首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
利用春化基因Vrn-A1、Vrn-B1、Vrn-D1、Vrn-B3及光周期基因Ppd-A1、Ppd-B1和Ppd-D1的STS分子标记对选自江苏境内的114份小麦品种(系)进行检测,研究江苏小麦品种中春化和光周期基因的分布情况。结果表明:春化基因显性等位变异的分布频率依次为Vrn-D1a(57.9%)、Vrn-D1b(15.8%)、Vrn-A1b(5.3%)、Vrn-B1 (2.6%)和Vrn-B3 (0)。江苏淮南麦区中Vrn-D1a的分布频率最高(77.5%);江苏淮北麦区中Vrn-D1b的分布频率最高(38.2%)。江苏地区共存在6种春化基因等位变异组合:vrn-A1+vrn-B1+Vrn-D1a(56.1%)、vrn-A1+vrn-B1+vrn-D1 (21.1%)、vrn-A1+vrn-B1+Vrn-D1b(15.8%)、Vrn-A1b+vrn-B1+vrn-D1 (2.6%)、vrn-A1+Vrn-B1+vrn-D1 (2.6%)和Vrn-A1b+vrn-B1+Vrn-D1a(1.8%)。淮南麦区vrn-A1+vrn-B1+Vrn-D1a(75.0%)组合占主导地位;淮北麦区以vrn-A1+vrn-B1+vrn-D1 (50.0%)和vrn-A1+vrn-B1+Vrn-D1b(38.2%)组合为主。所有品种(系)均含有光周期敏感型基因Ppd-A1b和Ppd-B1b,有7个品种携带光周期敏感型基因Ppd-D1b,其余品种均携带光周期不敏感型基因Ppd-D1a,占93.9%。  相似文献   

2.
中国小麦地方品种春化基因的分布及其与冬春性的关系   总被引:4,自引:0,他引:4  
姜莹  黄林周  胡银岗 《中国农业科学》2010,43(13):2619-2632
【目的】了解春化作用相关基因在中国小麦地方品种中的分布特点及其与小麦冬春性的关系,促进小麦地方品种的合理利用。【方法】采用小麦春化作用相关基因Vrn-A1、Vrn-B1、Vrn-D1和Vrn-B3的STS分子标记,对其在中国小麦十大生态栽培区的153份地方品种中的分布进行检测,并分析其与冬春性的关系。【结果】(1)中国小麦地方品种中4个显性春化基因的分布频率依次为60.78%(Vrn-D1)、5.88%(Vrn-A1a)、5.23%(Vrn-B1)和0(Vrn-B3)。(2)Vrn-A1a和Vrn-B1在东北春麦区等春麦区地方品种中的分布频率较高,以东北春麦区最高,达50%和33.33%,在大部分冬麦区未检测到这2个显性突变。10个麦区地方品种均检测到Vrn-D1,在青藏春冬麦区地方品种分布频率最高(83.33%),也是在中国冬麦区小麦地方品种中检测到的主要春化基因类型。(3)中国十大麦区地方品种的春化基因型与其对春化作用的要求基本吻合,除中部和南方冬麦区地方品种基因型与文献记载的冬春性的一致性指数较低外,其它麦区的冬春性一致性指数较高。【结论】通过分子标记检测,明确了中国小麦地方品种的春化基因类型及其分布特征,分子检测与田间观察相结合能够更准确地反映品种的冬春性。  相似文献   

3.
为了明确本实验室创制的小麦新种质SN0594的光温反应特性及其利用价值,本研究以SN0594和不同春化习性的小麦品种为材料,在明确不同材料的春化基因和光周期基因组成特点的基础上,对其在不同环境条件进行生育期鉴定。结果表明,在Vrn-A1位点含有显性等位变异的多数小麦材料在人工气候室不经过低温春化且满足长日照的条件下都能够完成抽穗,其中小麦种质系SN0594在Vrn-A1位点含有显性等位变异基因Vrn-A1a,扬麦14和扬麦15含有显性等位变异基因Vrn-A1b,中国春等则含有显性等位变异基因Vrn-D1;不同环境鉴定结果表明,SN0594在人工气候室不经春化处理条件下,能够较早开花并完成生育周期,不同显性变异基因春性效应大小为Vrn-A1a Vrn-A1b Vrn-B1 Vrn-D1;田间鉴定结果表明,不同小麦材料在经过冬季低温春化后,其抽穗期与在人工气候室调查发生较大差异,其中SN0594和中国春抽穗较其他品种晚,证明除了春化基因以外,光周期Ppd-D1b等其他基因对小麦生育期影响也较大,需满足一定的长日照条件才能促使小麦抽穗开花。  相似文献   

4.
用STS标记检测矮秆基因Rht-B1b和Rht-D1b在中国小麦中的分布   总被引:8,自引:1,他引:8  
【目的】明确矮秆基因在中国小麦中的分布,有助于改良小麦株高和提高产量潜力。【方法】选用中国主要麦区品种(系)239份,用STS标记检测矮秆基因Rht-B1b (Rht1)和Rht-D1b (Rht2)的分布规律,验证其PCR标记在分子标记辅助育种中的可用性。【结果】(1)Rht-B1b和Rht-D1b特异性STS标记可以准确检测小麦品种的Rht-B1b和Rht-D1b矮秆基因。(2)Rht-B1b基因在全国的平均分布频率为24.3%,新疆冬春麦区高达62.5%,长江中下游冬麦区为42.3%,黄淮冬麦区、北部冬麦区和西北春麦区分别为28%、25.8%和25%,北部春麦区和西南冬麦区分别为9.1%和 8.3%,东北春麦区供试材料未携带Rht-B1b基因。(3)Rht-D1b基因在全国的平均分布频率为46.9%,北部春麦区和黄淮冬麦区分别为72.7%和69%,西南冬麦区、西北春麦区和北部冬麦区分别为38.9%、37.5%和35.5%,长江中下游冬麦区和新疆冬春麦区分别为23.1%和12.5%,东北春麦区供试材料未携带Rht-D1b基因。【结论】分子检测结果和系谱分析表明,中国小麦品种(系)携带的Rht-B1b矮秆基因来自St2422/464和农林10,Rht-D1b矮秆基因来自农林10号、水源86、辉县红和蚰包麦。  相似文献   

5.
【目的】明确主要春化基因在我国小麦主产区的组成和分布特点。【方法】利用序列标志位点(STS)分子标记对我国6个小麦主产区276份小麦品种主要春化基因VRN-A1、VRN-B1、VRN-D1和VRN-B3进行检测,分析其春化基因的等位变异组成特点及其在不同麦区的分布特征。【结果】在276份小麦品种中,4个春化基因位点共存在9种等位变异组合类型,其中vrn-A1/vrn-B1/VRN-D1/vrn-B3的分布比例最高(33.7%)。北部冬麦区春化基因位点均为隐性等位变异组成;长江中下游冬麦区、西南冬麦区和黄淮冬麦区以vrn-A1/vrn-B1/VRN-D1/vrn-B3组合类型为主,所占比例分别为84.3%,57.1%和21.2%,随纬度的增加而减少;西北春麦区和东北春麦区以VRNA1和VRN-B1两位点显性等位变异的组合为主,所占比例随纬度的增大而增加。【结论】初步明确了中国各主产区小麦品种主要春化基因的组成类型及其分布规律。  相似文献   

6.
利用分子标记检测矮秆基因在我国主要麦区的分布,有助于提高小麦产量和改良株高。本研究利用小麦矮秆基因Rht-B1b、Rht-D1b的4对特异性分子标记,BF与MR1、BF与WR1、DF与MR2、DF2与WR2,以及微卫星Xgwm261标记对我国小麦主产区小麦主栽品种中矮秆基因Rht-B1b、Rht-D1b和Rht8的分布情况进行了分子标记鉴定。结果表明:1)在鉴定的129个品种中,58份含有Rht-B1b基因,占45.0%;24份含有Rht-D1b基因,占18.6%;73份含有Rht8基因,占56.6%;35份品种含有2个矮秆基因Rht-B1b和Rht8,占27.1%;16份品种含有Rht-D1b和Rht8基因,占12.4%。本研究未检测到同时含有Rht-B1b、Rht-D1b和Rht8这3个矮秆基因的品种,以及同时含有Rht-B1b和Rht-D1b的品种;2)3个矮秆基因Rht-B1b、Rht-D1b和Rht8在各个生态区育成品种中的分布频率也不同。矮秆基因Rht-B1b和Rht8在黄淮冬麦区的分布频率较高,分别为55.4%和71.1%;Rht-D1b基因在西南冬麦区的分布频率较高,为37.5%;矮秆基因Rht8在不同的麦区都有广泛的分布,在不同的生态区具有广泛的适应性。  相似文献   

7.
黄淮麦区部分小麦种质资源中矮秆基因的分布   总被引:1,自引:0,他引:1  
选用254份黄淮麦区小麦品种(系),利用BFMR1,DFMR2和微卫星xgwm261标记检测了矮秆基因Rht-B1b,Rht-D1b和Rht8的分布.结果表明,在254份材料中,含有Rht-B1b,Rht-D1b和Rht8基因的材料分别有84,171和178份,平均株高分别为80.7,78.5和80.7 cm.只含有Rht-B1b,Rht-D1b和Rht8基因的材料分别有15,36和31份,平均株高分别为83.8,80.1和86.2 cm.只含Rht-B1b和Rht-D1b基因有16份,平均株高为73.7cm,Rht-B1b和Rht-D1b基因具有累加效应,两个基因同时存在时株高降低幅度会更大.只含Rht-B1b和Rht8基因的有94份,只含Rht-D1b和Rht8基因的有28份,同时含有Rht-B1b,Rht-D1b和Rht8基因的有25份,同时不含这3个矮秆基因的有9份,说明黄淮麦区小麦品种(系)中绝大部分品种均含有不同种类的矮秆基因.微卫星WMS 261及基于PCR的2个STS标记可以分别用于对品种(系)中Rht8,Rht-B1b和Rht-D1b基因型的鉴定以及育种世代该基因型的筛选.  相似文献   

8.
利用十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)和分子标记技术,对黄淮麦区47份小麦育种材料高分子量麦谷蛋白亚基(HMW-GS)进行鉴定和分析。SDS-PAGE结果表明,在所检测的小麦品种(系)中,Glu-A1位点编码的HMW-GS有3种类型,分别是Null、1和2*,其中1出现频率较高(80.9%),Null次之(17.0%),2*仅有1份;Glu-B1位点有7+8、7+9、17+18共3种类型,其中7+8和7+9出现频率较高,分别为48.9%和44.7%;Glu-D1位点有2+12、5+10、4+12共3种类型,其中5+10出现频率最高(61.7%)。利用Dx5、Ax2*、By8、By9和By17亚基特异性分子标记检测结果表明,参试材料中含各标记亚基的材料依次为29(61.7%)、1(2.1%)、23(48.9%)、21(44.7%)、3(6.4%)份;在所检测的小麦品种(系)中含最优亚基组合Dx5、By8的材料共13份,频率为27.7%。分子标记检测结果与SDS-PAGE检测结果相吻合,表明亚基特异性分子标记可用来快速检测小麦材料中的HMW-GS基因。  相似文献   

9.
为明确黄淮麦区小麦品种(系)的遗传基础,采用SRAP(Sequence-related Amplified Polymorphism,相关序列多态性扩增)分子标记检测70份黄淮麦区小麦品种(系)的遗传多样性。结果表明,SRAP引物可产生清晰条带,47对引物组合检测出1 144个等位变异,其中具有多态性314个,多态性条带比列为27.5%,每对引物平均检测出6.68个多态性等位变异。SRAP引物的多态信息含量(PIC)为0.144 5~0.686 3,平均值为0.471 7。黄淮麦区中,河南省小麦品种(系)的多样性指数最高(0.584),与其他各省遗传距离最近(0.145),基因交流最多。江苏省小麦品种(系)多样性指数最低(0.366),与其他各省遗传距离最远(0.250),基因交流最少。聚类分析表明,遗传相似系数为0.334~0.801,平均值为0.596。供试材料可分为3大类5个亚类,群体遗传结构分析与聚类结果基本一致,SRAP分子标记可用于小麦遗传多样性检测和群体结构的判断和划分,可高效揭示种质资源的遗传背景和亲缘关系。  相似文献   

10.
4个春化基因在山东省小麦品种(系)中的分布研究   总被引:2,自引:1,他引:1  
利用Vrn—A1、Vrn—B1、Vrn—D1和Vrn—B34个春化基因,对105份山东省2006~2007年度待审定品种和32份审定品种进行分子标记检测,结果表明,供试材料在A1、B1和B3位点均检测为隐性基因;在D1位点,13份材料检测为显性基因,其余材料检测为隐性基因。4个基因的分布频率与当地小麦的春化习性和生育期特点相吻合,这也是生态环境适应和育种选择压力的综合结果。  相似文献   

11.
黄淮麦区小麦品种PPO活性基因等位变异的检测及分布   总被引:1,自引:0,他引:1  
以黄淮麦区254份小麦品种资源为材料,利用PPO16、PPO18和PPO29等3个PPO活性相关的分子标记,对供试材料中PPO-2A和PPO-2 D位点的等位变异进行检测。结果表明:在PPO-2A位点,等位变异PPO-A1a(高PPO活性)和PPO-A1b(低PPO活性)的比例分别为59.1%和40.9%;在PPO-2 D位点,等位变异PPO-D1a(低PPO活性)和PPO-D1b(高PPO活性)的比例分别为56.7%和43.3%。4种等位变异组合类型PPO-A1a/PPO-D1a(中等PPO活性)、PPO-A1a/PPO-D1b(最高PPO活性)、PPO-A1b/PPO-D1a(最低PPO活性)和PPO-A1b/PPO-D1b(中等PPO活性)的分布频率依次为33.8%、24.8%、22.8%和18.6%。黄淮麦区不同地区小麦品种中PPO活性等位变异组合类型的分布频率不同。低PPO活性组合PPO-A1b/PPO-D1a在河南地区小麦品种的分布频率最低,该地区小麦品质改良应加强对低PPO活性的选育。  相似文献   

12.
黄淮麦区126个小麦品种(系)抗条锈病基因的分子检测   总被引:10,自引:4,他引:6  
【目的】鉴定黄淮麦区近年小麦主栽品种和后备品种对当前条锈菌流行小种的抗性水平;了解抗条锈病基因在该区小麦品种中分布状况,为小麦安全生产与品种合理布局提供依据。【方法】以中国小麦条锈菌当前流行小种条中32(CYR32)和水源致病类型14对黄淮麦区126个小麦品种(系)进行苗期抗性鉴定;分别用Yr9(1B/1R)、Yr5、Yr10、Yr15和Yr26基因有效的分子标记检测其在参试品种(系)中的分布状况。【结果】在126个供试材料中,对CY32和水源致病类型14均表现免疫或近免疫的品种(系)只有11个,占8.73%;携带Yr9基因的小麦-黑麦1B/1R 易位系的频率仍高达41.6%;分子检测表明,14份抗CY32的小麦品种(系)中,6份可能含有Yr5基因,4份可能含有Yr10基因,4份可能含有Yr15基因,3份可能含有Yr26基因;周麦17、0020-332和N19等3份材料未检测到上述Yr基因(分子标记)的存在,其对CYR32的抗性可能是受其它未知基因控制。【结论】黄淮麦区小麦品种(系),特别是主栽品种对当前条锈菌流行小种的抗性水平较低,对新小种具有良好抗性的Yr5、Yr10、Yr15和Yr26基因在小麦品种(系)中的分布频率很低,亟待将这些抗条锈病基因转育至小麦品种中。  相似文献   

13.
普通小麦籽粒过氧化物酶活性全基因组关联分析   总被引:1,自引:0,他引:1  
【目的】小麦籽粒过氧化物酶(peroxidase,POD)活性对面制品加工品质有重要影响,发掘控制籽粒POD活性重要位点,并筛选其候选基因,为小麦品质的改良奠定基础。【方法】以151份黄淮冬麦区和82份北部冬麦区品种(系)为材料,分别利用来自于小麦90 K SNP芯片的18 189和18 417个高质量SNP标记,对POD活性进行全基因组关联分析(genome-wide association study,GWAS)。【结果】供试材料中POD活性表现出广泛的表型变异和多样性,黄淮麦区材料的POD活性变异系数为15.4%—21.8%,遗传力为0.79,北部麦区材料的POD活性变异系数为15.0%—19.9%,遗传力为0.82。相关性分析表明,不同环境之间材料的POD活性表现出显著的相关性,黄淮麦区相关系数为0.46—0.89(P0.0001),北部麦区相关系数为0.50—0.87(P0.0001)。多态性信息含量PIC值为0.09—0.38,最小等位基因频率MAF值为0.05—0.5。群体结构分析表明,黄淮麦区与北部麦区2个自然群体结构简单,均可分为3个亚群。GWAS分析结果表明,在黄淮冬麦区材料中共检测到20个与POD活性显著关联的位点(P0.001),分布在1A、2A、2B、2D、3A、3B、3D、4A、4B、5A、5B、6A、6D和7A染色体上,单个位点可解释7.8%—13.3%的表型变异。在北部冬麦区材料中共检测到20个与POD活性显著关联(P0.001)的位点,分布在1A、1B、1D、2A、2B、2D、3A、3B、4B、6A、6B、7A、7B和7D染色体上,单个位点可解释14.4%—23.2%的表型变异。加性回归分析表明,随着优异等位基因数量的增多,小麦籽粒POD活性越高。在发现的所有POD活性相关位点中,2个位点在黄淮麦区和北部麦区材料中均能检测到且稳定遗传,可将其转换为STARP(semi-thermal asymmetric reverse PCR)或CAPS标记,以应用于分子标记辅助育种。获得3个与POD活性有关的候选基因,分别编码磷酸甘露糖变位酶(PMM-D1)、辣根过氧化物酶(PER40)和烷基氢过氧化物还原酶(F775_31640)。【结论】黄淮麦区与北部冬麦区2个自然群体遗传多样性丰富,群体结构简单,适用于全基因组关联分析。在2个自然群体中分别发现20个POD活性位点,并在显著相关的位点区域内筛选到3个候选基因。含有越多优异等位变异的材料其POD活性越高。  相似文献   

14.
【目的】研究耐阴小麦品种及种质资源遗传特性,对南疆主栽品种、部分新育成品种、国内引进品种,自育品系等材料以1Bl/1RS,春化基因,光周期基因,产量相关基因开展分子标记鉴定。了解现有材料的遗传背景,为选育适合新疆南疆“果麦间作”模式小麦新品种奠定基础。【方法】利用1Bl/1RS、Vrn-A1、Ppd-D1、TaSus2、TaCwi-A1a b(CW121)TaCwi-A1b(CW122)分子标记,对遮阴条件下的冬小麦材料主要生长发育特性基因进行分子鉴定分析。【结果】在鉴定70份冬麦材料中、1Bl/1RS(ω-sec-p1-p2)(ω-sec-p3-p4)类型为57.1%、100%;Vrn-A1(Vrn-A1c)(vrn-A1)类型为97.1%、74.2%;Ppd-D1类型为100%;TaSus2(Hap-H)(Hap-L)类型为41.4%、30%;CW121、CW122类型为50%、75.7%;在4份主栽及部分育成品种、66份其他国内引进冬麦材料中,1Bl/1RS(sec-p1-p2) (sec-p3-p4)类型分别为25%、59%、100%、100%;Vrn-A1(Vrn-A1c)(vrn-A1)类型分别为75%、98.4%、100%、72.7%;Ppd-D1类型同为100%;主栽品种和新育成品种中未检测出TaSus2(Hap-H)类型,TaSus2(Hap-L)类型的比例为75%;其他国内引进品种TaSus2(Hap-H)(Hap-L)的比例为分别为43.9%、27.2%,南疆主栽和部分育成品种中CW121、CW122类型的分布频率75%、75%,其他国内引进品种中CW121、CW122类型分别为48.4%、75.7%(图1)。【结论】70份材料中的全部含有1BL/1RS (sec-p3-p4)易位系及对光周期非敏感性类型。4份主栽品和新育成主栽品种中含隐性春化基因,68份材料同时携带光周期非敏感性及显性春化基因。高千粒重相关基因类型的分布率均相当高(≥75%)。  相似文献   

15.
【目的】来自小麦-簇毛麦6VS/6AL易位系的抗病基因Pm21对小麦白粉病具有持久和广谱抗性,开发该基因的特异性标记,分析其在全国冬麦区中的应用情况,为Pm21的合理布局及分子标记辅助选择育种提供理论依据和技术支撑。【方法】根据已克隆的与Pm21抗性途径紧密相关的丝氨酸/苏氨酸蛋白激酶基因Stpk-V的序列(GenBank登录号为HQ864471.1),提取其蛋白序列并利用Pfam软件分析其保守结构域起止位点,在其保守结构域外设计开发特异序列标记WS-1;构建Pm21载体品种92R137和感病品种Avcoet S(AvS)的F2群体,以小麦白粉病菌E09对该群体每个单株进行苗期抗白粉病表型鉴定,同时利用WS-1对F2群体进行分子检测,分析检测表型与抗病表型,以验证WS-1标记的准确性;利用WS-1标记对来自中国不同冬麦区的662份小麦品种(系)进行分子标记检测,分析Pm21在不同麦区小麦品种(系)的分布情况,并将检测到含有Pm21的品种(系)在田间进行抗白粉病鉴定;选取WS-1已检测到及没有检测到Pm21的品种(系)各50份,利用曹爱忠等开发的标记NAU/xibao15902进行PCR扩增,进一步证明WS-1的准确性。【结果】(1)开发的Pm21特异标记WS-1为显性标记,含Pm21的小麦材料在8%非变性聚丙烯酰胺凝胶中扩增出一条大小为949 bp的片段,而不含该基因的小麦材料中无该片段。(2)在包含377个株系的F2群体中,286个单株为抗病,91个单株为感病,抗感比符合3﹕1的分离比例,表明在该群体中Pm21表现为显性单基因,WS-1对F2群体的每个株系的检测结果与抗/感表型完全一致。(3)供试的662份小麦材料中,49份携带Pm21,平均分布频率为7.4%,其中,西南冬麦区中检测到33份,占该区参鉴品种(系)数的34.4%,而北部冬麦区、黄淮冬麦区和长江中下游冬麦区,分别检测到4份、9份和3份,各占该区参鉴品种(系)数的5.3%、3.1%和1.5%。【结论】开发的Pm21特异性标记WS-1可以作为该基因的检测标记,也可应用到今后的基因聚合育种中;该基因在不同麦区分布相差很大,其中,西南冬麦区四川、贵州省的小麦品种(系)中Pm21使用频率过高,有促进病原菌定向选择的风险,在当前小麦育种中应给以重视。  相似文献   

16.
 【目的】以黄淮麦区小麦新品系为材料,通过对其籽粒硬度相关基因的鉴定,明确黄淮麦区小麦新品系的籽粒硬度基因型分布规律,为小麦品质改良提供优异基因资源。【方法】利用单籽粒谷物特性测定仪(SKCS)、PCR扩增、酶切以及DNA测序技术,对来自黄淮麦区109份小麦新品系的籽粒硬度表型、puroindo1ine基因型及其puroindo1ine b-2的不同等位变异类型进行了鉴定与分析。【结果】黄淮麦区材料中硬质麦比例较高,为61.5%。混合型和软质麦比例较低,分别为15.6%和22.9%,硬度指数范围较宽,为3.2—82.6。在硬质麦的puroindo1ine基因型检测中,发现有Pinb-D1b、Pinb-D1p和Pina-D1b共3种类型,其中,Pinb-D1b所占比例最高,为86.5%,Pinb-D1p和Pina-D1b分别为7.5%和6.0%。通过对puroindo1ine b-2变异检测,发现在调查的所有小麦材料中,D和A基因组上均含有Pinb-D2v1和Pinb-A2v4,其中,86份小麦品种(系)B基因组上的基因型为Pinb-B2v3,剩余的23份材料为Pinb-B2v2。通过对位于普通小麦B基因组puroindo1ine b-B2的2个基因型进行产量相关性状的分析,发现Pinb-B2v3变异的小麦品种(系)在穗粒数、单穗粒重、旗叶长和旗叶面积上均显著高于Pinb-B2v2变异类型的小麦品种(系),同时Pinb-B2v3变异类型小麦的千粒重、小穗数、粒长、粒宽和旗叶宽等性状也略高于Pinb-B2v2变异类型的小麦。【结论】在黄淮麦区109份小麦新品系中,硬质麦比例较高,混合型和软质麦比例较低。硬质麦中,Pinb-D1b是最为常见的类型。在puroindo1ine b-2基因位点上,Pinb-B2v3变异类型小麦的产量相关性状略优于Pinb-B2v2变异类型小麦。  相似文献   

17.
选取26份小麦地方品种,75份黄淮麦区小麦改良品种,97份长江中下游麦区小麦改良品种,采用单花滴注法进行赤霉病抗性鉴定并调查供试品种的穗长、株高、千粒质量和小穗密度等农艺性状.结果表明,鉴定筛选到抗病品种2个,中抗品种(系)35个,中感品种(系)77个,高感赤霉病的品种(系)84个.利用FHB1分子标记对供试小麦进行检测.其中在Fhb1位点上表现为抗病性基因型(Fhb1+)的小麦品种(系)33个,在Fhb1位点上表现为感病性基因型(Fhb1-)小麦品种(系)165个,且呈抗病基因型品种与感病基因型品种的平均病小穗率差异显著(P<0.05).FHB1分子标记检测结果为阳性的小麦品种赤霉病抗性显著高于检查结果为阴性的小麦品种.此外,筛选得到抗性达到中感及以上水平的小麦品种(系)114个,考察农艺性状发现扬麦18、宁麦19、宁麦8号、扬麦12、等18个品种(系)农艺性状优良,可作为小麦赤霉病育种的亲本选用.  相似文献   

18.
为了解当前黄淮麦区区试品种(系)的遗传特征,利用分布于小麦基因组的96对SSR标记分析2016年参加黄淮南片麦区品种试验的78个小麦品种(系)的遗传多样性,同时,对Pm21基因和1BL/1RS易位系进行分子检测。结果表明,96对SSR引物中有80对(83.3%)在所有材料表现多态,共检测到307个等位变异,变幅为1~8,平均每个引物扩增3.84个等位变异;位点多态性信息含量(PIC)变幅为0.10~0.83,平均0.62;供试材料的遗传距离变幅为0.14~0.16,平均0.58。78个材料均不含有Pm21基因,69个(88.5%)材料属于1BL/1RS易位系。  相似文献   

19.
[目的]筛选出小麦籽粒低多酚氧化酶(PPO)活性的种质资源,为贵州小麦籽粒品质的遗传改良及育种提供参考依据.[方法]以生产中表现优异的135份贵州小麦品种(系)为材料,采用苯酚染色法进行染色,在此基础上以STS分子标记(PPO16、PPO18和PPO29)检测小麦PPO活性相关基因,并通过Fragment AnalyzerTM毛细管电泳鉴定相关基因,进而对小麦籽粒低PPO活性基因的组成进行鉴定和筛选.[结果]135份小麦材料籽粒经苯酚染色后,有4份材料未染色(A级),9份呈浅绿色(B级),65份材料呈棕色(C级),57份材料呈黑色(D级).STS分子标记检测结果表明,在A级和B级材料中检测到10份材料含Ppo-A1b基因、4份材料含Ppo-D1a基因,其中4份材料同时含有Ppo-A1b/Ppo-D1a基因,分别是贵麦2号、惠水1-23、石无芒和08-9选单-2-7;在C级材料中检测到3份材料含Ppo-A1b基因、17份材料含Ppo-D1a基因,其中1份材料(贵农08-9)同时含有Ppo-A1b/Ppo-D1a基因;在D级材料中均未检测到Ppo-A1b和Ppo-D1a基因.[结论]采用苯酚染色法结合STS分子标记检测可对小麦籽粒是否含低PPO活性基因进行准确鉴定.贵麦2号、惠水1-23、石无芒、08-9选单-2-7和贵农08-9等5份含有双低PPO活性基因(Ppo-A1b/Ppo-D1a)的种质资源,可作为亲本材料直接用于小麦籽粒低PPO活性遗传改良及新品种选育.  相似文献   

20.
新疆主要小麦品种(系)中抗条锈病基因的分子检测   总被引:1,自引:0,他引:1  
【目的】选用抗条锈病基因Yr10和1BL/1RS易位的分子标记,明确抗条锈病基因Yr10和1BL/1RS易位在新疆小麦品种(系)中的分布,为新疆小麦抗条锈病品种的合理布局及抗性材料的选育提供理论依据。【方法】利用Yr10及1BL/1RS易位的分子标记,检测其在新疆麦区46份小麦材料中的分布。【结果】在46份供试材料中,新冬17号检测到Yr10基因的存在;新冬24号、新冬46号、MJ307、HMJ555、1112、新紫1号、983-S、新麦211和新麦23检测到1BL/1RS易位,占全部材料的19.57%。【结论】对当前小麦条锈病流行小种条中32号具有较好抗性的Yr10基因,在新疆麦区小麦主栽品种(系)中分布率很低,可能含有Yr10基因的新冬17号在选育抗病材料中具有一定价值,育种中应加强基因Yr10的利用;在选育新品种时需减少1BL/1RS易位的分布频率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号