首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 841 毫秒
1.
We used a scanning tunneling microscope to probe the interactions between spins in individual atomic-scale magnetic structures. Linear chains of 1 to 10 manganese atoms were assembled one atom at a time on a thin insulating layer, and the spin excitation spectra of these structures were measured with inelastic electron tunneling spectroscopy. We observed excitations of the coupled atomic spins that can change both the total spin and its orientation. Comparison with a model spin-interaction Hamiltonian yielded the collective spin configuration and the strength of the coupling between the atomic spins.  相似文献   

2.
Magnetic anisotropy allows magnets to maintain their direction of magnetization over time. Using a scanning tunneling microscope to observe spin excitations, we determined the orientation and strength of the anisotropies of individual iron and manganese atoms on a thin layer of copper nitride. The relative intensities of the inelastic tunneling processes are consistent with dipolar interactions, as seen for inelastic neutron scattering. First-principles calculations indicate that the magnetic atoms become incorporated into a polar covalent surface molecular network in the copper nitride. These structures, which provide atom-by-atom accessibility via local probes, have the potential for engineering anisotropies large enough to produce stable magnetization at low temperatures for a single atomic spin.  相似文献   

3.
Song CL  Wang YL  Cheng P  Jiang YP  Li W  Zhang T  Li Z  He K  Wang L  Jia JF  Hung HH  Wu C  Ma X  Chen X  Xue QK 《Science (New York, N.Y.)》2011,332(6036):1410-1413
We investigated the electron-pairing mechanism in an iron-based superconductor, iron selenide (FeSe), using scanning tunneling microscopy and spectroscopy. Tunneling conductance spectra of stoichiometric FeSe crystalline films in their superconducting state revealed evidence for a gap function with nodal lines. Electron pairing with twofold symmetry was demonstrated by direct imaging of quasiparticle excitations in the vicinity of magnetic vortex cores, Fe adatoms, and Se vacancies. The twofold pairing symmetry was further supported by the observation of striped electronic nanostructures in the slightly Se-doped samples. The anisotropy can be explained in terms of the orbital-dependent reconstruction of electronic structure in FeSe.  相似文献   

4.
Identifying the mechanism of superconductivity in the high-temperature cuprate superconductors is one of the major outstanding problems in physics. We report local measurements of the onset of superconducting pairing in the high-transition temperature (Tc) superconductor Bi2Sr2CaCu2O8+delta using a lattice-tracking spectroscopy technique with a scanning tunneling microscope. We can determine the temperature dependence of the pairing energy gaps, the electronic excitations in the absence of pairing, and the effect of the local coupling of electrons to bosonic excitations. Our measurements reveal that the strength of pairing is determined by the unusual electronic excitations of the normal state, suggesting that strong electron-electron interactions rather than low-energy (<0.1 volts) electron-boson interactions are responsible for superconductivity in the cuprates.  相似文献   

5.
We demonstrate the ability to measure the energy required to flip the spin of single adsorbed atoms. A low-temperature, high-magnetic field scanning tunneling microscope was used to measure the spin excitation spectra of individual manganese atoms adsorbed on Al2O3 islands on a NiAl surface. We find pronounced variations of the spin-flip spectra for manganese atoms in different local environments.  相似文献   

6.
The Kondo effect arises from the quantum mechanical interplay between the electrons of a host metal and a magnetic impurity and is predicted to result in local charge and spin variations around the magnetic impurity. A cryogenic scanning tunneling microscope was used to spatially resolve the electronic properties of individual magnetic atoms displaying the Kondo effect. Spectroscopic measurements performed on individual cobalt atoms on the surface of gold show an energetically narrow feature that is identified as the Kondo resonance-the predicted response of a Kondo impurity. Unexpected structure in the Kondo resonance is shown to arise from quantum mechanical interference between the d orbital and conduction electron channels for an electron tunneling into a magnetic atom in a metallic host.  相似文献   

7.
We observed coherent proton tunneling in the cyclic network of four hydrogen bonds in calix[4]arene. The tunneling frequency of 35 megahertz was revealed by a peak in the magnetic field dependence of the proton spin-lattice relaxation rate measured with field-cycling nuclear magnetic resonance in the solid state at temperatures below 80 kelvin. The amplitude of the coherent tunneling peak grows with temperature according to a Boltzmann law with energy D/kB = (125 +/- 10) kelvin (where kB is Boltzmann's constant). The tunneling peak can be interpreted in the context of level crossings in the region where the tunneling frequency matches the proton Larmor frequency. The tunneling spectrum reveals fine structure that we attribute to coupling between the hydrogen bonds in the network. The characteristics of the tunneling peak are interpreted in the context of the potential energy surface experienced by the hydrogen atoms in the network.  相似文献   

8.
The addition of a small number of lead atoms to a germanium(111) surface reduces the energy barrier for activated processes, and with a tunneling microscope it is possible to observe concerted atomic motions and metastable structures on this surface near room temperature. The formation and annihilation of these metastable structural surface excitations is associated with the shift in position of large numbers of germanium surface atoms along a specific row direction like beads on an abacus. The effect provides a mechanism for understanding the transport of atoms on a semiconductor surface.  相似文献   

9.
BC Stipe  MA Rezaei  W Ho 《Science (New York, N.Y.)》1998,280(5370):1732-1735
Vibrational spectra for a single molecule adsorbed on a solid surface have been obtained with a scanning tunneling microscope (STM). Inelastic electron tunneling spectra for an isolated acetylene (C2H2) molecule adsorbed on the copper (100) surface showed an increase in the tunneling conductance at 358 millivolts, resulting from excitation of the C-H stretch mode. An isotopic shift to 266 millivolts was observed for deuterated acetylene (C2D2). Vibrational microscopy from spatial imaging of the inelastic tunneling channels yielded additional data to further distinguish and characterize the two isotopes. Single-molecule vibrational analysis should lead to better understanding and control of surface chemistry at the atomic level.  相似文献   

10.
The miniaturization of magnetic devices toward the limit of single atoms calls for appropriate tools to study their magnetic properties. We demonstrate the ability to measure magnetization curves of individual magnetic atoms adsorbed on a nonmagnetic metallic substrate with use of a scanning tunneling microscope with a spin-polarized tip. We can map out low-energy magnetic interactions on the atomic scale as evidenced by the oscillating indirect exchange between a Co adatom and a nanowire on Pt(111). These results are important for the understanding of variations that are found in the magnetic properties of apparently identical adatoms because of different local environments.  相似文献   

11.
Khanna SK  Lambe J 《Science (New York, N.Y.)》1983,220(4604):1345-1351
Inelastic electron tunneling spectroscopy is a useful technique for the study of vibrational modes of molecules adsorbed on the surface of oxide layers in a metal-insulator-metal tunnel junction. The technique involves studying the effects of adsorbed molecules on the tunneling spectrum of such junctions. The data give useful information about the structure, bonding, and orientation of adsorbed molecules. One of the major advantages of inelastic electron tunneling spectroscopy is its sensitivity. It is capable of detecting on the order of 10(10) molecules (a fraction of a monolayer) on a 1-square-millimeter junction. It has been successfully used in studies of catalysis, biology, trace impurity detection, and electronic excitations. Because of its high sensitivity, this technique shows great promise in the area of solid-state electronic chemical sensing.  相似文献   

12.
Direct evidence for the effect of local strain at a surface on the bonding strength for adsorbates is presented. Scanning tunneling microscopy revealed that adsorbed oxygen atoms on Ru(0001) surfaces are located preferentially on top of nanometer-size protrusions above subsurface argon bubbles, where tensile strain prevails, and are depleted around their rim in regions of compression, relative to the flat surface. Such effects can be considered as the reverse of adsorbate-induced strain, and their direct local demonstration can be used to test theoretical predictions.  相似文献   

13.
Qiu XH  Nazin GV  Ho W 《Science (New York, N.Y.)》2003,299(5606):542-546
Tunneling electrons from a scanning tunneling microscope (STM) were used to excite photon emission from individual porphyrin molecules adsorbed on an ultrathin alumina film grown on a NiAl(110) surface. Vibrational features were observed in the light-emission spectra that depended sensitively on the different molecular conformations and corresponding electronic states obtained by scanning tunneling spectroscopy. The high spatial resolution of the STM enabled the demonstration of variations in light-emission spectra from different parts of the molecule. These experiments realize the feasibility of fluorescence spectroscopy with the STM and enable the integration of optical spectroscopy with a nanoprobe for the investigation of single molecules.  相似文献   

14.
A multi- high-frequency electron paramagnetic resonance method is used to probe the magnetic excitations of a dimer of single-molecule magnets. The measured spectra display well-resolved quantum transitions involving coherent superposition states of both molecules. The behavior may be understood in terms of an isotropic superexchange coupling between pairs of single-molecule magnets, in analogy with several recently proposed quantum devices based on artificially fabricated quantum dots or clusters. These findings highlight the potential utility of supramolecular chemistry in the design of future quantum devices based on molecular nanomagnets.  相似文献   

15.
Single-walled carbon nanotubes are ideal systems for investigating fundamental properties and applications of one-dimensional electronic systems. The interaction of magnetic impurities with electrons confined in one dimension has been studied by spatially resolving the local electronic density of states of small cobalt clusters on metallic single-walled nanotubes with a low-temperature scanning tunneling microscope. Spectroscopic measurements performed on and near these clusters exhibit a narrow peak near the Fermi level that has been identified as a Kondo resonance. Using the scanning tunneling microscope to fabricate ultrasmall magnetic nanostructures consisting of small cobalt clusters on short nanotube pieces, spectroscopic studies of this quantum box structure exhibited features characteristic of the bulk Kondo resonance, but also new features due to finite size.  相似文献   

16.
A two-dimensional antiferromagnetic structure within a pseudomorphic monolayer film of chemically identical manganese atoms on tungsten(110) was observed with atomic resolution by spin-polarized scanning tunneling microscopy at 16 kelvin. A magnetic superstructure changes the translational symmetry of the surface lattice with respect to the chemical unit cell. It is shown, with the aid of first-principles calculations, that as a result of this, spin-polarized tunneling electrons give rise to an image corresponding to the magnetic superstructure and not to the chemical unit cell. These investigations demonstrate a powerful technique for the understanding of complicated magnetic configurations of nanomagnets and thin films engineered from ferromagnetic and antiferromagnetic materials used for magnetoelectronics.  相似文献   

17.
Quantum tunneling, the passage of a microscopic system from one state to another by way of a classically forbidden path, is theoretically possible in the macroscopic world. One can now make direct observations of such macroscopic quantum tunneling in very small magnetic structures. This is possible because of significant advances both in the ability to obtain magnetic systems of almost any desirable size, shape, and composition and in the development of superconducting instrumentation for the detection of extremely weak magnetic signals. As an example, measurements on magnetic horse spleen ferritin proteins with the predictions of quantum tunneling theory are discussed and shown.  相似文献   

18.
The topographic and magnetic surface structure of a natural single crystal of magnetite (Fe(3)0(4)), a common mineral, has been studied from the submicrometer scale down to the atomic scale with a scanning tunneling microscope having nonmagnetic tungsten as well as ferromagnetic iron probe tips. Several different (001) crystal planes were imaged to atomic resolution with both kinds of tips. A selective imaging of the octahedrally coordinated Fe B-sites in the Fe-O planes, and even a selective imaging of the different magnetic ions Fe(2+) and Fe(3+), has been achieved, demonstrating for the first time that magnetic imaging can be realized at the atomic level.  相似文献   

19.
Control of magnetism on the atomic scale is becoming essential as data storage devices are miniaturized. We show that antiferromagnetic nanostructures, composed of just a few Fe atoms on a surface, exhibit two magnetic states, the Néel states, that are stable for hours at low temperature. For the smallest structures, we observed transitions between Néel states due to quantum tunneling of magnetization. We sensed the magnetic states of the designed structures using spin-polarized tunneling and switched between them electrically with nanosecond speed. Tailoring the properties of neighboring antiferromagnetic nanostructures enables a low-temperature demonstration of dense nonvolatile storage of information.  相似文献   

20.
Recent experimental results are beginning to limit seriously the theories that can be considered to explain high-temperature superconductivity. The unmistakable observations of a Fermi surface, by several groups and methods, make it the focus of realistic theories of the metallic phases. Data from angle-resolved photoemission, positron annihilaton, and de Haas-van Alphen experiments are in agreement with band theory predictions, implying that the metallic phases cannot be pictured as doped insulators. The character of the low energy excitations ("quasiparticles"), which interact strongly with atomic motions, with magnetic fluctuations, and possibly with charge fluctuations, must be sorted out before the superconducting pairing mechanism can be given a microscopic basis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号