首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
In order to explore the effects of different forest types on active soil carbon pool, the amounts and density of soil organic carbon (SOC) were studied at different soil horizons under typical coniferous and broad-leaved forests in the mountainous area of Beijing. The results showed that the amount of total SOC, readily oxidizable carbon and particulate organic carbon decreased with increasing depths of soil horizons and the amounts at depths of 0–10 cm and 10–20 cm in broad-leaved forest was clearly higher than that in coniferous forests. The trend of a decrease in SOC density with increasing depth of the soil horizon was similar to that of the amount of SOC. However, no regular trend was found for SOC density at different depths between coniferous forest and broad-leaved forests. The ratio of readily oxidizable carbon to total amount of SOC ranged from 0.36–0.45 and the ratio of particulate organic carbon to total amount of SOC from 0.28–0.73; the ratios decreased with increasing depths of soil horizons. Active SOC was significantly correlated with total SOC; the relationship between readily oxidizable carbon and particulate organic carbon was significant. A broad-leaved forest may produce more SOC than a coniferous forest.  相似文献   

2.

Key message

The vertical transport of dissolved organic carbon (DOC) is an important determinant of carbon distribution across a soil profile. The transport of DOC down a soil profile can be largely influenced by incoming DOC and soil organic carbon (SOC) levels, which insulate DOC from adsorption processes regulated by soil texture and Fe/Al mineralogy.

Context

Uncertainties about how soil properties affect DOC transport through the soil profile require study because soils can differ strongly with respect to texture or Fe/Al mineralogy and yet retain similar quantities of DOC.

Aims

This study aimed to assess the role of incoming DOC and native SOC in regulating DOC migration in soils and investigate the contribution of DOC movement to SOC allocation.

Methods

We leached a standard DOC solution extracted from Castanopsis carlesii litter through two distinct soil types, using two leaching strategies: single leaching and sequential leaching. The two soil types under a natural Castanopsis carlesii (Hemsl.) Hayata forest and a natural Castanopsis fargesii Franch. forest, respectively, differ strongly with respect to soil texture, Fe/Al oxide abundances, and SOC nature.

Results

With single leaching, where each of six soil layers making up an entire 0–100-cm soil depth profile received single doses of standard DOC solution, deeper soil layers retained more DOC than upper soil layers, with native SOC largely masking the effects of soil texture and Fe/Al mineralogy on DOC migration. Following sequential leaching, where a sixfold larger amount of standard DOC solution sequentially percolated through the six soil layers, the upper soil layers generally retained more DOC than deeper layers. Nevertheless, in sequential leaching, desorption-induced transfer of carbon from upper soil layers to deeper soil layers resulted in greater total carbon retention than in single leaching.

Conclusion

Forest subsoils (40–100 cm) are well below C saturation, but DOC vertical movement from top soils only transfers limited organic carbon to them. However, DOC vertical movement may greatly alter SOC allocation along the top soil profile (0–40 cm), with part of outer sphere native SOC displaced by incoming DOC and migrating downwards, which is a natural way to preserve SOC.
  相似文献   

3.
We examined whether N-fertilization and soil origin of Douglas-fir [Psuedotsuga menziesii (Mirb.) Franco] stands in western Washington state could affect C sequestration in both the tree biomass and in soils, as well as the flux of dissolved organic carbon (DOC) through the soil profile. This study utilized four forest sites that were initially established between 1972 and 1980 as part of Regional Forest Nutrition Research Project (RFNRP). Two of the soils were derived from coarse-textured glacial outwash and two from finer-textured volcanic-source material, primarily tephra, both common soil types for forestry in the region. Between 1972 and 1996 fertilized sites received either three or four additions of 224 kg N ha−1 as urea (672–896 kg N ha−1 total). Due to enhanced tree growth, the N-fertilized sites (161 Mg C ha−1) had an average of 20% more C in the tree biomass compared to unfertilized sites (135 Mg C ha−1). Overall, N-fertilized soils (260 Mg C ha−1) had 48% more soil C compared to unfertilized soils (175 Mg C ha−1). The finer-textured volcanic-origin soils (348 Mg C ha−1) had 299% more C than glacial outwash soils (87.2 Mg C ha−1), independent of N-fertilization. Soil-solution DOC collected by lysimeters also appeared to be higher in N-fertilized, upper soil horizons compared to unfertilized controls but it was unclear what fraction of the difference was lost from decomposition or contributed to deep-profile soil C by leaching and adsorption. When soil, understory vegetation and live-tree C compartments are pooled and compared by treatment, N-fertilized plots had an average of 110 Mg C ha−1 more than unfertilized controls. These results indicate these sites generally responded to N-fertilization with increased C sequestration, but differences in stand and soil response to N-fertilization might be partially explained by soil origin and texture.  相似文献   

4.
在黄土丘陵区选择从耕地、草地、灌木林到乔木林样地,不同样地内设立1 m × 1 m(乔木10 m×10 m)的样方,分析样方内凋落物积累量、碳氮含量、土壤有机碳(SOC)和可溶性碳(DOC)含量变化.结果表明:天然草地、灌木林、乔木林凋落物积累量依次为5.3,12.1和32.4 t·hm-2;但人工灌木林和乔木林的凋落物积累量分别为6.7和11.4 t·hm-2,分别是天然灌木林和乔木林的1/2和1/3.随着植被的恢复,天然植被凋落物的C/N高于人工植被(刺槐林除外).与耕地SOC(4.67 g·kg-1)相比,天然灌木林地SOC提高5.9倍,人工灌木林地提高1.8倍;天然乔木林地提高8.0倍,而人工乔木林地仅提高4.0倍.凋落物积累量与0~20 cm土层土壤有机碳存在显著线性相关关系(R2>0.83),但20 cm以下线性相关关系不显著.凋落物积累量与0~10 cm土壤可溶性碳含量存在显著线性相关关系(R2>0.893),与10~60 cm土层线性相关关系不显著,与80~100 cm土壤可溶性碳存在显著线性负相关关系.  相似文献   

5.
【目的】探究高寒生态系统土壤有机碳(SOC)、全氮(TN)、全磷(TP)、全钾(TK)含量及化学计量比的垂直分布特征。【方法】以西藏东南部色季拉山西坡海拔4 200~4 400 m区域为研究区,选择苔草高寒草甸(CAM)、嵩草沼泽化草甸(KSM)、林芝杜鹃灌丛(RTS)和雪山杜鹃灌丛(RAS)4种典型植被类型土壤为研究对象,分别采集0~10、10~20、20~40、40~60 cm层次土壤样品,测定SOC、TN、TP、TK含量。【结果】1)SOC、TN、TP含量随土层加深而下降,TK则呈升高趋势(KSM除外),空间变异系数(CV)分别为51.99%、55.52%、4.55%、18.58%,SOC、TN表聚特征明显,TP、TK垂直变化相对稳定。不同植被类型SOC、TN、TP、TK变化范围分别为53.41~338.72、2.89~15.02、0.57~1.00、5.59~18.22 g·kg-1,CV分别为95.58%、84.57%、26.03%、42.21%。2)土壤C∶P、N∶P随土层加深而降低(KSM除外),C∶N比呈升高趋势,垂直变异系数分别为37.40%、37.39%、12.81%,表明区域土壤TP相对稳定,SOC随土层加深的变化稍滞后于TN。不同植被类型土壤C∶N、C∶P、N∶P分别在13.85~28.16、73.34~553.13、4.26~29.15之间,CV分别达29.11%、108.85%、111.16%,即由植被类型不同造成的立地条件差异深刻影响着土壤C∶P、N∶P。3)研究区SOC、TN均值分别达139.65、6.74 g·kg-1,显著高于全国0~10 cm土壤平均水平(24.56、1.88 g·kg-1),TP均值为0.73 g·kg-1,略低于我国0~10 cm土壤水平(0.78 g·kg-1)。与全球0~10 cm森林土壤的C∶N(12.40)、C∶P(81.90)、N∶P(6.60)水平比较,4种植被类型的C∶N、C∶P均较高,N∶P较低(KSM除外),C∶N除RAS外均小于25,表明SOC易分解,KSM的C∶P大于200,表明其土壤P的有效性较低,同时KSM的N∶P高达29.15,可能存在P限制。4)相关性分析表明机械组成、容重是影响土壤化学计量比的主要内在因子,其中C∶P、N∶P主要与容重、黏粒、粉粒负相关(P <0.01),与砂粒正相关(P <0.01),C∶N则主要与pH值负相关(P <0.05),与容重、机械组成的相关性未达显著水平。【结论】研究结果可为高寒环境下不同植被类型土壤养分供应状况及循环研究提供理论支撑。  相似文献   

6.
This study evaluates the effect of silvicultural and exploitative interventions on soil organic carbon (SOC) in Chilean Lenga (Nothofagus pumilio (Poepp et Endl.) Krasser) forests in south Patagonia. We analyzed SOC and the organic soil horizons in five stands at different stages of development: intact native forest (NI); a 3-year-old shelterwood stand (S3); an 8-year-old shelterwood stand (S8); a 14-year-old stand that was initially treated with shelterwood and subsequently final cut (10 years after the first intervention) (S14), and a 25-year-old stand subject to a exploitative intervention (E25). The SOC under the forest stands, down to a depth of 50 cm (including the Oi horizon), was 60, 55, 71, 85, and 67 Mg ha−1 for the NI, S3, S8, S14, and E25 forest stands, respectively. A significant decrease in SOC occurred 3 years after an intensive shelterwood cut (S3), particularly in the first 5 cm of the mineral soil. Slightly higher carbon contents were observed in the upper horizons of the mineral soil in both the S8 and S14 stands. Consequently, the applied shelterwood system appears to generate only short-term losses of SOC in the Lenga forest. Soil organic carbon increased over the medium term but decreased to the level observed in intact native forests over the long term. Regeneration, which influences stand microclimate (a factor in SOC storage) and provides an important source of organic soil material, was identified as one of the most important factors influencing SOC.  相似文献   

7.
Characteristics of vegetation and soils in the serpentine area of northern Hokkaido were studied in comparison with non-serpentine areas of the same region, and with other serpentine areas of Japan and elsewhere in the world. The relationship between vegetation and soils is discussed.

Although forest vegetation of northern Hokkaido is generally represented by deciduous forest, coniferous forest, predominantly Picea glehnii, develops in the serpentine area. Deciduous trees are limited both in number and in size. Forest floor is densely covered with Sasa kurilensis. The shrub layer is also well developed, whereas the herb layer is poor but contains characteristic species. Soils developing in the serpentine area are determined as Podzol (Wet Iron Podzol), while Brown Forest Soil is commonly found in the non-serpentine areas of the region. The serpentine soils are shallow and moist, showing general morphology and chemistry of podzolic soil in upper horizons of the profile. In lower horizons, however, physico-chemical properties are strongly affected by the parent rock. In comparison with other serpentine areas of Japan and elsewhere, northern Hokkaido is unique in that the vegetation is represented by a relatively closed forest of fair-sized trees, and the soils by a podzol.

Such Picea glehnii forests and podzolic soils are considered an intrazonal phytogeocoenosis strongly affected by serpentine substrate. In this regard, the cool and humid climate as well as undulating relief of northern Hokkaido are also important factors for the development of the unique phytogeocoenosis.  相似文献   


8.
How much organic C can a region naturally store in its ecosystems? How can this be determined, when land management has altered the vegetation of the landscape substantially? The answers may lie in the soil: this study synthesized the spatial distribution of soil properties derived from the state soils geographic database with empirical measurements of old-growth forest ecosystem C to yield a regional distribution of potential maximum total-ecosystem organic C stores. The region under consideration is 179,000 square kilometers extending from the southern Oregon border to the northern Washington border, and from the Pacific Ocean to the east side of the Cascade Mountains. Total ecosystem organic C (TEC) was measured in 16 diverse old-growth forests encompassing 35 stands and 79 pedons to a depth of 100 cm. The TEC ranged between 185 and 1200 Mg C ha−1. On an average, 63% of TEC was in the vegetation, 13% in woody detritus, 3% in the forest floor, 7% in the 0–20 cm mineral soil, and 13% in 20–100 cm mineral soil. The TEC was strongly related to soil organic C (SOC) in the 0–20 cm mineral soil, yielding a monotonically increasing, curvilinear relation. To apply this relation to estimate the TEC distribution throughout the region, 211 map units of the state soils geographic database (STATSGO) were used. The SOC in the 0–20 cm mineral soil of the map units was consistent with values from previously measured pedons distributed throughout the region. Resampling of 13 second-growth forests 25 years after initial sampling indicated no regional change in mineral SOC, and supported the use of a static state soils map. The SOC spatial distribution combined with the quantitative old-growth TEC–SOC relation yielded an estimate of potential TEC storage throughout the region under the hypothetical condition of old-growth forest coverage. The area-weighted TEC was 760 Mg C ha−1. This is 100 Mg C ha−1 more than a previous estimate based on a coarser resolution of six physiographic provinces, and 400 Mg C ha−1 more than current regional stores. The map of potential TEC may be useful in forecasting regional C dynamics and in land-management decisions related to C sequestration.  相似文献   

9.
广东长潭自然保护区土壤有机碳含量与植被类型的关系   总被引:2,自引:0,他引:2  
采用TW INSPAN进行植被类型分类,对广东长潭自然保护区不同植被类型土壤有机碳分布特征进行了研究,结果表明,基于乔木胸高断面积作为分类标准的不同植被类型土壤有机碳差异极显著(p〈0.01),8个植被类型中,胸高断面积最小的植被类型3土壤有机碳含量最高,为27.45±1.41 g·kg^-1,胸高断面积最大的植被类型1土壤有机碳含量最低,为11.87±2.69 g·kg^-1,总体呈胸高断面积增加土壤有机碳含量减少的趋势。  相似文献   

10.
The purpose of this research was to study the influence of the vegetation on the soil C pool of forests of pines (Pinus sylvestris) and oaks (Quercus pyrenaica), located in Central-Western Spain. Horizons from selected soils located in these forests were sampled, and the soil organic C (SOC) was determined. In addition, in vitro incubation experiments were carried out, under controlled conditions, to monitor the stability of SOC against the microbial activity. Soil humus fractions were isolated following a classical procedure of chemical fractionation using alkaline solutions, before and after the incubation experiment. A deeper O horizon was found under the pine forest than under oak one; however, higher SOC content was found in the oak site than that under pine one. During the in vitro mineralization process, a lower CO2 production by the soil sample from pine forest was observed, in relation to that emitted by the oak soil. In addition, a lower humification degree was estimated for the soil humus under pines than for that under oaks. In conclusion, replacement of oaks by pines produced a decrease in SOC accumulation and a lower quality of humus in the forest soils.  相似文献   

11.
The growing of tree crops along with the field crops is a common practice in foothills of lower Himalayas with the twin objective of checking soil erosion by water and covering the risk of crop failure due to frequently occurring droughts. A study was conducted to evaluate dry and water stable aggregates for their soil organic carbon (SOC) stocks under different tree-based cropping systems. The treatments consisted of three cropping systems viz. maize-wheat (sole crop), agroforestry and agrohorticulture (tree-based) in the similar soil texture and in 6 year old plantations. The soil samples were obtained from different layers (0–15, 15–30, 30–60, 60–90 and 90–120 cm) and analyzed for SOC. The undisturbed aggregate samples (as big clods) were collected from 0–15 and 15–30 cm soil layer for dry and wet aggregate stability. The data so obtained was analyzed by using CRD factorial deigns at LSD (P ≤ 0.05). The SOC concentration decreased with soil depth, the decrease was higher (89.6%) in soils under maize-wheat than in soils under agrohorticulture (81.3%) and agroforestry (77.8%). The mean SOC concentration decreased with the size of the dry stable aggregates (DSA) and water stable aggregates (WSA). In DSA, the mean SOC concentration was 58.06 and 24.2% higher in large and small macroaggregates than in microaggregates respectively; in WSA it was 295.6 and 226.08% higher in large and small macroaggregates than in microaggregates respectively in surface soil layer. The mean SOC concentration in surface soil was higher in DSA (0.79%) and WSA (0.63%) as compared to bulk soil (0.52%). The SOC concentration and stock being highest in soils under agroforestry resulted in higher SOC concentration in dry as well as WSA.  相似文献   

12.
岷江上游不同森林类型土壤有机碳含量及密度特征   总被引:1,自引:0,他引:1  
本文研究了岷江上游云杉人工林、紫果冷杉人工林、岷江冷杉人工幼龄林、高山栎天然次生林4种森林类型土壤有机碳含量及密度。结果表明:4种森林类型不同土层有机碳含量和有机碳密度均差异显著,都随土层深度增加而逐渐减小,且土壤有机碳集中分布在表层土(0~20 cm)中;4种森林类型土壤有机碳含量从高到低排序为:云杉人工林(5.896 g.kg-1)紫果冷杉人工林(5.479 g.kg-1)高山栎天然次生林(5.019 g.kg-1)岷江冷杉人工幼龄林(2.245 g.kg-1);土壤有机碳密度从高到低为:云杉人工林(0.03541 kg.m-2)高山栎天然次生林(0.03134 kg.m-2)紫果冷杉人工林(0.02474 kg.m-2)岷江冷杉人工幼龄林(0.01573 kg.m-2)。说明林分起源、树种组成、植物根系、地表枯落物和人类活动等因素影响着土壤有机碳含量及碳密度。  相似文献   

13.
The dominant soil patterns in forested or previously forested landscapes in southern New Zealand and Tasmania are described. Soil properties on adjacent sunny and shady aspects in hill country of the South Island of New Zealand are compared to soil properties under adjacent ‘dry’ and ‘wet’ eucalypt forest in Tasmania.

A soil contrast index or SCI is defined for comparing soil contrasts on parent materials of different absolute nutrient contents. Three soil groups are defined using the SCI. Group 1 soil pairs are stable New Zealand soils in which exchangeable Ca + Mg + K values are higher on drier sunny aspects than on moister shady aspects. Group 2 soil pairs are New Zealand soils in which soils on sunny aspects display evidence of topsoil erosion by wind; consequently some soil pairs on dry (sunny) aspects have lower levels of exchangeable Ca + Mg + K than soils on moister (shady) aspects. Group 3 soil pairs are Tasmanian. Soils on drier sites (under dry eucalypt forest) invariably have lower exchangeable Ca + Mg + K values than soils on moister sites (under wet eucalypt forest), which is the reverse of the pattern in SCI Group 1 soils in New Zealand.

Except on clay-rich parent materials, Tasmanian soils under dry forest generally have texture-contrast profiles and a mean C/N ratio in topsoils (A1 horizons) of 29. Soils under wet forest generally have uniform or gradational texture profiles and a mean topsoil C/N ratio of 15. The texture-contrast soils show strong clay eluviation with sand or sandy loam textures in upper horizons and clayey textures in lower horizons. However, in New Zealand texture-contrast soils are all but absent, and do not occur in the previously forested areas described in this paper. Topsoils (Ah horizons and soils sampled to 7.5 cm depth) in New Zealand areas sampled in this study have a mean C/N ratio of 15, regardless of whether they occur on sunny or shady aspects.

We propose that the frequency and spatial occurrence of fire are the dominant processes causing: (1) the marked difference in levels of nutrients and different topsoil C/N ratios in soils of Tasmania; (2) the development of texture-contrast soils under dry forests in Tasmania; and (3) the difference between soil patterns in New Zealand and Tasmania. Fire depletes nutrients in forests by causing losses to the atmosphere, losses by runoff, and losses by leaching. Nutrient loss by fire encourages fire-tolerant vegetation adapted to lower soil nutrient status, so frequent fire is a feedback mechanism that causes progressive soil nutrient depletion. By destroying organic matter and diminishing organic matter supply to the soil surface fire inhibits clay–organic matter linkages and soil faunal mixing and promotes clay eluviation. Fire frequency is likely to have increased markedly with the arrival of humans at ca. 34 000 years B.P. in Tasmania and ca. 800 years B.P. in New Zealand. We argue that texture-contrast soils have not formed in New Zealand because of the short history of frequent fires in that country. A corollary of this conclusion is that texture-contrast soils in Tasmania are, at least in part, anthropogenic in origin.  相似文献   


14.
卧龙自然保护区植物生长季节森林土壤水分状况   总被引:11,自引:1,他引:11       下载免费PDF全文
本文于1981-1984年植物生长季节对四川卧龙自然保护区森林土壤水分状况,进行了定位研究,试验林地设置在1200-4300m海拔高度的不同生物气候带的森林类型下。选择的五处试验林地是:①常绿阔叶林下的山地黄壤;②次生落叶阔叶林下的山地棕壤;③针阔混交林下的山地暗棕壤;④暗针叶林下的山地棕色暗针叶林土;⑤高山草甸植被下的高山草甸土。试验结果阐明了试验林地土壤的蓄水性能,枯枝落叶层最大蓄36-313t/ha,森林土壤的渗透系数在1.54-5.33mm/min,试验林地生长季节森林土壤水分贮量,都在最佳含水量下限以下,试验林地森林土壤水分供给(生态湿度)顺序为:山地棕色暗针叶林土(重湿)>高山草甸土(重温)>山地棕壤(湿)>山地黄壤(较湿)>山地暗棕壤(较湿一潮)。  相似文献   

15.
The effect of six plantation species in comparison to natural forest (NF) on soil organic carbon (SOC) and total nitrogen (TN) stocks, depth-wise distribution, biomass carbon (C), and N was investigated on plantations and cultivated lands on an Andic paleudalf soil in Southern Ethiopia. The SOC, N, and bulk density were determined from samples taken in 4 replicates from 10-, 20-, 40-, 60-, and 100-cm depth under each site. Similarly, the biomass C and N of the plantation species and understory vegetation were also determined. The SOC and N were concentrated in the 0- to 10-cm depth and decreased progressively to the 1-m depth. Next to the NF, Juniperous procera accrued higher SOC and N in all depths than the corresponding plantations. No evidence of significant difference on SOC and N distribution among plantations was observed below the 10-cm depth with minor exceptions. The plantations accrue from 133.62 to 213.73 Mg ha–1 or 59.1 to 94.5% SOC, 230.4 to 497.3 Mg ha–1 or 6.9 to 14.9% TBC and 420.37 to 672.80 Mg ha–1 or 12.5 to 20% total C-pool of that under the NF. The N stock under Juniperous procera was the highest, while the lowest was under Eucalyptus globulus and Cupressus lusitanica. We suggest that SOC and N sequestration can be enhanced through mixed cropping and because the performance of the native species Juniperous procera is encouraging, it should be planted to restock its habitat.  相似文献   

16.
Carbon pools in two Quercus petraea (sessile oak) dominated chronosequences under different forest management (high forest and coppice with standards) were investigated. The objective was to study temporal carbon dynamics, in particular carbon sequestration in the soil and woody biomass production, in common forest management systems in eastern Austria along with stand development. The chronosequence approach was used to substitute time-for-space to enable coverage of a full rotation period in each system. Carbon content was determined in the following compartments: aboveground biomass, litter, soil to a depth of 50 cm, living root biomass and decomposing residues in the mineral soil horizons. Biomass carbon pools, except fine roots and residues, were estimated using species-specific allometric functions. Total carbon pools were on average 143 Mg ha−1 in the high forest stand (HF) and 213 Mg ha−1 in the coppice with standards stand (CS). The mean share of the total organic carbon pool (TOC) which is soil organic carbon (SOC) differs only marginally between HF (43.4%) and CS (42.1%), indicating the dominance of site factors, particularly climate, in controlling this ratio. While there was no significant change in O-layer and SOC stores over stand development, we found clear relationships between living biomass (aboveground and belowground) pools and C:N ratio in topsoil horizons with stand age. SOC pools seem to be very stable and an impact of silvicultural interventions was not detected with the applied method. Rapid decomposition and mineralization of litter, indicated by low O-horizon pools with wide C:N ratios of residual woody debris at the end of the vegetation period, suggests high rates of turnover in this fraction. CS, in contrast to HF benefits from rapid resprouting after coppicing and hence seems less vulnerable to conditions of low rainfall and drying topsoil.  相似文献   

17.
The Kyoto protocol [39] directs the signatory countries including France to establish an inventory of carbon stocks in forests. Precise estimates of carbon stocks are hampered by local spatial variability, in particular in wetland areas [25]. The aims of this work are: (i) to estimate the spatial variability of carbon stocks on two hillslopes presenting respectively, a transition between a well-drained zone and a wetland area over a short-distance, and a very progressive transition; (ii) to correlate this variability with soil waterlogging and topographic variations and (iii) to evaluate carbon stock prediction by modelling waterlogging intensity as soil organic carbon (SOC) stocks increase significantly with waterlogging. However, SOC stocks in redoximorphic soils are highly variable, particularly in zones where carbon is redistributed due to erosion and sedimentation. In the litter and the vegetation, the age and density of the stand are the main explanatory factors of C variability. Topographic modelling of the waterlogging intensity could improve the spatial estimation of SOC stocks but not of the C stocks in the humus and vegetation.  相似文献   

18.
Changes in carbon stocks during deforestation, reforestation and afforestation play an important role in the global carbon cycle. Cultivation of forest lands leads to substantial losses in both biomass and soil carbon, whereas forest regrowth is considered to be a significant carbon sink. We examined below- and aboveground carbon stocks along a chronosequence of Norway spruce (Picea abies (L.) Karst.) stands (0-62 years old) regenerating on abandoned meadows in the Southern Alps. A 130-year-old mixed coniferous Norway spruce-white fir (Abies alba Mill.) forest, managed by selection cutting, was used as an undisturbed control. Deforestation about 260 years ago led to carbon losses of 53 Mg C ha(-1) from the organic layer and 12 Mg C ha(-1) from the upper mineral horizons (Ah, E). During the next 200 years of grassland use, the new Ah horizon sequestered 29 Mg C ha(-1). After the abandonment of these meadows, carbon stocks in tree stems increased exponentially during natural forest succession, levelling off at about 190 Mg C ha(-1) in the 62-year-old Norway spruce and the 130-year-old Norway spruce-white fir stands. In contrast, carbon stocks in the organic soil layer increased linearly with stand age. During the first 62 years, carbon accumulated at a rate of 0.36 Mg C ha(-1) year(-1) in the organic soil layer. No clear trend with stand age was observed for the carbon stocks in the Ah horizon. Soil respiration rates were similar for all forest stands independently of organic layer thickness or carbon stocks, but the highest rates were observed in the cultivated meadow. Thus, increasing litter inputs by forest vegetation compared with the meadow, and constantly low decomposition rates of coniferous litter were probably responsible for continuous soil carbon sequestration during forest succession. Carbon accumulation in woody biomass seemed to slow down after 60 to 80 years, but continued in the organic soil layer. We conclude that, under present climatic conditions, forest soils act as more persistent carbon sinks than vegetation that will be harvested, releasing the carbon sequestered during tree growth.  相似文献   

19.
Research into postharvest management of forests often focuses on balancing the need for increased biomass yield against factors that may directly impact the productivity of the subsequent stand (e.g. nutrient and water availability, soil microclimate, etc.). Postharvest organic matter management, however, also exerts a strong influence over the translocation of carbon (C) into and through the soil profile and may provide a mechanism to increase soil C content. The effects of contrasting postharvest organic matter retention treatments (bole-only removal, BO; whole-tree removal, WT) on soil solution C concentration and quality were quantified at the Fall River and Matlock Long-term Soil Productivity (LTSP) studies in Washington state. Solutions were collected monthly at depths of 20 and 100 cm and analyzed for dissolved organic C (DOC), dissolved organic nitrogen (DON) and DOC:DON ratio. Comparisons of DOC concentrations with depth illustrate divergent trends between the two treatments, with an overall decrease in DOC with depth in the BO treatment and either an increase or no change with depth in the WT treatment. Trends in DON concentrations with depth were less clear, partly due to the very low concentrations observed, although the relationship of DOC:DON with depth shows a decrease in the BO treatment and little to no change in DOC quality in the WT treatment. This illustrates that more recalcitrant organic matter (higher DOC:DON) is being removed from solution as it moves through the soil profile. Only 35–40% of the DOC moving past 20 cm in the BO treatment is present at 100 cm. Conversely, 98–117% of the DOC at 20 cm in the WT treatment is present at 100 cm. Thus, 11 and 30 kg C ha−1 yr−1 are removed from solution between 20 and 100 cm in the BO treatment at the Matlock and Fall River LTSP studies, respectively. Although much of this C is often assumed to be utilized for microbial respiration, DOC:DON ratios of the potential organic substrates and the unique mineralogy of the soils of this region suggest that a significant portion may in fact be incorporated into a more recalcitrant soil C pool. Thus, postharvest organic matter retention may provide a mechanism to increase soil C sequestration on these soils.  相似文献   

20.
张万儒  杨承栋 《林业科学》1991,27(3):261-267
研究工作在卧龙自然保护区(北纬30°45′—31°25′,东经102°52′—103°24′)海拔1200—4300m垂直带中的五块试验林地上进行。五块试验林地是:(1)中亚热带以壳斗科和樟科为主的常绿阔叶林下的山地黄壤试验林地(海拔1200m);(2)具有暖温带气候特征的次生椴、槭落叶阔叶林下的山地棕壤试验林地(海拔2000m);(3)具有温带气候特征的铁杉、槭、桦针阔混交林下山地暗棕壤试验林地(海拔2500m);(4)具有寒温带气候特征的暗针叶岷江冷杉林下的山地棕色暗针叶林土试验林地(海拔3300m);(5)具有亚寒带气候特征的高山草甸植被下的高山草甸土试验林地(海拔4300)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号