首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
Improved fallows have been used to reduce time required for soil fertility regeneration after cropping in low input agricultural systems. In semi-arid areas of Southern Africa, Acacia angustissima and Sesbania sesban are among some of the more widely used improved fallow species. However the residual effects of improved fallows on soil hydraulic properties during the cropping phase is not known. The aim of this study was to quantify the residual effects of fallows and tillage imposed at fallow termination on soil hydraulic properties (infiltration rates, hydraulic conductivity and soil porosity) during the cropping phase. Treatments evaluated were planted fallows of Acacia angustissima, Sesbania sesban and natural fallow (NF) and continuous maize as a control. Steady state infiltration rates were measured using a double ring infiltrometer and porosity was calculated as the difference between saturated infiltration rates and tension infiltration measurements on an initially saturated soil. Unsaturated hydraulic conductivity (Ko) and mean pore sizes of water conducting pores were measured using tension infiltrometer at tensions of 5 and 10 cm of water on an initially dry soil. While there was no significant difference in steady state infiltration rates from double ring infiltrometer measurements among the fallow treatments, these were significantly higher than the control. The steady state infiltration rates were 36, 67, 59 and 68 mm h-1 for continuous maize, A. angustissima, S. sesban and NF respectively. Tillage had no significant effect on steady state infiltration rate. Pore density at 5 cm tension was significantly higher in the three fallows than in maize and varied from 285–443 m−2 in fallows, while in continuous maize the pore density was less than 256 m−2. At 10 cm tension pore density remained significantly higher in fallows and ranged from 4,521–8,911 m−2 compared to 2,689–3,938 m−2 in continuous maize. Unsaturated hydraulic conductivities at 5 cm tension were significantly higher in fallows than in continuous maize and were 0.9, 0.7, 0.8 cm and 0.5 cm h−1 for A. angustissima, S. sesban, NF and continuous maize, respectively. However there were no significant treatment differences at 10 cm tension. Fallows improved infiltration rates, hydraulic conductivity and soil porosity relative to continuous maize cropping. Through fallowing farmers can improve the soils hydraulic properties and porosity, this is important as it affects soil water recharge, and availability for plant growth  相似文献   

3.
We investigated soil physical properties in three forest types in tropical lowland monsoon forests in central Cambodia under the same climatic conditions, i.e., Kanhaplic Haplustults in dry evergreen forest (KH-E), Arenic Haplustults in dry deciduous forest (AH-D), and Arenic Ultic Alorthods in mixed evergreen–deciduous forest (AA-M), to clarify the relationship between forest types and soil physical properties. The clay content was correlated with water content at ψ = −9.8 and −1500 kPa (WC10 and WC1500), available water capacity (AWC), and the van Genuchten (vG) parameter N (P < 0.01). vG parameter N was in the order AH-D > AA-M > KH-E whereas vG parameter α had a high value in KH-E soil at 0–100 cm in depth. The cumulative AWC (AWCcl, mm) at a soil depth of 0–200 cm was higher in the AH-D than in the KH-E, and was not considered a major factor affecting the distribution of different forest types under the same climatic conditions. The unsaturated hydraulic conductivity (K) at 0–100 cm in depth, estimated by use of models, was higher in AH-D than in KH-E mostly at matric potential ψ > −10 kPa. The low K in KH-E at ψ > −10 kPa was considered favorable for evergreen trees to retain the soil water for the transpiration in the dry season, and the matric potential in KH-E showed more gentle decreases in the early dry seasons than AH-D. Thus the differences in K among generally sandy soil types could possibly affect the establishment of different forest types in the study area with the same climate.  相似文献   

4.
Pyrolysis reactions of various lignin model dimers   总被引:1,自引:0,他引:1  
Primary pyrolysis reactions and relative reactivities for depolymerization and condensation/carbonization were evaluated for various lignin model dimers with α-O-4, β-O-4, β-1, and biphenyl substructures by characterizing the tetrahydrofuran (THF)-soluble and THF-insoluble fractions obtained after pyrolysis at 400°C. Reactivity was quite different depending on the model structure: depolymerization: α-O-4 [phenolic (ph), nonphenolic (nonph)], β-O-4 (ph) > β-O-4 (nonph), β-1 (ph, nonph) > biphenyl (ph, nonph); condensation/carbonization: β-1 (ph) > β-O-4 (ph) > α-O-4 (ph) > β-O-4 (nonph), biphenyl (ph, nonph), α-O-4 (nonph), β-1 (nonph). Major degradation pathways were also identified for β-O-4 and β-1 model dimers: β-O-4 types: Cβ-O cleavage to form cinnamyl alcohols and phenols and Cγ-elimination yielding vinyl ethers; β-1 types: Cα-Cβ cleavage yielding benzaldehydes and styrenes and Cγ-elimination yielding stilbenes. Relative reactivities of these pathways were also quite different between phenolic and nonphenolic forms even in the same types; Cβ-O cleavage (β-O-4) and Cγ-elimination (β-1) were substantially enhanced in phenolic forms.  相似文献   

5.
Agroforestry and grass buffers have been proposed for improving water quality in watersheds. Soil porosity can be significantly influenced by buffer vegetation which affects water transport and water quality. The objective of the study was to compare differences in computed tomography (CT)-measured macroporosity (>1,000-μm diam.) and coarse mesoporosity (200- to 1,000-μm diam.) parameters for agroforestry and grass buffer systems associated with rotationally grazed and continuously grazed pasture systems. Soils at the site were Menfro silt loam (fine-silty, mixed, superactive, mesic Typic Hapludalf). Six replicate intact soil cores, 76.2 mm diam. by 76.2 mm long, were collected using a core sampler from the four treatments at five soil depths (0–50 cm at 10-cm intervals). Images were acquired using a hospital CT scanner and subsequently soil bulk density and saturated hydraulic conductivity (K sat) were measured after scanning the cores. Image-J software was used to analyze five equally spaced images from each core. Bulk density was 5.9% higher and saturated hydraulic conductivity (K sat) values were five times lower for pasture treatments relative to buffer treatments. For the 0–10 cm soil depth, CT-measured soil macroporosity (>1,000 μm diam.) was 13 times higher for the buffer treatments compared to the pasture treatments. Buffer treatments had greater macroporosity (0.020 m3 m−3) compared to pasture (0.0045 m3 m−3) treatments. CT-measured pore parameters were positively correlated with K sat. The project illustrates benefits of agroforestry and grass buffers for maintaining soil porosity critical for soil water and nutrient transport.  相似文献   

6.
海岸林风害危险率评价的理论推导   总被引:2,自引:0,他引:2  
本文在对间伐和风害之间关系的讨论和以往有关研究结果的基础上,确定了一种林木风害危险率的估计方法,用于评价间伐对林木风害的影响。这种对单株黑松及整个黑松林分的风害危险率估计,是根据风速廓线、枝条分布和透光分层疏透度(OSP)系数推导出来的。结果表明:如果枝条分布模型中的参数β等于单株树冠中风速廓线模型的衰减系数αs,参数H/D1.33可用于比较和评价对单株树木的风害危险率。这一原理也同样适用于整个林分,即用林分内风速廓线衰减系数α和透光分层疏透度(OSP)的分布中的衰减系数ν,结合D1.33估计和比较林分风害危险率。文中对间伐与非间伐单株黑松风害危险率进行了估计,得出了间伐两年后可以降低单株黑松风害危险率的结论;同时给出了确定林分风害危险率估计的过程图。图3参45。  相似文献   

7.
Safe and economical disposal of paper mill sludge is a key consideration for forest products industry. A study was conducted to examine the effects of amendments of sludge and nutrients on soil surface CO2 flux (Rs) in northern hardwood forests and to quantify the relat among R5, soil temperature, and moisture in these stands. The experiment was a randomized complete block design that included sludge-amended, fertilized, and control treatments in sugar maple (Acer saccharum Marsh) dominated hardwood forests in the Upper Peninsula of Michigan, USA. Results showed that Rs was positively correlated to soil temperature (R2=0.80, p<0.001), but was poorly correlated to soil moisture. Soil moisture positively affected the Rs only in the sludge-amended treatment. The Rs was significantly greater in the sludge-amended treatment than in the fertilized (p=0.033) and the control (p=0.048) treatments. The maximum Rs in the sludge-amended treatment was 8.8 μmol CO2·m−2·s−1, 91% and 126% greater than those in the fertilized (4.6 μmol CO2·m−2·s−1) and control (3.9 μmol CO2·m−2·s−1) treatments, respectively. The Rs did not differ significantly between the fertilized and control treatments. The difference in Rs between sludge-amended and the other treatments decreased with time following treatment. Foundation item: The research was funded by a NCASI grant to S.T. Gower. Wang CK was supported by Innovated Talent Program of Northeast Forestry University (2004–07) Biography: WANG Chuan-kuan (1963-), male, Professor in the Ecology Program, College of Forestry, Northeast Forestry University, Harbin 150040, China. Responsible editor: Chai Ruihai  相似文献   

8.
在晋西黄土区,研究了荒草地、锦鸡儿灌木林地和刺槐乔木林地3种典型植被不同土层的土壤密度、含水量、贮水能力和入渗性能的差异及其相关性,结果显示:3种植被类型都能有效减小表层(0 20 cm)土壤密度;3种植被类型表层(0 20 cm)的土壤滞留贮水量较大,锦鸡儿林地(198.80 t·m-3)刺槐林地(166.10 t·m-3)荒草地(87.37 t·m-3),20 40 cm土层的土壤滞留贮水量也是锦鸡儿林地(127.30 t·m-3)刺槐林地(55.60 t·m-3)荒草地(47.30 t·m-3),表明在3种植被类型中,锦鸡儿林地对晋西黄土丘陵区土壤水分的涵养作用最强;锦鸡儿林地的土壤稳渗速率最大,为1.80 mm·min-1,刺槐林地次之,为1.46 mm·min-1,荒草地依然最小,且锦鸡儿林地土壤的均渗速率最大,为4.81 mm·min-1,其次是刺槐林地,为4.51 mm·min-1,荒草地最小。土壤密度与滞留贮水量呈极显著负相关关系,与土壤初渗速率和均渗速率呈极显著负相关关系,与稳渗速率呈显著负相关关系,非毛管孔隙度与稳渗速率和均渗速率存在极显著相关关系。Kostiakov模型和Horton模型对晋西黄土区3种植被类型土壤入渗过程模拟的拟合系数高达0.97和0.95,明显优于Philip模型(0.43)。  相似文献   

9.
Zusammenfassung Es wurde die Giftwirknng der α-, β-, γ- und δ-Isomeren des Hexachlorcyclohexans gegenüber Eilarven des Hausbockk?fers (Hylotrupes bajulus L.) und mittelgro?en Larven des Gew?hnlichen Nagek?fers (Anobium punctatum De Geer) bestimmt. Gegenüber beiden Larvenarten erwies sich das λ-Isomere erwartnngsgema? als der bei weitem wirksamste Stoff. Danach folgt, je nach den Versuchsbedingungen um den Faktor 10 bis 20100 schlechter, unerwartet das α-Isomere. Das δ- und noch ausgepr?gter das β-Isomere sind bedeutend weniger wirksam. Der Unterschied gegenüber dem γ-Isomeren liegt für Hausbock-Eilarven in der Gro?enordnung von 1500 und 80000; für Anobien-Larven ist er mit < 500 geringer. Das Ergebnis mit dem α-Isomeren ist beachtenswert.
Summary The toxicity of the α-, β-, γ-, and δ-isomers of hexachlorocyclohexane towards egg-larvae of the Old House Borer (Hylotrupes bajulus L.) and medium-sized larvae of the Common Furniture Beetle (Anobium punctatum De Geer) was determined. As was to be expected, the γ-,isomer proved by far most effective against both species of larvae. Then, unexpectedly, the α-isomer follows, inferior by the factor 10 to 2000 according to the testing conditions. The δ- and, even more distinctly, the β-isomer show a considerably smaller efficiency. The difference to the γ-isomer amounts to a relation of 1500 and 80000 withHylotrupes egg-larvae; it is smaller (<500) withAnobium larvae. The result obtained with the α-isomer is remarkable.

Résumé L'effet toxique des α-, β-, γ-, et δ-isomères du chlorocyclo-hexane contre des ovule-larves desHylotrupes bajulus L. et contre des larves de moyenne grandeur del'Anobium punctatum De Geer fut déterminé. Comme supposé, le γ-isomère était bien la plus efficace substance. Inattendu, le α-isomère, suit, selon les conditions d'essai plus mauvaises du facteur 10 à 2000. Le δ-isomè re et plus distinctement le β-isomère sont efficaces beaucoup moins. La différence entre ces derniers et les γ-isomères est de 1500 et 80000 pour des larves deHylotrupes bajulus L.; elle e'st moindre (< 500) pour des larves del'Anobium punctatum De Geer.
  相似文献   

10.
Effects of side chain hydroxyl groups on pyrolytic β-ether cleavage of phenolic model dimers were studied with various deoxygenated dimers under pyrolysis conditions of N2/400°C/1 min. Although phenolic dimer with hydroxyl groups at the C α and C γ positions was much more reactive than the corresponding nonphenolic type, deoxygenation at the C γ -position substantially reduced the reactivity up to the level of the nonphenolic type. These results are discussed with the cleavage mechanism via quinone methide intermediate formation, which is activated through intramolecular hydrogen bonds between C α and C γ hydroxyl groups.  相似文献   

11.
A dramatic decline in forest cover in eastern Africa along with a growing population means that timber and poles for building and fuelwood are in short supply. To overcome this shortage, the region is increasingly turning to eucalyptus. But eucalyptus raises environmental concerns of its own. Fears that it will deplete water supply, affect wildlife and reduce associated crop yields have caused many countries in the region to discourage farmers from planting this exotic. This paper is part of a series of investigations on the growth and water use efficiency of faster growing eucalyptus hybrids, which was introduced from South Africa to Kenya. The hypothesis is that the new hybrids are more efficient in using water and more suitable for the semi-arid tropics than existing eucalyptus and two popular agroforestry species. Gas exchange characteristics of juvenile Eucalyptus grandis (W. Hill ex Maiden), two eucalyptus hybrids (E. grandis × Eucalyptus camaldulensis Dehnh.), Grevillea robusta (A. Cunn) and Cordia africana (Lam) was studied under field and pot conditions using an infrared gas analyzer was used to measure photosynthetic active radiation (PAR), net photosynthetic rate (A), stomatal conductance (g s) and transpiration rate (E) at CO2 concentrations of 360 μmol mol−1 and ambient humidity and temperature. A, E and g s varied between species, being highest in eucalyptus hybrid GC 15 (24.6 μmol m−2 s−1) compared to eucalyptus hybrid GC 584 (21.0 μmol m−2 s−1), E. grandis (19.2 μmol m−2 s−1), C. africana (17.7 μmol m−2 s−1) and G. robusta (11.1 μmol m−2 s−1). C. africana exhibited high E values (7.0 mmol m−2 s−1) at optimal soil moisture contents than G. robusta (3.9 mmol m−2 s−1) and eucalyptus (5.3 mmol m−2 s−1) in field experiment and G. robusta (3.2 mmol m−2 s−1) and eucalyptus (4.2 mmol m−2 s−1) in pot-grown trees. At very low soil moisture content, extremely small g s values were recorded in GC 15 and E. grandis (8 mmol m−2 s−1) and G. robusta (14 mmol m−2 s−1) compared to GC 584 (46.9 mmol m−2 s−1) and C. africana (90.0 mmol m−2 s−1) indicating strong stomatal control by the species. Instantaneous water use efficiency ranged between 3 and 5 μmol mmol−1 and generally decreased with decline in soil moisture in pot-grown trees but increased with declining soil moisture in field-grown trees.  相似文献   

12.
Carbohydrate model compounds methyl β-d-glucopyranoside (MGPβ), methyl α-d-glucopyranoside (MGPα), and methyl β-d-mannopyranoside (MMPβ) and the deuterium compounds of MGPβ labeled at the anomeric or C-2 positions (MGPβ-1D, MGPβ-2D) were reacted with active oxygen species (AOS) generated in situ by reactions between O2 and a co-treated phenolic lignin model compound, 4-hydroxy-3-methoxybenzyl alcohol (VAlc), under conditions simulating oxygen delignification (0.5 mol/l NaOH, 0.36 mmol/l Fe3+, 1.1 MPa O2, 95°C). MGPβ was degraded more than MGPα but less than MMPβ when the pairs MGPβ/MGPα and MGPβ/MMPβ, respectively, were treated, which indicates that the configurational differences at the anomeric and C-2 positions influence the reactivity of AOS toward these compounds. When the pairs MGPβ/MGPβ-1D and MGPβ/MGPβ-2D were treated, no clear kinetic isotope effects were observed in either case. These results contrasted with those obtained when another phenolic compound, 2,4,6-trimethylphenol (TMPh), was used as the AOS generator instead of VAlc under exactly the same conditions. Clear kinetic isotope effects were observed when using TMPh. Because it is not easily accepted that the anomeric and C-2 hydrogen abstractions are minor reaction modes only for AOS generated in the VAlc system, it is suspected that the AOS do not show any clear kinetic isotope effect even though the AOS abstract an objective hydrogen.  相似文献   

13.
The aim of this study was to develop a facile method for categorizing native celluloses as the algal-bacterial type or the cotton-ramie type and for estimating the Iα/Iβ (triclinic/monoclinic) ratio of the cellulose samples. We investigated various native celluloses by X-ray diffractometry; and discriminant analysis was carried out using two equatoriald-spacings: 0.59–0.62 nm (d 1) and 0.52–0.55 nm (d 2). All of the samples were classified into the two groups without error. The function used to discriminate between the two groups is represented as:Z=1693d1 — 902d 2 — 549, whereZ>0 indicates the algal-bacterial (Iα-rich) type andZ<0 indicates the cotton-ramie (Iβ-dominant) type. Another X-ray diffraction study of hydrothermally treatedCladophora cellulose revealed the relation between thed-spacings (d 1,d 2) and the Iα/Iβ ratio. A calibrating equation by which the Iα/Iβ ratio was estimated from the two parameters,d 1 andd 2, was then prepared. In the case of relatively highly crystalline native celluloses, it was found that the Iα/Iβ ratio is easily determined by applying the two parameters in the equation.  相似文献   

14.
This article presents a theoretical verification of the reinforced-matrix hypothesis derived from tensor equations, σ W = σ f + σ m and ε W = ε f = ε m (Wood Sci Technol 32:171–182, 1998; Wood Sci Technol 33:311–325, 1999; J Biomech Eng 124:432–440, 2002), using classical Mori-Tanaka theory on the micromechanics of fiber-reinforced materials (Acta Metall 21:571–574, 1973; Micromechanics — dislcation and inclusions (in Japanese), pp 141–147, 1976). The Mori-Tanaka theory was applied to a small fragment of the cell wall undergoing changes in its physical state, such as those arising from sorption of moisture, maturation of wall components, or action of an external force, to obtain 〈σ AD = ϕ·〈σ FI + (1−ϕ)·〈σ MD−I. When the constitutive equation of each constituent material was applied to the equation 〈σ AD = ϕ·〈σ FI + (1−ϕ)·〈σ MD−I, the equations σ W = σ f + σ m and ε W = ε f = ε m were derived to lend support to the concept that two main phases, the reinforcing cellulose microfibril and the lignin-hemicellulose matrix, coexist in the same domain. The constitutive equations for the cell wall fragment were obtained without recourse to additional parameters such as Eshelby’s tensor S and Hill’s averaged concentration tensors AF and AM. In our previous articles, the coexistence of two main phases and σ W = σ f + σ m and ε W = ε f =ε m had been taken as our starting point to formulate the behavior of wood fiber with multilayered cell walls. The present article provides a rational explanation for both concepts.  相似文献   

15.
Tropical forests, like boreal forests, are considered key ecosystems with regard to climate change. The temperature sensitivity of soil CO2 production in tropical forests is unclear, especially in eastern Asia, because of a lack of data. The year-round variation in temperature is very small in tropical forests such that it is difficult to evaluate the temperature sensitivity of soil CO2 production using field observations, unlike the conditions that occur in temperate and boreal forests. This study examined the temperature sensitivity of soil CO2 production in the tropical hill evergreen forest that covers northern Thailand, Laos, and Myanmar; this forest has small temperature seasonality. Using an undisturbed soil sample (0.2 m diameter, 0.4 m long), CO2 production rates were measured at three different temperatures. The CO2 production (SR, mg CO2 m−2 s−1) increased exponentially with temperature (T, °C); the fitted curve was SR = 0.023 e0.077T, with Q10 = 2.2. Although still limited, our result supports the possibility that even a small increase in the temperature of this region might accelerate carbon release because of the exponential sensitivity and high average temperature.  相似文献   

16.
Soil physical properties and water movement within soil were investigated using dyes in a tropical rain forest, the Bukit Tarek Experimental Watershed of Peninsular Malaysia. The saturated hydraulic conductivity (K s) decreased with increasing soil depth. TheK s values were higher than those reported for other tropical soils. The geometric means of theK s values ranged from 4.69×10−3 (80 cm) to 4.07×10−2 cm s−1 (10cm). This suggests saturation overland flow may not be dominant but that subsurface flow must play an important role in stormflow generation. The shapes of the soil moisture characteristic curves resembled those of forest soils which have large changes in volumetric water content at pressure heads <30 cmH2O. The relatively high conductivities were due to the presence of a porous zone of decomposed root channels which existed continuously in vertical direction. Besides decayed roots, living roots also encourage preferential flow in vertical and lateral (downslope) directions. Termite activities may also form water flow pathways in tropical regions. These detailed results help us analyze water flow within the soil in tropical rain forests.  相似文献   

17.
Schinus terebinthifolius Raddi (Anacardiaceae) and Rapanea ferruginea (Ruiz & Pavon) Mez (Myrsinaceae) are two neotropical pioneer trees with wide geographical distribution in South America, highly degree of adaptation to different soil conditions and intense regeneration in areas with anthropic activities. With the aim to recommend the use Schinus and Rapanea in gallery forest restoration programs, we conducted an experiment with the objective to analyze the capacity of these two pioneer trees to tolerate soil flooding, mainly by accessing the effects of flooding on leaf gas exchange, growth and dry matter partitioning. Seedling survival throughout the 56-day flooding period were 100 and 90% for Schinus and Rapanea, respectively. The mean values of stomatal conductance (gs) and net photosynthesis (A) observed in the control seedlings were, respectively, 0.4 mol m–2s–1 and 14 mmolm–2s–1, for Schinus, and 0.5 mol m–2s–1 and 14 mmolm–2s–1, for Rapanea. On day 20 flooding reduced gs and A by 36 and 29% in Schinus, and 81 and 61% in Rapanea. At the end of the experiment, significant decreases were also observed for root and whole plant biomass, in both species. Based on the results, we concluded that seedlings of Schinus and Rapanea can survive and grow throughout a medium period of soil waterlogging, in spite of the alterations observed in their physiological behavior, such as the decreases in stomatal conductance and in whole plant biomass.  相似文献   

18.
In this study, two types of pedotransfer functions (PTFs) were evaluated for their accuracy and applicability to a broad range of Alpine soils in the Halbammer area in southern Bavaria (Germany). The first model is ROSETTA, which is based on neural network analyses. It implements five hierarchical PTFs using limited to more extend input data. The second model is SOILPROP that is based on physical methods and predicts the soil hydraulic properties from particle size distribution and bulk density. The PTF were evaluated by comparing predicted with measured water retention values. The accuracy was quantified by direct statistical evaluation with the correlation coefficient (R), the mean error (ME) and the root mean square difference (RMSD). Additionally, a process based functional validation was performed by simulating the water flow using the measured and predicted soil hydraulic data. The RMSD values from ROSETTA models ranged from 0.068 to 0.202 cm3/cm3 for the water retention and from 0.450 to 0.579 log Ks (cm/day) concerning the hydraulic conductivity (K s). The ME indicated underestimated water contents at high suctions and for soils with high organic content. The functional evaluation was the better as the more input data were used in the hierarchical PTFs. The RMSD of SOILPROP was 0.073 cm3/cm3 for water contents and 0.718 log Ks (cm/day) for the hydraulic conductivity. The water contents in the middle suction range were underestimated in sandy soils and overestimated in soils with low bulk density. The functional evaluation showed improved model accuracy when the predicted saturated conductivity was adjusted to more realistic values from literature showing its sensitiveness towards water flow modelling.  相似文献   

19.
Net light-saturated photosynthetic rate (Amax) of field grown cocksfoot (Dactylis glomerata L.) leaves in a radiata pine (Pinus radiata D. Don) silvopastoral system (Canterbury, New Zealand) was measured at different times under severe shade (85–95 μmol m–2 s–1 photosynthetic photon flux density, PPFD) and in full sunlight (1900 μmol m–2 s–1 PPFD). The aim was to integrate individual functions for Amax against air temperature (2 to 37 oC), water status, expressed as pre-dawn leaf water potential (ψlp) (-0.01 to −1.6 MPa), herbage nitrogen (N) (1.5 to 5.9%), regrowth duration (20 to 60 days) and time under shade (1 to 180 min) into a multiplicative model. The highest Amax value obtained was 27.4 μmol CO2 m–2 s–1 in non-limiting conditions with full sunlight. This value was defined as standardised dimensionless Amaxs = 1 for comparison of factor effects. The canopy temperature of the cocksfoot sward was up to 7.4 oC cooler than air temperature for plants under shade. Therefore, canopy temperature was used to predict Amax. The only interaction was between time under severe shade (5% of the open PPFD) and water stress (ψlp = −0.4 to −1.3 MPa) and this was included in the model. Validation of this model indicated 78% of the variation in Amax could be accounted for using these five factors by the addition of the interaction function. This model could be used to assist the prediction of pasture growth in silvopastoral systems through incorporation into a canopy photosynthesis model. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
The dependence of the acidolysis reaction of a C6-C3 dimeric nonphenolic β-O-4 type lignin model compound, 2-(2-methoxyphenoxy)-1-(3,4-dimethoxyphenyl) propane-1,3-diol (veratrylglycerol-β-guaiacyl ether, VG), on the type of acid applied was examined using three different acids [0.2 mol/l HCl, 0.2 mol/l HBr, and 0.1 mol/l (0.2 N) H2SO4 in 82% aqueous 1,4-dioxane at 85°C]. In the HCl system, the major reaction modes of the corresponding benzyl cation-type intermediate (BC), which is produced by protonation of the α-hydroxyl group of VG and successive release of the water molecule, are the abstraction of the β-proton and hydride transfer from the β-to the α-position. The liberation of formaldehyde from the γ-hydroxymethyl group of BC is the predominant reaction mode in the H2SO4 system. Apparently, an unknown reaction mode or modes is operative in the early stage of the HBr system that causes rapid disappearance of VG accompanied by the quantitative formation of 2-methoxyphenol without affording the common counterpart of a Hibbert’s ketone, 1-hydroxy-3-(3,4-dimethoxyphenyl) propan-2-one. The reaction mode in the HBr system changes with the progress of the reaction and is the same as that in the HCl system after the early stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号