首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
目的研究黄土高原水蚀风蚀交错区乡土树种河北杨的树干液流密度变化特征及其与环境因子的关系,为该地区水资源承载力研究和树种选择提供理论依据。方法利用Granier热扩散探针法和自动气象监测系统对陕北吴起县河北杨树干液流密度和周围气象条件、土壤含水量等进行连续测定分析。结果河北杨树干液流密度日变化呈宽幅单峰形,液流密度峰值提前于太阳辐射强度峰值约2.5h,提前于水汽压差(VPD)峰值约4h。夜间液流活动主要发生在后半夜00:00—06:00,晴天液流密度变化幅度小,雨天变化幅度大;灌水当天干基液流密度峰值出现的时间明显提前,峰值大小比灌水前提高66.66%,冠基处峰值比灌水前提高73.62%,灌水处理后实验组连续两日液流密度均值比灌水前减少2.21%,而对照组减少21.89%,晴天条件下,树干液流密度与太阳辐射、VPD、气温和风速极显著正相关(P < 0.01),与土壤含水量显著正相关(P < 0.05),与相对湿度极显著负相关(P < 0.01)。降雨天树干液流密度与太阳辐射、气温和风速极显著正相关(P < 0.01),与VPD显著正相关(P < 0.05);与对照组比较,灌水之后液流密度与气象因子的相关系数绝对值没有明显增加;河北杨树干储存水的日动态总体表现为上午释放和下午补充,并存在两次较明显的释放-补充周期。结论河北杨树干液流密度主要受太阳辐射强度、VPD、气温、相对湿度、风速和土壤含水量的影响,液流密度峰值时间与太阳辐射强度、VPD、气温等气象因子存在时滞,土壤水分的增加可缩短液流密度与气象因子峰值的时间差,上午储存水的持续释放是导致树干液流密度与气象因子时滞效应的重要原因。   相似文献   

2.
利用热扩散式液流探针(TDP)对天目山柳杉树干液流进行连续观测,并对多个环境因子进行同步测定.结果表明:柳杉树干液流晴天、阴天日变化呈单峰曲线,雨天则变化不明显.春季晴天树干液流在6:00启动,13:00达到峰值,启动时间比秋季早1h,春季液流维持时间长于秋季.春、秋季阴天液流变化与晴天相似,但启动时间、达到峰值及开始下降时间的变化节律明显不同.液流速率与光合有效辐射、空气温度、空气湿度、叶面湿度呈显著性相关关系,但与二氧化碳浓度的关联性较低,而且不同季节液流速率与叶面湿度的关联属性相异.利用多元统计方法建立了不同季节树干液流与环境因子的回归方程,春季:Vs=-23.785+0.032PAR+9.944Ta-1.022Rh+1.263Lh,秋季:Vs=29.635+0.069PAR+4.641Ta-0.756Rh-1.072Lh.  相似文献   

3.
为探究特殊天气(降雪)情况下树干液流的变化规律,在半干旱的宁夏六盘山叠叠沟小流域,于2011年在华北落叶松生长季中后期,监测提前到来的雨雪天气对树干液流的影响。在样地内采用热扩散探针监测4棵样树的液流速率,结果表明,晴天液流规律同降雪当日有明显差异,降雪带来的低温和低太阳辐射抑制了华北落叶松的蒸腾作用,降雪当日树干液流没有明显的高峰,在4棵样树中晴天液流日峰值(9月15日)是降雪当天日峰值40倍左右;晴天一天液流总量大致为降雪时日总量的20倍以上;降雪过程中与华北落叶松树干液流密度极显著相关(P0.01)的环境因子有空气温度和太阳辐射,晴天时则为空气温度、太阳辐射、相对湿度、水汽压亏缺,但是降雪时太阳辐射与液流速率由晴天时的正相关转为负相关。  相似文献   

4.
2005年6—8月在山西太岳山32年生油松林内,用TDP探针,采用热平衡技术,测定油松林木树干液流速度.研究结果表明:晴天液流速度曲线略呈现双峰形状,为11:00和13:00时(0.002 97,0.002 94 cm/s),12:00流速略有下降(0.002 73 cm/s),反映出林木蒸腾轻度午休现象.树干液流速度晴天大于阴天,雨天液流速度很低.相同天气条件下树干液流速度存在随林木胸径增大而上升的趋势,树干液流速度主要受太阳辐射强度、气温和空气相对湿度影响.夏季林木日平均液流量与树干胸高横断面积呈正比.试验林夏季日平均单株液流量为白天8.666 3 dm3/d,日总量10.373 3 dm3/d,30年生油松林分夏季日平均蒸腾速率为12 843 dm3/(hm2.d),其中白天蒸腾10 730 dm3/(hm2.d),占日蒸腾总量的83.55%.  相似文献   

5.
缙云山典型树种树干液流日际变化特征及与气象因子关系   总被引:2,自引:1,他引:1  
运用Granier热扩散探针方法,于2012—2015年8—9月对重庆缙云山自然保护区内3个典型优势木(杉木、马尾松、四川山矾)的树干液流进行测定,并运用微型气象站同步监测太阳辐射(ES)、大气温度(T)、大气相对湿度(RH)、风速(W)、饱和水汽压差(VPD)等气象因子及土壤含水量(SWC),分析3个树种的树干液流在日尺度及典型天气条件(晴、阴、雨)下的差异和特征及其与气象因子的关系。结果表明:树种间导水能力差异表现为四川山矾>马尾松>杉木,阔叶树种蒸腾速率高于针叶树种;3个树种树干液流日变化规律均呈现“昼高夜低”的单峰走势;液流启动时间和达到峰值时间均为山矾最早,杉木最晚;典型天气条件下3个树种液流量均呈现晴天>阴天>雨天,与晴天液流量相比较,阴、雨天液流量减少幅度为41%至86%;白天树干液流贡献率表现为晴天(94.74%~98.04%)>阴天(93.63%~96.71%)>雨天(81.43%~85.43%),夜晚树干液流贡献率表现为雨天(14.57%~18.27%)>晴天(3.29%~6.37%)>阴天(1.96%~5.26%);导致雨天夜间液流贡献率最大的因子为SWC;影响3个树种树干液流的主要气象因子为ES和VPD;T、RH、W对3个树种的影响程度都很小,且略有不同。气象因子与杉木、马尾松、四川山矾的树干液流多元回归方程决定系数分别为0.873、0.873、0.903。   相似文献   

6.
油松边材液流时空变化及其影响因子研究   总被引:48,自引:8,他引:48  
2000~2001年,利用热扩散式边材液流探针及微型自动气象站对北京林业大学西山实习林场低山阴坡45年生人工油松林单木边材液流速率进行了连续观测.持续的春季干旱导致油松边材液流速率时空变化特征发生很大变化.油松边材液流速率日变化呈现"早晨启动并迅速上升-中午前后出现峰值-峰值后缓慢下降-夜间进入低谷"典型的液流波形特征.树干上位液流波峰值明显大于下位,且峰值和低谷出现时间较早,但二者周期相同.随着时间推移和春季干旱胁迫的加剧,边材液流启动和峰值出现时间提前至17:50和6:00, 峰值进一步减小.灌水后树干液流启动时间和峰值出现时间明显提前,树干边材液流速率显著提高,连续两日树干上位液流峰平均值较灌水前提高40.1%,树干下位液流速率提高95.1%.油松边材液流速率与林内太阳辐射、空气温湿度、土壤温度、风速等环境因子密切相关,其多元线性回归模型达到极显著水平.  相似文献   

7.
应用热扩散式边材液流计,研究了天目山柳杉Cryptomeria fortunei树干液流速率时空变化、蒸腾耗水量及其与环境因子的关系,揭示了柳杉水分生理的内在机制。结果表明:柳杉树干液流速率的日变化呈单峰曲线.春季于6:20左右启动,12:30左右达到峰值,18:50左右开始迅速下降。夏季于7:00左右启动,13:20左右达到峰值.19:40左右开始迅速下降。春季液流启动比夏季早,达到高峰和迅速下降时间均比夏季提前。春季液流峰值、日均液流速率和液流量均显著大于夏季,且胸径越大的柳杉液流速率越大:在柳杉不同方位上.春季柳杉南向液流速率最大,为平均值的187.3%,西向最小仅为平均值的15.4%。夏季东向液流速率最大,为平均值的226.2%.北向最小为平均值的33.1%。同一季节不同测点的液流速率目变化有明显差异.但具有较好的一致性.不同季节液流变化节律表现不同;在柳杉垂直高度上,柳杉春季日均液流速率大小排序为中位(61.71g.min-1)〉上位(48.36g.min-1)〉下位(35.10g·min-1),夏季则为上位(20.65g·min-1)〉下位(14.81g·min-1)〉中位(10.43g·min-1),不同高度的树干液流速率差异明显,且上位液流的波动节律明显早于中位和下位.上位液流峰值出现的时间比下位要早。图5表3参30  相似文献   

8.
在宁夏六盘山北侧半干旱区的叠叠沟小流域,采用热扩散探针法在2011年生长季监测了华北落叶松(Larix principisrupprechtii)人工林的树干液流速率,分析了夜间树干液流和补水量的变化特征及与气象、土壤水分等环境因子的关系.结果表明:树干液流速率日变化表现为典型的单峰宽峰曲线,且整个生长季均存在微弱的夜间液流,一般表现为逐渐减小,特别是在晴天,且晴天的变幅显著大于雨天.除生长季中期雨天夜间液流平均速率显著高于晴天,生长季初期及末期雨天与晴天的差异并不显著.生长季内,夜间树干补水总量为11.03 mm,占总蒸腾量的7.22%;5月份的树干补水量最大(4.19mm),其他月份的树干补水量明显减小,在0.9-1.7mm的范围波动.但不同月份间的补水贡献率存在明显差异,表现为生长季末期(9、10月)>初期(5月)>中期(6-8月).相关分析表明,日补水量与各气象因子关系不大,仅与降水量显著正相关(P<0.05),与土壤含水率、日间蒸腾量、日蒸腾总量极显著正相关(P<0.01).夜间补水的月蒸腾贡献率与月均土壤含水率、月均气温、月均日间蒸腾量、月总蒸腾量等显著相关(P<0.05);而夜间补水的日蒸腾贡献率与日最高气温、日均气温、日间蒸腾量、日均饱和水汽压差、日总蒸腾量、日均太阳辐射强度、日最低气温、日均空气相对湿度、日降水量、土壤含水率等极显著相关(P<0.01),经逐步回归分析建立了日补水量蒸腾贡献率与环境因子的多元线性模型.  相似文献   

9.
天目山柳杉树干液流动态及其与环境因子的关系   总被引:3,自引:0,他引:3  
以浙江临安天目山森林生态定位观测站160年生柳杉古树为研究对象,于2007年12月—2008年11月,采用热扩散技术对柳杉树干液流进行连续监测,同步测定相关环境因子,研究了树干液流速率的日变化、季节变化及其与各环境因子的关系。结果表明:晴天和阴天,柳杉树干液流速率日变化均呈现为单峰曲线,最大值一般出现在13:30—15:00,而雨天则无明显的日变化规律;冬、春、夏、秋季柳杉日液流量分别为(44.92±3.76)kg/d、(62.86±3.86)kg/d、(56.59±3.85)kg/d、(53.47±3.55)kg/d;在不同月份,柳杉月液流量存在差异,1月份最小为1 064.30 kg,5月份最大为2 122.62 kg,全年柳杉树干液流总量为19 853.19 kg。回归分析表明,树干液流与环境因子的关系随不同的研究尺度而不同,影响瞬时液流速率的环境因子主要是空气温度和10 cm深处的土壤温度,影响日液流量的环境因子主要是光合有效辐射,影响月液流量的环境因子主要为空气温度和光合有效辐射。  相似文献   

10.
大兴安岭北部兴安落叶松树干液流规律及影响因子分析   总被引:5,自引:2,他引:3  
利用Granier 热扩散植物液流技术(TDP),于2012 年5—9 月连续对大兴安岭北部兴安落叶松蒸腾进行测定, 结合同步观测的环境因子,分析兴安落叶松树干液流规律及其与环境因子的关系。结果表明:1) 兴安落叶松蒸腾速率具有明显的昼夜变化规律,晴天和阴天均为单峰曲线,雨天为双峰曲线,且晴天和阴天的蒸腾速率高于雨天。夜间液流通量占整日液流通量的百分比为晴天(5.91%) 雨天(4.88%) 阴天(2.57%),在高温无雨情况下,液 流通量呈现随高温无雨日数的增加而逐渐降低的趋势。2) 6—8 月兴安落叶松蒸腾量占观测期总耗水量的80%, 液流速率日峰值较高,其中7 月最高达23.6 cm3 / (cm2·h),5 月次之,9 月最低为2.03 cm3 / (cm2·h)。3) 边材液流速率与环境因子存在良好的相关性,多元回归模型决定系数为0郾79;影响兴安落叶松树干液流的主要影响因子为蒸汽压亏缺和光合有效辐射。4) 生长季内兴安落叶松林蒸腾耗水量为566郾49 t/ hm2 ,即56郾65 mm,占同期降雨量 的12%。   相似文献   

11.
为了测算园林树木的蒸腾耗水量,应用热脉冲技术对阿克苏市3种常见绿化乔木(小叶白蜡、法国梧桐、桑树)进行树干液流的测定,并分析其日变化规律,同时运用自动气象站记录各气象参数数据,分析树干液流日变化与气象因子之间的相关性。结果显示:3种乔木树干液流速率之间有一定的差异,但其日变化过程几乎相似,均有明显的昼夜变化规律。白天的液流速率比夜间大,午间由于太阳辐射( Rs)过强出现午休现象,凌晨和晚上树干液流速率较低,夜间保持微弱的树干液流过程。小叶白蜡、法国梧桐、桑树等树干液流日变化都与太阳辐射、空气温度( Ta)、风速( Ws)呈显著正相关,而与空气湿度( H)呈显著负相关;逐步回归模型显示,影响小叶白蜡树干液流的主要气象因子是太阳辐射和空气湿度,模型拟合度为0.962,法国梧桐的是空气温度和空气湿度,拟合度为0.971,桑树的是空气温度和太阳辐射,拟合度为0.915。不同乔木的日累计液流量大小排序为小叶白蜡(57000±2400) mL﹥法国梧桐(55400±2100) mL﹥桑树(7600±1800)mL。  相似文献   

12.
陕西榆林地区旱柳和小叶杨夜间树干液流变化特征分析   总被引:3,自引:0,他引:3  
【目的】研究陕西榆林地区旱柳和小叶杨夜间树干液流的变化特征,为毛乌素沙地造林选种提供依据。【方法】利用热消散探针法测量了陕西榆林地区旱柳(2011-04-28-11-07)和小叶杨(2011-06-27-11-07)的夜间树干液流密度,利用自动气象站测量风速、温湿度、净辐射、降雨量和土壤水分等环境因子,计算空气水汽压亏缺,分析夜间树干液流密度与空气水汽压亏缺、风速和白天总蒸腾量的相关关系。【结果】旱柳和小叶杨树干液流密度均呈现明显的昼夜波动,且白天(07:00-19:00)高,晚上低。白天旱柳和杨树的平均树干液流密度分别为6.79和6.49g/(cm2.h),而夜间平均树干液流密度分别是0.82和0.63g/(cm2.h)。雨天夜间树干液流比晴天大,主要是因为强降雨后,土壤水分明显增多,40cm以上土层的土壤水分增加了10%左右。夜间树干液流密度与空气水汽压亏缺、风速和白天总蒸腾量呈极显著相关,旱柳夜间树干液流密度与三者的相关系数分别是0.62,0.42和0.44,小叶杨与三者的相关系数分别是0.35,0.29和0.50。旱柳和小叶杨夜间树干液流密度对整树总蒸腾量的平均贡献率分别为11.4%,7.1%。【结论】旱柳和小叶杨2个树种均存在明显的夜间树干液流,且雨天的夜间树干液流比晴天高。影响夜间树干液流的因素是空气水汽压亏缺、风速和白天总蒸腾量,树干液流是由夜间补水和蒸腾共同造成的。旱柳夜间树干液流对总蒸腾量的贡献率较高,且随季节变化大,而杨树夜间液流对总耗水量的贡献率小且稳定。  相似文献   

13.
为了给荔枝园的适时、适位和适量节水灌溉技术提供理论基础和技术指导,需要准确了解荔枝树蒸腾耗散过程,理解其对水分的吸收利用机制。利用热扩散式液流探针(TDP)对广州市桂味荔枝在3~5月的树干液流变化特征及其与主要气象因子间的关系进行了研究,结果表明:(1)荔枝树干液流速率呈现"昼高夜低"的变化特征。(2)在不同气象条件下,荔枝树干液流速率变化规律并不一致。晴天或多云天气下,荔枝树干液流速率的变化为单峰曲线;阴雨天气下荔枝树干液流速率的变化大多为多峰曲线,且晴天或多云时的液流速率大于阴雨天的液流速率。(3)不同月份树干液流速率变化存在差异,3月份荔枝树干平均液流速率显著低于4月和5月,4月份荔枝树干平均液流速率峰值出现时间比5月早。(4)荔枝树干液流速率与气象因子之间存在良好的相关性。树干液流与太阳光照度和空气温度呈正相关关系,与空气相对湿度呈负相关关系。  相似文献   

14.
为了正确认识桉树的耗水规律,利用热扩散探针法对2~3年生尾巨桉树干液流进行连续监测,分析其动态特征,并利用自动气象站同步测定林分气象条件,分析各气象因子与液流的关系。结果表明:2~3年生尾巨桉树干液流白天变化幅度较大,呈单峰曲线,占全天液流量的85%以上,变化特征与4年生尾巨桉相似,日平均树干液流密度为5.06 m L·h~(-1)·cm-2较4~6年生尾巨桉日平均液流密度大,夜间液流曲线平坦且较弱,夜晚平均树干液流密度为1.79 m L·h~(-1)·cm-2是4年生的3.8倍。不同月份间晴天的树干液流特征存在较大差异。不同天气条件下,晴天的液流启动时间最早(7:00),达到峰值所需时间最短(4.5 h),且液流峰值最大(18.47 m L·h~(-1)·cm-2),持续时间最长,日液流量也最大;其次是阴天,最后为雨天。2~3年生尾巨桉树干液流密度与大气温度、风速、太阳辐射、光合有效辐射以及水汽压亏缺呈极显著正相关(P0.01),与空气湿度呈极显著负相关(P0.01),相关系数分别为0.468、0.127、0.903、0.909、0.778、-0.626,这与4年生尾巨桉影响因子略有不同;日耗水量与大气温度、太阳辐射、光合有效辐射和水汽压亏缺呈极显著正相关(P0.01),与空气湿度呈显著负相关(P0.05),相关系数分别为0.489、0.489、0.523、0.408、-0.184。  相似文献   

15.
应用热扩散式树干茎流计(TDP)于2012年7月1日至7月25日,在克拉玛依地区农业开发区对银白杨(Populus alba L.×P.talassica)人工林树干液流速率进行了连续测定,并对气象、土壤水分等指标进行了同步测定。结果表明:7月份的晴天银白杨树干液流速率日变化呈单峰型,阴天呈多峰型,在测量时期液流速率日平均值为0.6059 L/h;银白杨树干单位边材面积的液流速率与太阳总辐射、大气温度、水汽压差呈极显著正相关关系,与相对湿度呈负相关关系。其相关系数绝对值顺序为太阳总辐射>大气温度>水汽压差>相对湿度>风速;银白杨边材面积与胸径之间存在着显著的线性相关关系,相关系数为0.834,单位边材面积的液流速率随树干胸径的增大而减小。  相似文献   

16.
2013年4月至10月,采用热扩散法测定了塔里木河下游阿拉干地区胡杨的树干液流,分析了树干液流与气象因子的关系。研究表明,在极端干旱的塔里木河下游地区,胡杨的树干液流呈单峰曲线型,有明显的昼夜变化规律,树干液流随气象因子变化而波动;胸径为52.06cm胡杨的日均液流速率达15.14L/h;选择典型的晴天7月20日,对胸径32.58,29.13,20.23cm胡杨的液流速率进行了监测,平均值分别为15.35,12.44,4.10L/h,胡杨液流速率和胸径呈正相关关系。同时,胡杨树干液流速率随地下水位的降低而减少。光合有效辐射、风速、气温和相对湿度是影响胡杨树干液流的主要气象因子,光合有效辐射是影响胡杨树干液流的最主要气象因子,可以用光合有效辐射和风速的线性回归模型预测树干液流的变化。胡杨具有极强的环境适应性,随着气温的升高,胡杨加强蒸腾作用,从而降低温度来维持正常的生命活动,胡杨通过大量的水分消耗来抵御高温干燥的沙漠环境。  相似文献   

17.
为探究沙棘的蒸腾耗水规律及其对环境因子的响应,以内蒙古自治区鄂尔多斯市砒砂岩区典型造林树种沙棘为研究对象,采用SF60茎流计于2016年8月9—15日对沙棘(Hippophae rhamnoides Linn.)蒸腾速率进行监测,并同时结合HOBO小型气象站监测相关环境因子,对沙棘液流蒸腾速率及其与周围环境因子的连日变化的相关性进行深入研究。结果表明:1)沙棘的液流蒸腾速率表现为明显的昼夜变化规律,白天的蒸腾速率远高于夜间,夜晚有微弱的稳定的树干液流存在,呈双峰曲线趋势;2)沙棘树种液流蒸腾速率与环境因子的连日变化趋势基本相同,并且昼夜变化规律具有明显的波动性,且存在时滞效应,液流蒸腾速率与环境因子有密切的联系,同太阳辐射、空气温度、风速、10cm地温、水汽压亏缺环境因子呈正相关,而与空气相对湿度呈负相关关系;3)沙棘液流蒸腾速率与各环境因子回归方程为Vs=-0.007-0.004V-0.025T_b+0.679VPD+0.155Rs+0.011RH+0.207T_a,其中Vs为液流蒸腾速率,kg/h;V为风速,m/s;T_a为空气温度,℃;VPD为水汽压亏缺,kPa;RH为空气相对湿度,%;Rs为太阳辐射,W/m~2;T_b为10cm土层地温,℃,决定系数R~2为0.971。  相似文献   

18.
为了正确认识桉树的耗水规律,利用热扩散探针法对2~3年生尾巨桉树干液流进行连续监测,分析其动态特征,并利用自动气象站同步测定林分气象条件,分析各气象因子与液流的关系。结果表明:2~3年生尾巨桉树干液流白天变化幅度较大,呈单峰曲线,占全天液流量的85%以上,变化特征与4年生尾巨桉相似,日平均树干液流密度为5.06 mL· h-1· cm-2较4~6年生尾巨桉日平均液流密度大,夜间液流曲线平坦且较弱,夜晚平均树干液流密度为1.79 mL· h-1· cm-2是4年生的3.8倍。不同月份间晴天的树干液流特征存在较大差异。不同天气条件下,晴天的液流启动时间最早(7:00),达到峰值所需时间最短(4.5 h),且液流峰值最大(18.47 mL· h-1· cm-2),持续时间最长,日液流量也最大;其次是阴天,最后为雨天。2~3年生尾巨桉树干液流密度与大气温度、风速、太阳辐射、光合有效辐射以及水汽压亏缺呈极显著正相关(P<0.01),与空气湿度呈极显著负相关(P<0.01),相关系数分别为0.468、0.127、0.903、0.909、0.778、-0.626,这与4年生尾巨桉影响因子略有不同;日耗水量与大气温度、太阳辐射、光合有效辐射和水汽压亏缺呈极显著正相关(P<0.01),与空气湿度呈显著负相关(P<0.05),相关系数分别为0.489、0.489、0.523、0.408、-0.184。  相似文献   

19.
晋西黄土区苹果树液流特征及其与环境因子的关系   总被引:1,自引:0,他引:1  
为研究晋西黄土残塬沟壑区苹果园的水分利用特征,对黄土残塬沟壑区苹果园主要生长季(4-9月)苹果的树干液流速率进行测定,并与环境要素进行对比分析。结果表明:(1)苹果树干液流速率值的季节动态表现为6月 > 5月 > 9月 > 7月 > 8月 >4月,4-9月典型晴天的液流日变化均表现为单峰曲线,液流速率的峰值依次为1496、1736、1607、1537、1474、1674 cm3·cm-2·h-1。(2)液流速率在白天和夜间表现出较大的差别,有较明显的昼夜节律性。(3)苹果树干液流与太阳辐射(PY)、净辐射(Rn)、大气水分亏缺(VPD)均存在正相关关系,与大气相对湿度(RH)存在负相关关系,液流速率与气象因子PY、Rn、VPD、RH的相关系数分别为0789、0783、0619和-0482。研究结果对于加强果园的经营管理水平,提高苹果果品与产量具有重要意义。  相似文献   

20.
‘中林46杨’林分耗水特性及其与环境因子的关系   总被引:6,自引:0,他引:6  
应用热扩散原理,采用径流计和自动气象站同步观测树干液流和林内环境因子,分析‘中林46杨’蒸腾耗水规律及其与环境因子关系,旨在为该地区更精确地估计生态用水定额提供科学依据,而且也可为该区域杨树胶合板用材林的造林、营林及流域综合管理提供理论基础。结果表明:在整个生长季的晴天,‘中林46杨’树干液流的日变化呈现明显的单峰宽峰曲线,在4、6~10月的液流速率分别为6.21、12.96、11.07、8.18、5.86和2.98 cm/h;‘中林46杨’在夜间有微弱的上升液流,这可能与根压有关;在生长季树干液流速率与环境因子回归分析结果表明,树干液流受环境因子综合影响,影响大小依次是太阳辐射、空气温度、相对空气湿度、林地10 cm土壤温度和风速,建立的回归方程达到极显著水平。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号