17.
北京市农田生态系统碳足迹及碳生态效率的年际变化研究   总被引:2,自引:2,他引:0  
近年来,由于北京城市功能的疏解以及郊区城市化进程的加快,使北京市农田生态系统受到了较大的冲击。本文以北京农田生态系统作为研究对象,对2004—2012年农田生态系统的碳汇、碳源、碳足迹以及碳生态效率的年际变化进行了研究,以明确其在北京城市发展中的功能与地位,为北京市健康持续发展及产业布局提供理论依据。结果表明:北京农田生态系统碳汇总体呈增加趋势,年递增幅度为2.8%,年平均碳蓄积量为105.82 万t,决定其碳汇功能的主要因素是粮食作物中玉米与小麦的经济产量及种植面积。北京农田生态系统的年均碳排放量为27.6 万t,基本呈现逐年降低的趋势,年均递减1.3%,决定碳排放量的主要因素为农业化学品中氮素化肥的施用量。北京市农田生态系统年均碳足迹为5.71 hm22,呈逐年降低的趋势,年递减率为5.5%,处于碳生态盈余状态,但是由于近年北京市耕地面积的减少,碳生态盈余量呈下降趋势;北京农田生态系统的碳生态效率较高,年均为3.854 kg C·kg-1 CE,农业生产处于较高的持续状态。  相似文献   

18.
种养结合生产区农田磷素平衡分析——以山东禹城为例   总被引:3,自引:0,他引:3  
根据养分平衡理论对种养结合区禹城农田系统磷素盈亏状况进行了计算分析,结果表明,从1980年到2005年该区域农田系统的磷素输入、输出和盈余均呈现增长趋势.按耕地面积平均磷素输入量由35.8 kgP2O5·hm-2·a-1增加到296.9 kgP2O5·hm-2·a-1,磷素输出量由29.6 kgP2O5·hm-2·a-1增加到148.0 kgP2O5·hm-2·a-1,因为输入增加速度大于其输出增加速度,导致磷素盈余量由6.2kgP2O5·hm-2·a-1增加到148.9 kgP2O5·hm-2·a-1;从空间差异来看.在I 1个乡镇中除2个乡镇的耕地表现为磷素亏缺外,其余9个乡镇的耕地均不同程度地旱现出磷素盈余,其中有1个乡镇的盈余量较低,按耕地平均为55.3 kgP2O5·hm-2·a-1,有7个乡镇的盈余量按耕地平均都在100.0 kgP2O5·hm-2·a-1以上,磷素盈余量最高的达到297.8 kgP2O5hm-2·a-1,远高于欧盟一些国家法令规定的农田磷素盈余限量标准.禹城农田系统磷素的大最盈余,主要源于化肥磷投入增加,特别是粪便磷的快速增长,所以,为了减少磷素盈余损失,应适量减少化肥磷投入,同时对粪便磷在区域内进行合理管理和调配施用.  相似文献   

19.
杉木二代林生态系统碳素积累的动态特征   总被引:1,自引:1,他引:0  
对杉木二代林碳贮量和碳素年净固定量的动态特征进行了研究.结果表明,8、11和14年生杉木二代林生态系统碳贮量分别为136.24、147.59和161.83 t·hm-2,其分布序列为土壤层(0~60 cm)>植被层>凋落物层.随着林分林龄的增加,乔木层碳积累量明显增加,由8年生的17.09 t·hm-2增加到14年生的37.29 t·hm-2,分别占生态系统碳贮量的12.54%和23.04%.碳贮量在林木各器官中的分配,基本上与各自生物量成正比,其中树干碳贮量占乔木层碳贮量的46.05%以上,并随林木生长而明显增加.3种杉木林林地土壤层(0~60 cm)碳贮量分别为117.60、119.26和122.06 t·hm-2,占生态系统总碳贮量的75.42%以上,其中表层土壤(0~20 cm)分别占土壤总碳贮量的56.45%、54.29%和57.37%.3种林分的年净生产力分别为5.49、6.18和7.62 t·hm-2·a-1,碳素年净固定量分别为2.62、3.04和3.74 t·hm-2·a-1.  相似文献   

20.
本研究依据2001-2010年农作物产量、耕地面积及农业投入等数据,对德州市农田生态系统碳汇进行估算并分析变化情况,并探讨农田生态系统碳源汇的影响因素;结果显示德州市2001-2010年农田生态系统的碳吸收总量呈增加的趋势;小麦、玉米作为主要的粮食作物,吸收量明显高于其他农作物;2001-2010年德州市碳排放呈现先增后减的变化;不同县市由于农业发展方向和发展特色的差异,造成碳排放也不相同;五种途径碳排放过程中,化肥施用过程中碳排放所占的比例较大且呈减少的趋势;2001-2010年德州市碳吸收量远远大于碳排放量,德州市农田生态系统具有很强的碳汇功能。碳源汇影响因素分析表明,德州市农田生态系统碳吸收量与小麦、玉米、棉花的产量有正相关;农用化学品投入和燃料动力使用以及耕作灌溉管理均显著正相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号