首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 359 毫秒
1.
日光温室主动蓄放热冠层增温系统性能研究   总被引:2,自引:0,他引:2  
【目的】设计日光温室主动蓄放热冠层增温系统(Active heat storage-release system for canopy warming,AHSCW)并进行实地试验,分析该系统对番茄冠层的增温效果,为进一步探讨主动蓄放热热能的高效应用方式和作物局部增温系统的设计提供参考。【方法】在第六代主动蓄放热系统基础上设计AHSCW,以太阳能为热源,白天通过水循环将太阳能以热能的形式收集于蓄热水池内,夜间通过冠层增温管道释放热量,对番茄冠层进行局部增温。以使用AHSCW的日光温室为试验温室,未加温的日光温室为对照温室,通过测定太阳辐射强度、番茄冠层空气温度、水温及水泵耗电量参数及不同时期番茄的株高、茎粗和产量,对系统的增温效果进行测试与分析。【结果】白天AHSCW的蓄热量为166~194 MJ,夜间放热量为129~142 MJ,能量利用效率为67%~86%;该系统能够提高番茄冠层区域气温1.4~3.0℃;AHSCW温室果实产量为1.14 kg/m~2,是对照温室(0.64 kg/m~2)的1.77倍。【结论】AHSCW可以明显提高番茄冠层气温,保证番茄的越冬生产,促进番茄生长,增加其产量并可使果实提前成熟上市。  相似文献   

2.
太阳能相变蓄热系统在温室加温中的应用   总被引:3,自引:0,他引:3  
为充分利用太阳能资源提高冬季温室的夜间气温,设计一种太阳能相变蓄热系统。白天利用太阳能集热板吸收太阳辐射并将其转化成热能储存到相变材料内;夜间以空气为热媒将相变材料内的热能输送到温室内,为温室加温。试验结果表明:晴天应用该系统,温室夜间平均气温可提高2.0℃,夜间最低气温提高3.1℃;在不同天气状况的综合条件下应用该系统,温室夜间最低气温平均提高2.5℃,20cm处地温平均提高1.5℃;经计算,晴天条件下,该系统的平均集热效率为59.2%,夜间单位面积放热量为4.05MJ/m2,平均加温热流密度为83.4 W/m2;应用该系统温室增温效果明显。  相似文献   

3.
测试和田沙漠组装式温室的光热环境,尤其是温室的蓄放热量及保温能力,为和田地区日光温室性能做出评价,采用数据记录仪对温室内外环境的光热环境进行测定,结果表明,晴天光照度平均为18058 lx,空气温度可达40℃以上,且土层越深,地温越稳定;地面蓄热时平均热流密度为47.85 W/m2,放热时平均热流密度为16.91 W/m2;土壤表面温度和空气平均值分别为15.47、15.30℃;最大值可达37.90、45.00℃;墙体吸热时平均热流密度为13.91 W/m2,放热时平均热流密度为5.40 W/m2;墙体表面温度和空气温度平均值分别为15.76、14.61℃,最大值可达72.10、55.30℃;地面白天最大蓄热量为2.03 MJ/m2,地面最大放热量为1.35 MJ/m2,墙体白天最大蓄热量为0.76 MJ/m2,墙体最大放热量为0.40 MJ/m2.从温光特性方面来看,沙漠组装式温室各环境因子变化较大,温室内部空气温度、墙体温度、地表温度波动较大,热稳定较差;地面是主要的蓄放热体,温室墙体蓄热量、放热量很小,难以起到稳定温室夜间温度的作用.  相似文献   

4.
日光温室是一个体形系数很大的设施农业建筑,温室的建筑墙体构造方式及其建筑材料热物性等都直接影响墙体保温与蓄热特性乃至温室热环境。该研究基于课题组研发的GH-20相变材料,以传统墙体、被动式太阳能相变蓄热"三重"墙体、主-被动式太阳能相变蓄热"三重"墙体为比较研究对象,结合实测结果,分析比较了墙体构筑方式、材料热物性等因素对日光温室墙体热性能的影响规律。研究结果表明,较传统墙体,被动式太阳能相变蓄热"三重"墙体、主-被动式太阳能相变蓄热"三重"墙体的表面温度夜间明显高于传统墙体,早晨保温被开启时相差最大,为3.0℃;传统墙体中间层温度变化幅度最小,主-被动式墙体中间层的温度变化幅度明显提高,最大为14.4℃、最小为2.2℃、平均为7.5℃,中间墙体层的显热蓄热"热库"作用显现;夜间,被动式太阳能相变蓄热"三重"墙体、主-被动式太阳能相变蓄热"三重"墙体的放热量分别提高了103%和118%,其中51%的放热量在后半夜(2:00~10:00)释放,有效地改善了夜间温室热环境,相变材料的"热量开关"作用显现。  相似文献   

5.
[目的]提高冬季夜间日光温室的土壤温度,研制内置式太阳能加温装置.[方法]利用蛇形太阳能空气集热器集热结合土壤蓄热的方式,在乌鲁木齐南郊水西沟村德力森蔬菜园8号温室进行了提升地温试验.[结果]当环境温度为-3~- 10℃时,该装置可以使温室土壤10 ~ 20 cm深处的温度平均升高1.5~3℃.[结论]内置式太阳能加温装置能有效提高冬季夜间温室地温,满足作物生长的需要.  相似文献   

6.
在黑龙江地区,由于冬季日光温室夜间温度过低,难以满足作物生长的需求。大庆引进的新型装配式节能日光温室,设有水循环蓄放热系统和空气—地中热交换蓄放热系统。以大庆普通温室为对照,检测了冬季最冷时期新型温室与对照温室室温在东西、南北方向上的变化及分布,不同土层土温的变化及南北方向上土温的变化分布情况。结果表明,新型温室可保持夜间室内气温在12℃以上,温度分布均匀,比对照温室室内气温提高2~3℃。试验温室土层深度在60 cm以上的区域温度一直高于对照温室,10、30、60 cm处夜间平均温差分别为5.7、4.0、2.7℃。此新型温室的设计不仅提高了温室内的气温,而且也提高了作物根部的土壤温度。  相似文献   

7.
日光温室后墙夜间非稳态导热特性研究   总被引:1,自引:0,他引:1  
【目的】对日光温室后墙夜间的非稳态导热特性进行研究,为发挥后墙保温作用提供理论依据。【方法】在位于山东泰安的试验温室内,分别于温室后墙距地面0.1,1.1,2.1,3.1和4.1m处及地面距离后墙0.1m处设置测点,选取2015年越冬季某一晴天和阴天,在18:00至翌日06:00,每隔1h测定后墙各测点的温度和热流密度,计算各测点温度变化率、热流密度积分值、后墙内部热量流动量,以及后墙与地面之间的热量流动量,研究夜间温室后墙不同高度蓄热量变化与放热量之间的关系、地面温度与后墙温度之间的关系,以及后墙内部和后墙与地面之间的热量流动。【结果】晴天夜间后墙中上部蓄热量变化基本相同且大于后墙下部蓄热量变化,后墙中上部放热量逐渐降低然后趋于平稳,后墙下部放热量逐渐增多,后墙中部放热总量最多;后墙温度24:00之前高于地面温度,24:00之后低于地面温度,后墙与地面之间存在热量流动;后墙内部热量流动数量占后墙放热总量的比值为14.2%。阴天夜间后墙中上部蓄热量变化基本相同且大于后墙下部蓄热量变化,后墙放热量从上到下逐渐增多;后墙温度低于地面温度,地面流入后墙热量占后墙放热总量的比值为3%;后墙内部热量流动数量占后墙放热总量的比值为25.5%。【结论】后墙高度、后墙不同高度蓄热量影响后墙不同高度放热量;后墙高度对放热量的影响贯穿后墙放热过程的始终,后墙蓄热量对放热量的影响主要集中在后墙放热前期;后墙热量存在自上而下的整体迁移流动。  相似文献   

8.
【目的】对日光温室后墙夜间的非稳态导热特性进行研究,为发挥后墙保温作用提供理论依据。【方法】在位于山东泰安的试验温室内,分别于温室后墙距地面0.1,1.1,2.1,3.1和4.1 m处及地面距离后墙0.1 m处设置测点,选取2015年越冬季某一晴天和阴天,在18:00至翌日06:00,每隔1 h测定后墙各测点的温度和热流密度,计算各测点温度变化率、热流密度积分值、后墙内部热量流动量,以及后墙与地面之间的热量流动量,研究夜间温室后墙不同高度蓄热量变化与放热量之间的关系、地面温度与后墙温度之间的关系,以及后墙内部和后墙与地面之间的热量流动。【结果】晴天夜间后墙中上部蓄热量变化基本相同且大于后墙下部蓄热量变化,后墙中上部放热量逐渐降低然后趋于平稳,后墙下部放热量逐渐增多,后墙中部放热总量最多;后墙温度24:00之前高于地面温度,24:00之后低于地面温度,后墙与地面之间存在热量流动;后墙内部热量流动数量占后墙放热总量的比值为14.2%。阴天夜间后墙中上部蓄热量变化基本相同且大于后墙下部蓄热量变化,后墙放热量从上到下逐渐增多;后墙温度低于地面温度,地面流入后墙热量占后墙放热总量的比值为3%;后墙内部热量流动数量占后墙放热总量的比值为25.5%。【结论】后墙高度、后墙不同高度蓄热量影响后墙不同高度放热量;后墙高度对放热量的影响贯穿后墙放热过程的始终,后墙蓄热量存在自上而下的整体迁移流动。  相似文献   

9.
针对新疆地区温室大棚灌溉用井水温度过低而影响植物正常生长等问题,设计并研制一种温室灌溉用井水太阳能增温装置。设计一种适合快速加热的吸热板和蛇形太阳能热水器,研制便于移动的太阳能集热器的底架装置。对太阳能井水增温装置进行深入理论分析,试验结果,单个集热器使用后可提高水温约3~5℃,采用2个集热器串联方式使用,可提高水温约6~8℃。表明温室灌溉用井水太阳能增温装置可有效满足秋冬季温室灌溉用水的温度要求,保证作物的正常生长,具有良好的发展前景。  相似文献   

10.
日光温室山墙及栽培基质热通量特征分析   总被引:2,自引:2,他引:0  
试验采用PC-2R型热通量记录仪对酒泉肃州区非耕地日光温室的山墙及栽培基质热通量进行实时监测,并对温室山墙及栽培基质热通量变化特性进行了分析.结果表明:温室东西山墙单位面积吸热量平均值分别为1.41MJ/m2和1.67MJ/m2,单位面积墙体放热量平均值为0.34MJ/m2和0.63MJ/m2;天气状况只影响山墙热通量值的大小,对其热通量达到最大值的时刻无影响;白天栽培基质表层平均吸热量为0.59 MJ/m2,夜间栽培基质表层平均放热量为0.17 MJ/m2;随栽培基质深度的增加,热通量变化幅度逐渐降低,蓄热的时间依次延迟;15cm以下基质热通量全天均为负值,晴天与阴天吸放热差异不明显;晴天夜间山墙单位面积放热量高于基质,阴天则小于基质.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号