首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Barnes AD 《Tree physiology》2002,22(10):733-740
One-year-old loblolly pine (Pinus taeda L.) seedlings from four seed sources (Arkansas, Georgia, Texas and Virginia) grown in 1-m-deep sand-filled pits in two water regimes (well-watered and drought) were studied, to gain insight into the process of seedling establishment. Whole-plant transpiration was measured biweekly from July to December. Whole-plant harvests were conducted at 6-week intervals from April to December. Whole-plant transpiration and transpiration per unit leaf and root area were affected by treatment, seedlot and phenology. Seedlings of the Arkansas seedlot maintained significantly higher transpiration rates per unit leaf and root area during drought than seedlings of the Virginia, Georgia or Texas seedlots, but did not accumulate greater biomass. The high transpiration rates of the Arkansas seedlings were attributed to their deep root systems. Allometric relationships indicated that, relative to the whole plant, biomass allocation to needles of drought-treated seedlings was enhanced during the summer (allometric ratio 1.09), whereas allocation to roots was enhanced in the spring and fall (allometric ratios of 1.13 and 1.09, respectively). Relative to the whole plant, biomass allocation to needles of well-watered seedlings was enhanced throughout the experiment (allometric ratio of 1.16 declining to 1.05), whereas the allometric ratio of root to total biomass was 0.89 or less throughout. Allometric relationships also indicated variation in biomass partitioning to roots in three soil layers (0-30, 30-60 and 60-100 cm), which differed among harvests in each soil layer. Root growth in both well-watered and drought-treated seedlings was concentrated in the top soil layer in the spring, shifted to the middle and bottom soil layers in the summer, and then increased in the top soil layer in the fall. Compared with well-watered seedlings, drought-treated seedlings had higher rates of root growth in the bottom soil layer in the fall, a characteristic that would confer tolerance to future periods of limited soil water availability.  相似文献   

2.
Comparison of the root system growth and water transport of southern pine species after planting in different root-zone environments is needed to guide decisions regarding when, and what species to plant. Evaluation of how seed source affects root system responses to soil conditions will allow seed sources to be matched to planting conditions. The root growth and hydraulic conductivity of three sources each of shortleaf, loblolly and longleaf pine seedlings were evaluated for 28 days in a seedling growth system that simulated the planting environment. Across species, an increase in root-zone temperature alleviated limitations to root growth caused by water stress. In the coldest temperature, longleaf pine maintained a higher hydraulic conductivity compared to shortleaf and loblolly pine. Without water limitation, the root growth and hydraulic conductivity of shortleaf and loblolly pine were superior to that of longleaf pine, but as water availability decreased, the root growth of longleaf pine surpassed that of loblolly pine. Hydraulic conductivities of the seed sources differed, and differences were attributed to either new root growth, or an increase in the efficiency of the root system to transport water.  相似文献   

3.
Leaf conductance at three absolute humidity deficits (AHDs) (7, 14 and 21 g m(-3)), hydraulic conductance and components of tissue water potential were measured in one-year-old loblolly pine seedlings from six origins representing the geographic range of the species. Measurements were made on seedlings grown (a) with ample water (moist regime) and (b) with recurring severe drought (dry regime). However, all seedlings were well-watered prior to and during measurements. Seedlings grown in the moist regime had greater mean leaf conductances (0.30 versus 0.13 cm s(-1)) and greater responses to AHD than seedlings grown in the dry regime. They also exhibited greater hydraulic conductances (0.53 versus 0.35 microg cm(-2) s(-1) MPa(-1), less negative osmotic potentials (-1.45 versus -1.57 MPa) and higher relative water contents at turgor loss (0.72 versus 0.65). Seed source differences in water relations characteristics were detected only in seedlings grown in the moist regime. In these, trees from the three interior origins had greater mean leaf conductances than those from the three coastal sources (0.32 versus 0.28 cm s(-1)), but no differences in response to changing AHD were observed. Seedlings from North Carolina had lower osmotic potentials at turgor loss than those from Florida, Georgia or Texas. These differences in water relations characteristics are not clearly related to the observed greater survival ability of trees from interior origins compared with those from coastal origins.  相似文献   

4.
Osmotic adjustment of loblolly pine (Pinus taeda L.) seedlings to fluctuating water supply in elevated CO(2) was investigated. Seedlings were grown in controlled-environment chambers in either 350 or 700 micro l l(-1) CO(2) with weekly watering for four months, after which they were either watered weekly (well-watered treatment) or every two weeks (water-stress treatment) for 59 days. Osmotic adjustment was assessed by pressure-volume analysis of shoots and by analysis of soluble carbohydrates and free amino acids in roots during the last drying cycle. In well-watered seedlings, elevated CO(2) increased the concentration of soluble sugars in roots by 68%. Water stress reduced the soluble sugar concentration in roots of seedling growing in ambient CO(2) to 26% of that in roots of well-watered seedlings. Elevated CO(2) mitigated the water stress-induced decrease in the concentration of soluble sugars in roots. However, this was probably due, in part, to carbohydrate loading during the first four months when all seedlings were grown in the presence of a high water supply, rather than to osmotic adjustment to water stress. Water stress caused a doubling in the concentration of free primary amino acids in roots, whereas elevated CO(2) reduced primary amino acid and nitrogen concentrations to 32 and 74%, respectively, of those in roots of seedlings grown in ambient CO(2). There was no indication of large-scale osmotic adjustment to water stress or that elevated CO(2) enhanced osmotic adjustment in loblolly pine.  相似文献   

5.
One-year-old Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and lodgepole pine (Pinus contorta Dougl.) seedlings were grown for 17 weeks in 100-cm deep, 7.8-liter containers. Two Douglas-fir provenances, one from a wet and one from a dry site in coastal British Columbia, and two lodgepole pine provenances, one from a wet and one from a dry site in interior British Columbia, were grown in wet (522% water content) or dry (318% water content) peat/vermiculite soil in a factorial design. Each container was sealed so that water loss occurred only through the seedling. Five harvests were made at three to five week intervals and water use, dry matter increment, root length and root weight were determined at each harvest. Stomatal conductance and shoot water potentials were measured during the last 12 weeks of the experiment. Lodgepole pine seedlings had greater dry matter production, water use, stomatal conductance and new root length than Douglas-fir seedlings. New root weight of lodgepole pine seedlings exceeded that of Douglas-fir seedlings during the last five weeks of the experiment, and specific root length (root length per unit root weight) of new roots was higher for lodgepole pine seedlings throughout the experiment. Douglas-fir seedlings showed higher water use efficiency (WUE) than lodgepole pine seedlings, and both species showed higher WUE in the dry soil treatment. Douglas-fir seedlings had lower water potentials and higher water uptake rates per unit of new root length than lodgepole pine seedlings, although water uptake rates per unit of root dry weight showed little difference between species. Soil water treatment influenced specific root length of new roots, water uptake per unit of new root length, and WUE in Douglas-fir seedlings more than in lodgepole pine seedlings.  相似文献   

6.
To investigate the effects of soil water content on growth and transpiration of Japanese cedar (Cryptomeria japonica D. Don) and Hinoki cypress (Chamaecyparis obtusa (Siebold et Zucc.) Endl.), potted seedlings were grown in well-watered soil (wet treatment) or in drying soil (dry treatment) for 12 weeks. Seedlings in the wet treatment were watered once every 2 or 3 days, whereas seedlings in the dry treatment were watered when soil water content (Theta; m3 m(-3)) reached 0.30, equivalent to a soil matric potential of -0.06 MPa. From Weeks 7 to 12 after the onset of the treatments, seedling transpiration was measured by weighing the potted seedlings. After the last watering, changes in transpiration rate during soil drying were monitored intensely. The dry treatment restricted aboveground growth but increased biomass allocation to the roots in both species, resulting in no significant treatment difference in whole-plant biomass production. The species showed similar responses in relative growth rate (RGR), net assimilation rate (NAR) and shoot mass ratio (SMR) to the dry treatment. Although NAR did not change significantly in either C. japonica or C. obtusa as the soil dried, the two species responded differently to the dry treatment in terms of mean transpiration rate (E) and water-use efficiency (WUE), which are parameters that relate to NAR. In the dry treatment, both E and WUE of C. japonica were stable, whereas in C. obtusa, E decreased and WUE increased (E and WUE counterbalanced to maintain a constant NAR). Transpiration rates were lower in C. obtusa seedlings than in C. japonica seedlings, even in well-watered conditions. During soil drying, the transpiration rate decreased after Theta reached about 0.38 (-0.003 MPa) in C. obtusa and 0.32 (-0.028 MPa) in C. japonica. We conclude that C. obtusa has more water-saving characteristics than C. japonica, particularly when water supply is limited.  相似文献   

7.
Miller SP  Cumming JR 《Tree physiology》2000,20(16):1129-1135
Effects of simulated serpentine soil conditions (elevated Mg:Ca ratio and Ni concentration) on seedlings from populations of Virginia pine (Pinus virginiana Mill.) from serpentine and non-serpentine sites were evaluated in sand culture. We determined (1) how seedlings are affected by elevated Mg:Ca ratio and Ni concentrations, (2) if there are interactive effects between Mg:Ca ratio and Ni concentrations on seedling growth, needle pigment concentrations, and nutrition, and (3) if Virginia pine populations from serpentine areas are edaphic ecotypes. A Mg:Ca ratio of 5 and 50 microM Ni both reduced seedling growth compared with control seedlings grown in the presence of the standard Mg:Ca ratio of 0.5 and no Ni. Interactive effects between Mg:Ca ratio and Ni concentrations were highly significant for growth, foliar pigments, and needle and root elemental concentrations. Nickel-mediated reductions in growth and foliar pigment concentrations were less at the serpentine Mg:Ca ratio of 5 than at the standard (non-serpentine) Mg:Ca ratio of 0.5. Foliar N was reduced by Ni concentrations as low as 10 microM, and foliar and root K, Ca and P concentrations were significantly reduced by Ni concentrations above 25 microM, with greater reductions at a Mg:Ca ratio of 0.5 than at a Mg:Ca ratio of 5. There were no population x serpentine soil factor interactions for seedling growth, foliar pigment concentrations, or nutrition, suggesting that seedlings from trees growing on serpentine soils are not edaphic ecotypes. We conclude that serpentine conditions present at the site of seed collection have not resulted in the selection of edaphic ecotypes of Virginia pine with respect to Mg:Ca ratio and Ni concentration.  相似文献   

8.
Ecotypic variations in leaf conductance, soil-to-leaf hydraulic conductance, components of tissue water potential, hydraulic architecture parameters and xylem embolism were examined in greenhouse-grown two-year-old Aleppo pine (Pinus halepensis Mill.) seedlings from six origins representing the geographic range of the species in Italy. Cortical resin composition of the seedlings was also determined. Measurements were made on well-watered seedlings and on seedlings subjected to recurring severe drought. Drought-stressed seedlings had lower mean leaf conductances, transpiration rates and soil-to-leaf hydraulic conductances than well-watered seedlings. They also exhibited more negative osmotic potentials, higher relative water deficit at incipient plasmolysis, but a similar maximum modulus of elasticity. Drought-stressed seedlings showed a higher degree of xylem embolism, a lower Huber value, lower leaf specific conductivity and lower specific conductivity than well-watered seedlings. Drought-stressed seedlings of provenances from more xeric habitats (Tremiti, Porto Pino and Mottola) had greater leaf conductances, transpiration rates and soil-to-leaf hydraulic conductances than drought-stressed seedlings of provenances from more mesic habitats (Imperia, Otricoli and Vico del Gargano). They also showed higher osmotic adjustment and a lower degree of xylem embolism. Among provenances, there were no significant differences in hydraulic architecture parameters in response to the drought treatment; however, Tremiti and Porto Pino seedlings displayed smaller drought-induced reductions in specific conductivity and leaf specific conductivity, respectively, than seedlings from other provenances. These differences suggest that seedlings from xeric provenances, especially Tremiti, have greater resistance to desiccation than seedlings from mesic provenances. No clear association was found between terpene variability and the other traits investigated, although terpene composition was related to the geographical distribution of the provenances. We conclude that the drought-tolerance responses of Tremiti make it a more suitable provenance than the others for establishment on sites prone to severe soil water deficits.  相似文献   

9.
Historical land use and management practices in the southeastern United States have resulted in the dominance of loblolly pine (Pinus taeda L.) on many upland sites that historically were occupied by longleaf pine (Pinus palustris Mill.). There is currently much interest in restoring high quality longleaf pine habitats to such areas, but managers may also desire the retention of some existing canopy trees to meet current conservation objectives. However, fast-growing natural loblolly pine regeneration may threaten the success of artificially regenerated longleaf pine seedlings. We evaluated the establishment and growth of natural loblolly pine regeneration following different levels of timber harvest using single-tree selection (Control (uncut, residual basal area ∼16 m2/ha), MedBA (residual basal area of ∼9 m2/ha), LowBA (residual basal area of ∼6 m2/ha), and Clearcut (complete canopy removal)) and to different positions within canopy gaps (approximately 2800 m2) created by patch cutting at two ecologically distinct sites within the longleaf pine range: Fort Benning, GA in the Middle Coastal Plain and Camp Lejeune, NC in the Lower Coastal Plain. The density of loblolly pine seedlings was much higher at Camp Lejeune than at Fort Benning at the end of the first growing season after harvesting. Following two growing seasons, there were no significant effects of canopy density or gap position on the density of loblolly pine seedlings at either site, but loblolly pine seedlings were taller on treatments with greater canopy removal. Prescribed fires applied following the second growing season killed 70.6% of loblolly pine seedlings at Fort Benning and 64.3% of seedlings at Camp Lejeune. Loblolly pine seedlings were generally less than 2 m tall, and completeness of the prescribed burns appeared more important for determining seedling survival than seedling size. Silvicultural treatments that include canopy removal, such as patch cutting or clearcuts, will increase loblolly pine seedling growth and shorten the window of opportunity for control with prescribed fire. Therefore, application of prescribed fire every 2-3 years will be critical for control of loblolly pine regeneration during restoration of longleaf pine in existing loblolly pine stands.  相似文献   

10.
Nowak J  Friend AL 《Tree physiology》1995,15(9):605-609
To probe variation in Al sensitivity of two co-occurring pine species, seedlings from six full-sib families of loblolly pine (Pinus taeda L.) and slash pine (Pinus elliottii Engelm.) were grown in solution culture containing 4.4 mM (high-Al) or 0.01 mM (low-Al) AlCl(3) at pH 4 for 58 days. On average, both pine species had 41% less total dry weight in the high-Al treatment than in the low-Al treatment. Stem volume growth of slash pine was more sensitive to the high-Al treatment than that of loblolly pine. In both species, the high-Al treatment inhibited root dry weight more than shoot dry weight. Within-species variation in Al sensitivity among families was greater in loblolly pine (24 to 52% inhibition of seedling dry weight) than in slash pine (35 to 47% inhibition of seedling dry weight). Foliar Al concentration was positively correlated with Al sensitivity in slash pine but not in loblolly pine; however, in both species, the concentration of Al in roots was 20-fold greater than in foliage.  相似文献   

11.
The effects of fertilization and irrigation, singly and in combination, on growth and dry-matter allocation in seedlings of Pinus taeda and P. elliottii were investigated under field conditions. Trickle irrigation was regulated to maintain soil water potential above −10 kPa and 111 g of fertilizer (N:P:K 10:10:10 plus micronutrients) were banded around each seedling on three occasions. Treatments were initiated at the beginning of the second growing-season in the field, the same year sampling was conducted. Sampling consisted of complete excavation of 15 seedlings per treatment per species beginning in early April and continued every 6 weeks through mid-November, 1986. Each seedling was measured for height, root-collar diameter, foliage, stem and root dry-matter, and total needle surface-area. Allometric growth-analysis was used to determine dry-matter partitioning among the various tree components.

The cultural treatments affected the two species differently. Loblolly pine responded to treatments by shifting dry-matter allocation from roots to shoots, with the greatest increase observed in the fertilization treatment. Slash pine showed a similar response to irrigation and to irrigation plus fertilization, but increased allocation to roots under the fertilization treatment. Allocation to stems was greater than to foliage in both species and treatments except the control loblolly pine.  相似文献   


12.
Ethane production was evaluated as a method for assessing freeze damage to loblolly pine (Pinus taeda L.) seedlings by comparing it to the widely used electrolyte leakage method. Paired measurements, first ethane production and then electrolyte leakage, were conducted on the pooled needle samples at temperatures between 0° and –12°C. Ethane production rates increased in a linear fashion with decreasing temperatures between 0° and –12°C for both Virginia Coastal Plain (R2=0.80) and Marion County, Florida (R2=0.87) seed sources. The Florida seedlings were consistently 2° to 4°C higher than the Virginia seedlings at a given ethane level. Electrolyte leakage expressed as Index of Injury initially increased with decreasing temperatures, but then leveled off at or decreased below –8°C. The log-log linear regression of ethane production against Index of Injury indicated good correspondence for both seed sources (Virginia – R2=0.81; Florida – R2=0.91). Ethane production appears more rapid and to require less sampling than does electrolyte leakage while producing comparable results to the electrolyte leakage method.  相似文献   

13.
梭梭(HaloxylonAmmodendronBge,一种C4灌木)苗种植在15升的容器中,给予不同的水分胁迫处理,研究了其水分关系和气体交换特征。结果表明:当土壤水分含量大于11%时,梭梭苗有高的蒸腾量;土壤水分含量低于6%时,苗木就不能从土壤中吸取水分;很好供水的苗木的蒸腾量与潜在蒸发量成线型相关。气体交换测定发现,随着土壤水分含量的下降,造成了不同程度的气孔导度、叶蒸腾强度和光合作用的下降。对同一苗木而言,由于这个地区有高的水气压亏缺(VPD),很好和中度供水的苗木在气孔反应方面有较宽的范围,气孔在决定光合作用方面起着较小的作用,二者没有明显的线型相关关系。虽然水分胁迫使蒸腾速率比光合速率下降的更快,提高了水分利用效率,而较高的蒸发需求增加了蒸腾量,限制了光合作用,但是总的趋势是光合作用和蒸腾强度成线型相关。图6表2参15。  相似文献   

14.
Drought stress is one of the most important environmental factors affecting plant growth and survival. To date, most studies aim at understanding of post-stress physiological and anatomical adaptation to drought stress; however only few studies focus on plant recovery. In the present study, transpiration, shoot water potential, and anatomical and morphological measurements were performed on 4-year-old European beech seedlings with fully developed leaves. The seedlings were exposed to three levels of soil water potential (well-watered, moderate drought stress and severe drought stress) and followed by rewatering under greenhouse conditions. Reduced transpiration rates were observed in the stressed seedlings as a response to drought stress, whereas anatomical and morphological variables remained unchanged. Three days after rewatering, transpiration rates in both moderately and severely stressed seedlings recovered to the levels of those of well-watered seedlings. Drought stress promoted leaf budding, resulting in higher shoot dry mass of stressed seedlings. Our findings indicate that anatomical and morphological adaptations of European beech seedlings to drought stress are visibly limited during late-season growth stages. These results will help us to further understand factors involved in drought adaptation potential of European beech seedlings faced with expected climate-related environmental changes. To complete our findings, further experiments on plant recovery from drought stress should be focused on different periods of growing season.  相似文献   

15.
Samuelson  L.J. 《New Forests》2000,19(1):95-107
Leaf physiology and fractional dry weight allocation were examined in four open-pollinated families of loblolly pine (Pinus taeda L.) and slash pine (Pinus elliottii Englm. var. elliottii) in response to growth under low and high N supply for six months. Nitrogen greatly influenced dry weight allocation, total mass, leaf net photosynthesis and leaf conductance in seedlings of both species. Family variation in fine root allocation was observed under low but not high N treatment, but for the majority of physiological and growth traits, family variation was stable under varying N treatment. Family rankings based on juvenile height, diameter and biomass accretion were similar to rankings based on field performance at 22 years in slash pine but not loblolly pine. Lower leaf maintenance respiration rates were associated with families exhibiting the most rapid juvenile growth.  相似文献   

16.
The effects of j-rooting on water stress and growth of loblolly (Pious taeda L.) and eastern white pine (Pious strobus L.) were examined over three growing seasons in the field. Seedlings were planted in an area with severe herbaceous competition with either their roots planted straight or bent into a j shape. All seedlings were planted with their root collars placed at the soil surface. During the first year j-rooted seedlings consistently had lower water potentials but never statistically significant. Since both treatments were planted with the root collar at the soil surface, this trend was likely due to an initial shallower root system in j-rooted seedlings. In year three no differences in water potential were significant and no trends were evident. Growth did not differ significantly by treatment at any time but, by year three, j-rooted plants were consistently larger for both species.  相似文献   

17.
We investigated the influence of shelterwood conditions on water relations and growth of loblolly pine (Pinus taeda L.) seedlings on two harsh sites in eastern Texas. Site I was harvested to provide four overstory density treatments (0, 2.3, 4.6 and 9.2 m(2) of residual basal area per ha). To quantify the effects of overstory competition, trenched and nontrenched subplots, each containing 25 one-year-old seedlings, were established within each overstory treatment plot, and predawn and midday water potentials (Psi(w)), seedling growth and survival were measured during the growing season. Leaf area and seedling biomass partitioning were measured at the end of the growing season. Site II was harvested to provide two overstory density treatments (0 and 6.9 m(2) ha(-1)) and planted with one-year-old loblolly pine seedlings. Seedling Psi(w), stomatal conductance (g(wv)), transpiration flux density (E), leaf area, height and survival were determined. On Site I, seedling Psi(w) increased with increasing overstory basal area, whereas trenching only substantially affected Psi(w) of seedlings in the 9.2 m(2) ha(-1) overstory treatment. Growth was not affected by overstory treatment or trenching. On Site II, Psi(w) and g(wv) were highest during the morning hours and lowest in the afternoon, whereas E peaked in the afternoon. Vapor pressure deficits and photosynthetic photon flux density were major factors in determining g(wv) differences between treatments. On individual days, the presence of an overstory increased Psi(w) and reduced both g(wv) and E. On Site II, leaf area was affected by overstory treatment throughout most of the study. We conclude that the presence of an overstory can have ameliorative effects on harsh sites at the western fringe of the loblolly pine natural range.  相似文献   

18.
Early growth and physiology of longleaf pine (Pinus palustris Mill.) seedlings were studied in response to light, water and nitrogen under greenhouse conditions. The experiment was conducted with 1-year-old seedlings grown in 11.3 l pots. The experimental design was a split-plot factorial with two levels (low and high) of each of the factors, replicated in three blocks. The four factorial combinations of water and nitrogen were randomly applied to 15 pots (sub-plots) in each of the light treatment (main plot). Data were collected on survival, root collar diameter (RCD), and height on a monthly basis. Biomass (shoot, root and needle), leaf area index, specific needle area, and needle nutrient (N, P, K, Ca, and Mg) concentrations were determined following final harvest after 16 months. Physiological data (net photosynthesis and transpiration) were collected monthly from March to July during the second growing season.

Height and RCD were significantly influenced by nitrogen and water and by the interaction between them with no apparent effect of light. Seedlings grew 93% taller in the high nitrogen and well watered (HNWW) treatment compared to the low nitrogen and water stressed (LNWS) treatment. Similarly, a significant increase (78%) in RCD was observed for seedlings in the HNWW treatment over the LNWS treatment. Light, along with water and nitrogen, played an important role in seedling biomass growth, especially when water was not limiting. Biomass partitioning (as measured by root:shoot ratio) was affected only by nitrogen and water. Nutrient stress had a greater influence on carbon allocation (69% increase in root:shoot ratio) than water stress (19% increase). Net photosynthesis (Pnet) was significantly higher for seedlings in the high resource than in the low resource treatments with significant light×water and nitrogen×water interactions. Transpiration rate was higher (75%) under the WW treatment compared to the WS treatment. Longleaf pine seedlings grown under the LNWW treatment had the lowest foliar nitrogen (0.71%) whereas seedlings in the HNWS treatment had the highest (1.46%). Increasing the availability of light (through larger canopy openings or controlling midstory density) and soil nitrogen (through fertilization) may not result in greater Pnet and improved seedling growth unless soil water is not limiting.  相似文献   


19.
Water relations and growth of maritime pine (Pinus pinaster Ait.) were investigated in 2-year-old seedlings of French ('Landes'), Iberian ('Iberian') and Moroccan ('Tamjoute') origin raised for 67 days in a flowing solution culture system containing 0, 50, 150 or 250 mM NaCl. Height growth, and stem, needle and root dry matter were reduced by salinity with minor differences among geographic origins. Predawn needle water potential was decreased by salinity and corresponded approximately to the osmotic potential of the nutrient solution. Stomatal conductance was reduced according to the amount of salinity applied. Whole-plant hydraulic conductance was also reduced, even when expressed on a root dry weight basis. The osmotic potential of xylem sap was five- to sixfold lower than that of the nutrient solution. Seedlings of the most southerly origin (Tamjoute) exhibited a greater ability to decrease osmotic potential under saline conditions than seedlings of more northerly origin (Landes and Iberian) as a result of higher mineral cation transport to the shoot.  相似文献   

20.
Cumming JR 《Tree physiology》1993,13(2):173-187
The association of ectomycorrhizal fungi with tree roots enhances the acquisition of phosphorus (P) from the soil. In addition to increasing the uptake of H(2)PO(4) (-) (P(i)), mycorrhizal fungi may increase the spectrum of P sources utilized by tree roots by mediating the dissolution of insoluble metallophosphate salts or the hydrolysis of organic P compounds. To investigate the role of ectomycorrhizal fungi in enhancing P acquisition by tree roots, pitch pine (Pinus rigida Mill.) seedlings were grown in sand culture with or without the ectomycorrhizal symbiont Pisolithus tinctorius Coker and Couch under various conditions of P limitation. Compared with nonmycorrhizal seedlings, seedlings inoculated with P. tinctorius exhibited a greater capacity to function under P limitation as evidenced by superior growth and the maintenance of normal foliar ion composition at low P(i) concentrations. Nonmycorrhizal seedlings subjected to P-limiting conditions exhibited depressed K and P and elevated Na concentrations in foliage. The association of P. tinctorius with pitch pine seedling roots maintained foliar K concentrations and prevented the accumulation of Na under P limitation. Nonmycorrhizal seedlings were unable to obtain P from either solid AlPO(4) or inositol hexaphosphate (IHP), whereas seedlings inoculated with P. tinctorius utilized AlPO(4), but not IHP as a P source. Root surface acid phosphatase (APase) activity was depressed in roots infected with the mycorrhizal symbiont and was negatively correlated with seedling growth on all P sources. Root APase activity was negatively correlated with foliar P concentrations in seedlings grown on P(i), but was not correlated with foliar P concentrations in seedlings cultured with AlPO(4) or IHP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号