首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 407 毫秒
1.
Black locust (Robinia pseudoacacia) is a major reforestation species in the semiarid region in the Loess Plateau of China. There has been increasing concern about the sustainability of the plantations because of their possible high water-use. This study was, accordingly, undertaken to quantify the stand-scale water use of a middle-aged black locust plantation in the region. The thermal dissipation probe method was applied to 27 trees to measure sap flux densities in an experimental plot during the growing season of 2008. The monoculture stand has a basal area of 23.3 m2 ha?1 and a maximum plant area index (PAI) of 2.89. Sapwood areas were estimated by use of a regressive relationship with the diameter at breast height (DBH) for scaling up of stand transpiration. The results showed that DBH could be a good predictor of sapwood area of individual trees. The diurnal cycles of average sap flux densities differed among DBH classes. Daily transpiration can be predicted from mean daily daytime vapor pressure deficit (VPDm) using a fitted exponential saturation model. Model variables were different among seasons, probably owing to different soil water conditions and leaf phenology. By using the derived model for each month, stand canopy transpiration over the growing season was estimated to be 73.8 mm, with an average daily value of 0.41 mm day?1 and a maximum of 0.89 mm day?1. The relatively small estimates of stand transpiration might be attributed to low PAI and sap wood area of the middle-aged stand.  相似文献   

2.
Mountain ash (Eucalyptus regnans F.J. Muell.) forest catchments exhibit a strong relationship between stand age and runoff, attributed inter alia to differences in tree water use. However, the tree water use component of the mountain ash forest water balance is poorly quantified. We have used the sap flow technique to obtain estimates of daily water use in large mountain ash trees. First, the sap flow technique was validated by means of an in situ cut tree experiment. Close agreement was obtained between the sap flow estimate of water use and the actual uptake of water by the tree from a reservoir. Second, we compared the variability in sap velocity between a symmetric and an asymmetric tree by using multiple sap flow loggers. In the symmetric tree, velocity was fairly uniform throughout the xylem during the day, indicating that accurate sap flow estimates can be obtained with a minimal number of sampling points. However, large variations in sap velocity were observed in the asymmetric tree, indicating that much larger sampling sizes are required in asymmetric stems for an accurate determination of mean sap velocity. Finally, we compared two procedures for scaling individual tree sap flow estimates to the stand level based on stem diameter and leaf area index measurements. The first procedure was based on a regression between stem diameter and tree water use, developed on a small sample of trees and applied to a stand-level census of stem diameter values. Inputs to the second procedure were tree water use and leaf area of a single tree and the leaf area index of the stand. The two procedures yielded similar results; however, the first procedure was more robust but it required more sampling effort than the second procedure.  相似文献   

3.
Ewers BE  Oren R 《Tree physiology》2000,20(9):579-589
We analyzed assumptions and measurement errors in estimating canopy transpiration (E(L)) from sap flux (J(S)) measured with Granier-type sensors, and in calculating canopy stomatal conductance (G(S)) from E(L) and vapor pressure deficit (D). The study was performed in 12-year-old Pinus taeda L. stands with a wide range in leaf area index (L) and growth rate. No systematic differences in J(S) were found between the north and south sides of trees. However, J(S) in xylem between 20 and 40 mm from the cambium was 50 and 39% of J(S) in the outer 20-mm band of xylem in slow- and fast-growing trees, respectively. Sap flux measured in stems did not lag J(S) measured in branches, and time and frequency domain analyses of time series indicated that variability in J(S) in stems and branches is mostly explained by variation in D. Therefore, J(S) was used to estimate transpiration, after accounting for radial patterns. There was no difference between D and leaf-to-air vapor pressure gradient, and D did not have a vertical profile in stands of either low or high L suggesting a strong canopy-atmosphere coupling. Therefore, D estimated at one point in the canopy can be used to calculate G(S) in such stands. Given the uncertainties in J(S), relative humidity, and temperature measurements, to keep errors in G(S) estimates to less than 10%, estimates of G(S) should be limited to conditions in which D >/= 0.6 kPa.  相似文献   

4.
Large areas of forests in the Pacific Northwest are being transformed to younger forests, yet little is known about the impact this may have on hydrological cycles. Previous work suggests that old trees use less water per unit leaf area or sapwood area than young mature trees of the same species in similar environments. Do old forests, therefore, use less water than young mature forests in similar environments, or are there other structural or compositional components in the forests that compensate for tree-level differences? We investigated the impacts of tree age, species composition and sapwood basal area on stand-level transpiration in adjacent watersheds at the H.J. Andrews Forest in the western Cascades of Oregon, one containing a young, mature (about 40 years since disturbance) conifer forest and the other an old growth (about 450 years since disturbance) forest. Sap flow measurements were used to evaluate the degree to which differences in age and species composition affect water use. Stand sapwood basal area was evaluated based on a vegetation survey for species, basal area and sapwood basal area in the riparian area of two watersheds. A simple scaling exercise derived from estimated differences in water use as a result of differences in age, species composition and stand sapwood area was used to estimate transpiration from late June through October within the entire riparian area of these watersheds. Transpiration was higher in the young stand because of greater sap flux density (sap flow per unit sapwood area) by age class and species, and greater total stand sapwood area. During the measurement period, mean daily sap flux density was 2.30 times higher in young compared with old Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees. Sap flux density was 1.41 times higher in young red alder (Alnus rubra Bong.) compared with young P. menziesii trees, and was 1.45 times higher in old P. menziesii compared with old western hemlock (Tsuga heterophylla (Raf.) Sarg.) trees. Overall, sapwood basal area was 21% higher in the young stand than in the old stand. In the old forest, T. heterophylla is an important co-dominant, accounting for 58% of total sapwood basal area, whereas P. menziesii is the only dominant conifer in the young stand. Angiosperms accounted for 36% of total sapwood basal area in the young stand, but only 7% in the old stand. For all factors combined, we estimated 3.27 times more water use by vegetation in the riparian area of the young stand over the measurement period. Tree age had the greatest effect on stand differences in water use, followed by differences in sapwood basal area, and finally species composition. The large differences in transpiration provide further evidence that forest management alters site water balance via elevated transpiration in vigorous young stands.  相似文献   

5.
6.
The assessment of forest transpiration rates is crucial for determining plant-available soil water consumption and drought risk of trees. Xylem sap flux measurements have been used increasingly to quantify stand transpiration in forest ecosystems. Here, we compare this empirical approach with hydrological modeling on the basis of a stand transpiration dataset of adult beech (Fagus sylvatica), which was acquired across Bavaria, Germany, at eight forest sites. Xylem sap flux sensors were installed in five dominant trees each. Two tree to stand upscaling approaches, related to site-specific (1) sapwood area or (2) to leaf area index, were compared. The outcome was examined each in relation to process-based stand hydrological modeling, using LWF-BROOK90. Distinct relationships between tree diameter at breast height (1.30 m) and sapwood area-weighted sap flux along the radial profile became apparent across the study sites, confirming a generic allometric basis for stand-level upscaling of transpiration. The two upscaling approaches did not differ in outcome, representatively covering stand structure for comparison with modeling. Differential analysis yielded high agreement between the empirical and modeling approaches throughout most of the study period, although LWF-BROOK90 tended to overestimate sap flux measurements under low soil moisture. The two empirical approaches proved reliable for even-aged beech stands, as performance under high stand-structural heterogeneity awaits clarification. Findings advance stand-level hydrological modeling regarding coverage of stomatal behavior during temporary limitation in water availability.  相似文献   

7.
Sap flow rates were measured simultaneously by the heat pulse and deuterium tracing techniques in nine Eucalyptus grandis W. Hill ex Maiden. trees at two sites (1) to compare results from the two techniques and (2) to assess the impact of the assumptions underlying the deuterium tracing method on the calculation of sap flow for a range of tree sizes. The trees ranged in height from 4 to 14 m with leaf areas of 5 to 35 m(2). In all trees, sap flow estimated by the deuterium tracing technique was higher than sap flow estimated by the heat pulse method, with differences of 11 to 43% in eight of the trees and 113% in one tree. The largest difference was attributed to errors in the heat pulse method, as indicated by aberrant relationships between sap flow measured by the heat pulse method and tree size characteristics (i.e., diameter, sap wood area, leaf area) for that tree compared with the other experimental trees. Drilling holes in the trees to allow injection of deuterium had no significant effect on sap flow, even when 32 holes were drilled. Sap flow measured by the heat pulse method was only lower after drilling than before drilling in three trees, and the difference only persisted for about 1 h. Deuterium concentrations of water collected from the tree canopies had not returned to background values 17 days after injection. Twenty-one days after injection, sapwood and heartwood samples taken from trunks near the injection sites contained considerable concentrations of deuterium, indicating that some of the deuterium injected into the trees was still present. An experiment performed on two trees showed that deuterium was stored in the heartwood and sapwood throughout the trees, and its distribution within the trees four days after injection was similar whether it was injected into only the sapwood (where it should mix with sap and be transported from the tree most readily) or into both the sapwood and heartwood, indicating that there was considerable movement of deuterium between the heartwood and sapwood. Deuterium storage was accounted for by an approximate means in the sap flow calculations, and may have resulted in an error of about 10% in sap flow estimated by this method. We conclude that the heat pulse and deuterium tracing techniques can be used simultaneously to increase the number of sap flow measurements obtained from a forest, thereby increasing the precision of forest water use estimates. Their combination would be most effective in stands with a wide range of tree sizes and sap flow rates, where the relative differences in sap flux estimates between the methods is small compared with differences in sap flow between trees.  相似文献   

8.
Radial variation in sap flux density across the sapwood was assessed by the heat field deformation method in several trees of Quercus pubescens Wild., a ring-porous species. Sapwood depths were delimited by identifying the point of zero flow in radial patterns of sap flow, yielding tree sapwood areas that were 1.5-2 times larger than assumed based on visual examinations of wood cores. The patterns of sap flow varied both among trees and diurnally. Rates of sap flow were higher close to the cambium, although there was a significant contribution from the inner sapwood, which was greater (up to 60% of total flow) during the early morning and late in the day. Accordingly, the normalized difference between outer and inner sapwood flow was stable during the middle of the day, but showed a general decline in the afternoon. The distribution of sap flux density across the sapwood allowed us to derive correction coefficients for single-point heat dissipation sap flow measurements. We used daytime-averaged coefficients that depended on the particular shape of the radial profile and ranged between 0.45 and 1.28. Stand transpiration calculated using the new method of estimating sapwood areas and the radial correction coefficients was similar to (Year 2003), or about 25% higher than (Year 2004), previous uncorrected values, and was 20-30% of reference evapotranspiration. We demonstrated how inaccuracies in determining sapwood depths and mean sap flux density across the sapwood of ring-porous species could affect tree and stand transpiration estimates.  相似文献   

9.
Cacao trees under different shade tree shelter: effects on water use   总被引:1,自引:1,他引:0  
We asked how shade tree admixture affects cacao water use in agroforests. In Central Sulawesi, Indonesia, cacao and shade tree sap flux was monitored in a monoculture, in a stand with admixed Gliricidia trees and in a mixture with a multi-species tree assemblage, with both mixtures having similar canopy openness. A Jarvis type sap flux model suggested a distinct difference in sap flux response to changes in vapor pressure deficit and radiation among cacao trees in the individual cultivation systems. We argue that differences originate from stomatal control of transpiration in the monoculture and altered radiation conditions and a different degree of uncoupling of the VPD from the bulk atmosphere inside shaded stands. Probably due to high sap flux variability among trees, these differences however did not result in significantly altered average daily cacao water use rates which were 16 L day?1 in the multi-species assemblage and 22 L day?1 in the other plots. In shaded stands, water use of single cacao trees increased with decreasing canopy gap fraction in the overstory since shading enhanced vegetative growth of cacao fostering transpiration per unit ground area. Estimated transpiration rates of the cacao tree layer were further controlled by stem density and amounted to 1.2 mm day?1 in the monoculture, 2.2 mm day?1 for cacao in the cacao/Gliricidia stand, and 1.1 mm day?1 in the cacao/multi-species stand. The additional transpiration by the shade trees is estimated at 0.5 mm day?1 for the Gliricidia and 1 mm day?1 for the mixed-species cultivation system.  相似文献   

10.
We used 20-mm-long, Granier-type sensors to quantify the effects of tree size, azimuth and radial position in the xylem on the spatial variability in xylem sap flux in 64-year-old trees of Taxodium distichum L. Rich. growing in a flooded forest. This information was used to scale flux to the stand level to investigate variations in half-hourly and daily (24-hour) sums of sap flow, transpiration per unit of leaf area, and stand transpiration in relation to vapor pressure deficit (D) and photosynthetically active radiation (Q(o)). Measurements of xylem sap flux density (J(s)) indicated that: (1) J(s) in small diameter trees was 0.70 of that in medium and large diameter trees, but the relationship between stem diameter as a continuous variable and J(s) was not significant; (2) J(s) at 20-40 mm depth in the xylem was 0.40 of that at 0-20 mm depth; and (3) J(s) on the north side of trees was 0.64 of that in directions 120 degrees from the north. Daily transpiration was linearly related to daily daytime mean D, and reached a modest value of 1.3 mm day(-1), reflecting the low leaf area index (LAI = 2.2) of the stand. Because there was no soil water limitation, half-hourly water uptake was nearly linearly related to D at D < 0.6 kPa during both night and day, increasing to saturation during daytime at higher values of D. The positive effect of Q(o) on J(s) was significant, but relatively minor. Thus, a second-order polynomial with D explained 94% of the variation in J(s) and transpiration. An approximately 40% reduction in LAI by a hurricane resulted in decreases of about 18% in J(s) and stand transpiration, indicating partial stomatal compensation.  相似文献   

11.
Transpiration, leaf characteristics and forest structure in Metrosideros polymorpha Gaud. stands growing in East Maui, Hawaii were investigated to assess physiological limitations associated with flooding as a mechanism of reduced canopy leaf area in waterlogged sites. Whole-tree sap flow, stomatal conductance, microclimate, soil oxidation-reduction potential, stand basal area and leaf area index (LAI) were measured on moderately sloped, drained sites with closed canopies (90%) and on level, waterlogged sites with open canopies (50-60%). The LAI was measured with a new technique based on enlarged photographs of individual tree crowns and allometric relationships. Sap flow was scaled to the stand level by multiplying basal area-normalized sap flow by stand basal area. Level sites had lower soil redox potentials, lower mean stand basal area, lower LAI, and a higher degree of soil avoidance by roots than sloped sites. Foliar nutrients and leaf mass per area (LMA) in M. polymorpha were similar between level and sloped sites. Stomatal conductance was similar for M. polymorpha saplings on both sites, but decreased with increasing tree height (r(2) = 0.72; P < 0.001). Stand transpiration estimates ranged from 79 to 89% of potential evapotranspiration (PET) for sloped sites and from 28 to 51% of PET for level sites. Stand transpiration estimates were strongly correlated with LAI (r(2) = 0.96; P < 0.001). Whole-tree transpiration was lower at level sites with waterlogged soils, but was similar or higher for trees on level sites when normalized by leaf area. Trees on level sites had a smaller leaf area per stem diameter than trees on sloped sites, suggesting that soil oxygen deficiency may reduce leaf area. However, transpiration per unit leaf area did not vary substantially, so leaf-level physiological behavior was conserved, regardless of differences in tree leaf area.  相似文献   

12.
In a mature beech stand located in north-eastern Germany, xylem sap flux measurements were continuously performed during the 2002–2004 growing seasons. Ten representative trunks were studied using heated thermal dissipation probes. The measurements aimed at identifying principles governing radial profiles of xylem flux in beech trunks. The measurements were taken up to a trunk depth of 132 mm. The sap flow density in the pericambial xylem was found to vary among trees of different diameters, but was not considerably smaller in suppressed trees. A model for the radial distribution of sap flux density was formulated relating trunk radius and sap flow density. The model takes into account different trunk diameter. About 90% of the sap flux was found to occur in the outer two fifths of the trunk. Using this model, an adequate estimate of transpiration can be achieved at tree and stand level, even when the sap flux measurements are restricted to the outer trunk sectors.  相似文献   

13.
雷州半岛尾叶桉人工林树液茎流特征的研究   总被引:20,自引:1,他引:20       下载免费PDF全文
应用热脉冲法对雷州半岛4年生尾叶桉单株树干液流时空的动态变化及与各环境因子的关系进行观测研究.研究结果表明(1)形成层以内木质部不同深度的茎流密度不同,其中靠近形成层部分液流速度较快,但各层都具有相同的日变化趋势,中午12点至1点达到最大;夜间因根压作用影响各层仍有微弱上升液流;各深度日平均茎流密度11.6 L·m-2·d-1,最大为15.3 L·m-2·d-1(晴天),最小仅为5.4 L·m-2·d-1(雨天);(2) 不同直径尾叶桉的日茎流密度具有相似日变化趋势,胸径与高度相近其茎流密度相同,大树较小树快,这主要与树木根系吸收土壤水分的能力有关;(3)热脉冲法与整树容器法对2年生幼树耗水量的同步测定结果相一致,误差仅为3.4%;(4)树干茎流量与饱和蒸气压差和太阳辐射相关性特别显著.  相似文献   

14.
Tropical moist forests are notable for their richness in tree species. The presence of such a diverse tree flora presents potential problems for scaling up estimates of water use from individual trees to entire stands and for drawing generalizations about physiological regulation of water use in tropical trees. We measured sapwood area or sap flow, or both, in 27 co-occurring canopy species in a Panamanian forest to determine the extent to which relationships between tree size, sapwood area and sap flow were species-specific, or whether they were constrained by universal functional relationships between tree size, conducting xylem area, and water use. For the 24 species in which active xylem area was estimated over a range of size classes, diameter at breast height (DBH) accounted for 98% of the variation in sapwood area and 67% of the variation in sapwood depth when data for all species were combined. The DBH alone also accounted for > or = 90% of the variation in both maximum and total daily sap flux density in the outermost 2 cm of sapwood for all species taken together. Maximum sap flux density measured near the base of the tree occurred at about 1,400 h in the largest trees and 1,130 h in the smallest trees studied, and DBH accounted for 93% of the variation in the time of day at which maximum sap flow occurred. The shared relationship between tree size and time of maximum sap flow at the base of the tree suggests that a common relationship between diurnal stem water storage capacity and tree size existed. These results are consistent with a recent hypothesis that allometric scaling of plant vascular systems, and therefore water use, is universal.  相似文献   

15.
To quantify the relationship between temporal and spatial variation in tree transpiration, we measured sap flow in 129 trees with constant-heat sap flow sensors in a subalpine forest in southern Wyoming, USA. The forest stand was located along a soil water gradient from a stream side to near the top of a ridge. The stand was dominated by Pinus contorta Dougl. ex Loud. with Picea engelmannii Parry ex Engelm and Abies lasiocarpa (Hook.) Nutt. present near the stream and scattered individuals of Populus tremuloides Michx. throughout the stand. We used a cyclic sampling design that maximized spatial information with a minimum number of samples for semivariogram analyses. All species exhibited previously established responses to environmental variables in which the dominant driver was a saturating response to vapor pressure deficit (D). This response to D is predictable from tree hydraulic theory in which stomatal conductance declines as D increases to prevent excessive cavitation. The degree to which stomatal conductance declines with D is dependent on both species and individual tree physiology and increases the variability in transpiration as D increases. We quantified this variability spatially by calculating the spatial autocorrelation within 0.2-kPa D bins. Across 11 bins of D, spatial autocorrelation in individual tree transpiration was inversely correlated to D and dropped from 45 to 20 m. Spatial autocorrelation was much less for transpiration per unit leaf area and not significant for transpiration per unit sapwood area suggesting that spatial autocorrelation within a particular D bin could be explained by tree size. Future research should focus on the mechanisms underlying tree size spatial variability, and the potentially broad applicability of the inverse relationship between D and spatial autocorrelation in tree transpiration.  相似文献   

16.
Cermák J 《Tree physiology》1989,5(3):269-289
The solar equivalent leaf area (A(s)), a simply and easily determined biometrical parameter of leaves, trees and stands, was derived theoretically. The parameter is defined as projected leaf area weighted for the time integral of irradiance at a given location in the canopy relative to that of fully irradiated leaves at the top of the canopy. The efficiency of A(s) as a basis for estimating stand-area transpiration of a mature oak (Quercus robur L.) forest from measurements of transpiration by individual trees was compared with that of other stand and tree characteristics. Stand transpiration estimates based on A(s) were more precise and less prone to systematic error than estimates based on basal area, timber volume, projected tree crown area, projected leaf area, or leaf dry mass. Solar equivalent leaf area reflects both the amount and the physiological properties of leaves and can be used as a measure of tree size and functional capacity. It can be calculated from ordinary forest inventory data on trees and stands, adjusted according to simple phyllometric data. It appears to have wide application in ecological and forestry studies for relating the physiological characteristics of individual leaves to those of entire trees or stands.  相似文献   

17.
Accurate estimates of sapwood properties (including radial depth of functional xylem and wood water content) are critical when using the heat pulse velocity (HPV) technique to estimate tree water use. Errors in estimating the volumetric water content (V(h)) of the sapwood, especially in tree species with a large proportion of sapwood, can cause significant errors in the calculations ofsap velocity and sap flow through tree boles. Scaling to the whole-stand level greatly inflates these errors. We determined the effects of season, tree size and radial wood depth on V(h) of wood cores removed from Acer saccharum Marsh. trees throughout 3 years in upstate New York. We also determined the effects of variation in V(h) on sap velocity and sap flow calculations based on HPV data collected from sap flow gauges inserted at four depths. In addition, we compared two modifications of Hatton's weighted average technique, the zero-step and zero-average methods, for determining sap velocity and sap flow at depths beyond those penetrated by the sap flow gauges. Parameter V(h) varied significantly with time of year (DOY), tree size (S), and radial wood depth (RD), and there were significant DOY x S and DOY x RD interactions. Use of a mean whole-tree V(h) value resulted in differences ranging from -6 to +47% for both sap velocity and sap flow for individual sapwood annuli compared with use of the V(h) value determined at the specific depth where a probe was placed. Whole-tree sap flow was 7% higher when calculated on the basis of the individual V(h) value compared with the mean whole-tree V(h) value. Calculated total sap flow for a tree with a DBH of 48.8 cm was 13 and 19% less using the zero-step and the zero-average velocity techniques, respectively, than the value obtained with Hatton's weighted average technique. Smaller differences among the three methods were observed for a tree with a DBH of 24.4 cm. We conclude that, for Acer saccharum: (1) mean V(h) changes significantly during the year and can range from nearly 50% during winter and early spring, to 20% during the growing season;(2) large trees have a significantly greater V(h) than small trees; (3) overall, V(h) decreases and then increases significantly with radial wood depth, suggesting that radial water movement and storage are highly dynamic; and (4) V(h) estimates can vary greatly and influence subsequent water use calculations depending on whether an average or an individual V(h) value for a wood core is used. For large diameter trees in which sapwood comprises a large fraction of total stem cross-sectional area (where sap flow gauges cannot be inserted across the entire cross-sectional area), the zero-average modification of Hatton's weighted average method reduces the potential for large errors in whole-tree and landscape water balance estimates based on the HPV method.  相似文献   

18.
Sap flow techniques are practical tools for estimating tree transpiration. Though many previous studies using sap flow techniques did not consider azimuthal variations of sap flux density (F d) on xylem trunk to estimate tree transpiration, a few studies reported that ignoring the azimuthal variations in F d could cause large errors in tree transpiration estimates for some tree species. Therefore, examining azimuthal variations in F d for major plantation tree species is critical for estimating tree transpiration. Using the thermal dissipation method, we examined azimuthal variations in F d in six trees of Japanese cypress Chamaecyparis obtusa (Sieb. et Zucc.) Endl., which is one of the most common plantation tree species in Japan. We recorded considerable variations among F d at four different azimuthal directions. The F d value for one aspect was more than 100% larger than those for the other aspects. We calculated differences between tree transpiration estimates based on F d for one to three azimuthal directions and those based on F d for four aspects. The differences relative to tree transpiration estimates based on F d for four aspects were typically 30, 20, and 10% in accordance with the F d for one, two, and three measurement aspects, respectively. This finding indicates that ignoring azimuthal variations could cause large errors in tree transpiration estimates for Japanese cypress.  相似文献   

19.
To quantify the effects of crown thinning on the water balance and growth of the stand and to analyze the ecophysiological modifications induced by canopy opening on individual tree water relations, we conducted a thinning experiment in a 43-year-old Quercus petraea stand by removing trees from the upper canopy level. Soil water content, rainfall interception, sap flow, leaf water potential and stomatal conductance were monitored for two seasons following thinning. Seasonal time courses of leaf area index (LAI) and girth increment were also measured. Predawn leaf water potential was significantly higher in trees in the thinned stand than in the closed stand, as a consequence of higher relative extractable water in the soil. The improvement in water availability in the thinned stand resulted from decreases in both interception and transpiration. From Year 1 to Year 2, an increase in transpiration was observed in the thinned stand without any modification in LAI, whereas changes in transpiration in the closed stand were accompanied by variations in LAI. The different behaviors of the closed and open canopies were interpreted in terms of coupling to the atmosphere. Thinning increased inter-tree variability in sap flow density, which was closely related to a leaf area competition index. Stomatal conductance varied little inside the crown and differences in stomatal conductance between the treatments appeared only during a water shortage and affected mainly the closed stand. Thinning enhanced tree growth as a result of a longer growing period due to the absence of summer drought and higher rates of growth. Suppressed and dominant trees benefited more from thinning than trees in the codominant classes.  相似文献   

20.
A field study was carried out in a mixed deciduous forest in order to measure the spatial variability of evapotranspiration in relation to distance from the nearest forest edge. Throughfall was collected in storage gauges in a transect across the edge. Transpiration was measured at the tree scale by means of the sap flux technique. Thermal dissipation probes were inserted into the hydro-active sapwood of 12–16 sample trees at a time covering four species. The sample trees were located close to a north- and a south-facing forest edge and between 3 and 69 m away from the nearest edge. The probes were moved to new trees about once a month and in total 71 trees were sampled. Sap flux densities were compared with potential evaporation and scaled up to the stand through multiplication with sapwood area per unit ground area. No significant edge effect on interception evaporation could be detected but there was a large influence on stand transpiration which increased towards the edge. In ash (Fraxinus excelsior L.), this increase resulted mainly from enhanced sap flux density (by 33–82%, depending on the size class) in trees located at the edge, whereas in oak (Quercus robur L.) the sap flux density was similar in edge and inner trees and an effect was only found at the stand scale in the way that the total basal area, per unit ground area, was larger near the forest edge than in the forest interior. Hawthorn (Crataegus monogyna L.) and field maple (Acer campestre L.), which occurred mainly in the understorey, were only weakly affected by the proximity to an edge. At the stand scale the total seasonal transpiration varied between 354 mm in the forest interior (>45 m away from the edge) and 565 mm at the forest edge (<15 m away from the edge), whilst the potential evaporation over the same period was 571 mm. This corresponds to Priestley–Taylor coefficients of 0.78 in the interior and 1.25 at the edge, whilst intermediate numbers were found for the area between the edge and inner zones. Using these results to calculate the average water loss per unit ground area of hypothetical woodlands of various sizes, it is shown that the edge effect dominates the water use of small forests and becomes negligible only for woodlands larger than 100 ha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号