首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Prince Rupprecht's larch (Larix principis-rupprechtii Mayr) stands growing at three different densities were investigated to determine characteristics of self-thinning. Tree density decreased with increasing stand age, and the higher density stand had higher mortality than the lower one. Mean stem volume increased with increasing stand age, and the higher density stand had higher relative growth rate of mean stem volume than the lower one. Mean stem volume (ν) increased with decreasing tree density (ρ), resulting in self-thinning line being expressed as ln ν=lnK-α ln ρ, whereK and α are coefficients. The slope of self-thinning line, —α, over the whole study period for all sites was similar with a mean value of —2.13. The ν-ρ trajectories before reaching the self-thinning slope of—3/2 could be described by Tadaki's model. The phase self-thinning line tended to decrease toward a slope of—3/2 with increasing stand age, which trends agreed with those of the published data of aPinus strobus stand andP. densiflora stands.  相似文献   

2.

Introduction  

In pure and even-aged stands, the allometry between mean tree size and maximum stand density—or self-thinning relationship—has long been considered a constant among tree species. Although the self-thinning allometric coefficient has been shown to be species-dependent, estimates available for a given species also differ. Whether this coefficient truly varies across species thus remains an open issue. A potential cause of variation in the coefficient may lie in a departure from the allometric assumption in the self-thinning relationship.  相似文献   

3.
We derived an allometric model of the height–diameter curve for even-aged pure stands, which was a modification of the earlier model proposed by Inoue (2000a). An individual-dependent allometric equation was used as the height–diameter curve. Using the discriminant analysis method, all trees composed of a stand were stratified into upper and lower trees. It was assumed that both relationships between mean tree height H m and upper tree height H u and between mean DBH D m and mean DBH of upper trees D u could be described by the time-dependent allometric power equations. The height–diameter curve showed an average relationship between tree height and DBH of a given stand at a given time, and hence it could be assumed that the height–diameter curve contained two points (D m , H m ) and (D u , H u ). With these assumptions, we derived an allometirc model of height–diameter curve, which allowed the coefficients of the curve to be estimated from mean tree height and mean DBH. The proposed model was fitted to Japanese cedar (Cryptomeria japonica D. Don) data. The error ratio of the allometric model ranged from 2.254% to 13.412% (mean = 6.785%), which was significantly smaller than that of the earlier model. When the error of mean tree height was ±1.0 m or less, the effect of the error of mean tree height on the error ratio was comparatively small. This suggested that the error of ±1.0 m in mean tree height could be accepted in the estimation of height–diameter curve using the allometric model. These features enable us to combine the allometric model with Hirata’s vertical angle-count sampling or growth models. In conclusion, the allometric model would be one of the most practical and convenient approaches for estimating the height–diameter relationship of even-aged pure stands.  相似文献   

4.
Interrelationships between self-thinning, biomass density, and plant form were mathematically modeled in relation to stand development in which self-thinning is either not occurring or is occurring. The relationship between biomass density and mean shoot mass is derived as a simple power function at the stage when self-thinning does not occur. When self-thinning occurs, constant biomass density is attained when the 3/2 power law of self-thinning applies and the allometric coefficient is assumed to be 1/3 in the allometry between mean plant height and aboveground mass. The applicability of this mathematical model and the allometric reformulations of the self-thinning exponent were tested using experimental data for dense populations of Chamaecyparis obtusa seedlings during the first 2 years of growth. On the basis of the results of the present model and experimental data, the dependence on competition of the mean height:diameter ratio, mean stem diameter, and leaf biomass density are discussed. As a result, the mean height:diameter ratio was almost asymptotically constant at the latter growth stage in the second-year seedlings, so that the 3/2 power law of self-thinning was held in the present analysis. However, the value of height:diameter ratio will become smaller in older stands, because tree height is considered to be asymptotic with respect to tree age due to hydraulic and other limits. Therefore, the present modeling implies that one of the reasons why the 3/2 power law from a geometric basis has been recently rejected depends on whether or not the height:diamter ratio is constant in older trees.  相似文献   

5.
An allometric model of the maximum size–density relationship between mean stem surface area and stand density is proposed, and is fitted to data for even-aged pure stands of Japanese cedar (Cryptomeria japonica D. Don) and Japanese cypress (Chamaecyparis obtusa Endl.). To derive the model, the biomass density was defined as the ratio of the mean stem surface area to the side area of an imaginary column, of which radius and height were equal to the radius of the mean area occupied by a tree and mean tree height, respectively. According to the model, the slope of the maximum size–density relationship on logarithmic coordinates can be estimated from the allometric power relationships of mean tree height and biomass density to mean stem surface area. The resulting slope was −1.089 for the cedar and −0.974 for the cypress. The estimated maximum size–density relationship corresponded well with the combinations of mean stem surface area and stand density for the overcrowded stands of cedar and cypress. The steeper slope for cedar was attributed to the allocation of more resources to height growth compared to cypress. The maximum total stem surface area was approximated to be 1.483 ha/ha for cedar and 0.949 ha/ha for cypress stands. The difference in the maximum total stem surface area between the two species was produced by the characteristics related to tree height and stem biomass packing into space already occupied.  相似文献   

6.
Biomass and nutrient (N, P, K, Ca, Mg) stock in various aboveground tree components (stemwood, stembark, branches and leaves) were quantified in an age sequence of pure Larix olgensis planta- tions (20, 35, 53 and 69 years old) in Northeast China. The results show that the aboveground biomass allocation in various tree components was in the order of stemwood (62%-83%), branches (9%-21%), stembark (7%-11%) and leaves (1%-6%) for all stands. The proportion of stemwood biomass to total aboveground biomass increased whereas that of other tree components decreased consistently with stand age from 20 to 53 years old, but kept relatively constant with stand age from 53 and 69 years old. The nutrient allocation in various tree components generally followed the same pattern as the biomass allocation (i.e. stemwood > branches > stembark > leaves). The proportion of nutrient stock in leaves to total aboveground nutrient stock decreased consistently with increasing stand age, while that in stemwood increased with stand age from 20 to 53 years old but then decreased from 53 to 69 years old. The rate of nutrient removal for stands was estimated at different stand ages under different logging schemes, showing that the rate of nutrient removal would be unchanged when the rotation length was shortened to 20 years by the harvest of stem only, but greatly increased by the harvest of total aboveground biomass. The rate of nutrient removal would be a considerable reduction for all elements by debarking, especially for Ca.  相似文献   

7.
Root biomass and root distribution were studied in Entisols derived from the thick deposition of volcanic pumice on Hokkaido Island, Japan, to examine the effect of soil conditions on tree root development. The soil had a thin (<10 cm) A horizon and thick coarse pumiceous gravel layers with low levels of available nutrients and water. Two stands were studied: a Picea glehniiAbies sachalinensis stand (PA stand) and a Larix kaempferiBetula platyphylla var. japonica stand (LB stand). The allometric relationships between diameter at breast height (DBH) and aboveground and belowground biomass of these species were obtained to estimate stand biomass. The belowground biomass was small: 30.6 Mg ha−1 for the PA stand and 24.3 Mg ha−1 for the LB stand. The trunk/root ratios of study stands were 4.8 for the PA stand and 4.3 for the LB stand, which were higher than those from previous studies in boreal and temperate forests. All species developed shallow root systems, and fine roots were spread densely in the shallow A horizon, suggesting that physical obstruction by the pumiceous layers and their low levels of available water and nutrients restricted downward root elongation. The high trunk/root ratios of the trees may also have resulted from the limited available rooting space in the study sites.  相似文献   

8.
We estimated the aboveground net primary production (ANPP) in five self-thinning jack pine (Pinus banksiana) stands in Wood Buffalo National Park, NWT, Canada. The stands (11 to ca.175 years old) were selected to examine the relationship between stand density and tree size and its effect on carbon dynamics. Aboveground litterfall was collected from each stand from 1997 to 2012. Stand biomass was estimated by measuring tree size every 5 years and estimating the individual mass using allometric relationships. ANPP was then estimated by summing the litterfall mass, dead stem mass increment and stand biomass increment. We determined the proportional contribution of each organ to the total litter and the seasonal pattern of needle litterfall. There was a lower turnover rate of aboveground biomass in older stands than younger stands. The ANPP increased in the youngest stand (<30 years old) showed a decreasing trend in stands >50 years old. The maximum ANPP was estimated to be ca. 500?g m?2 year?1 in dry matter, which was found in 30–50 year-old stands.  相似文献   

9.
An allometric model that explains the mechanism of the difference in the slope of the Reineke equation (A) among species was proposed based on the allometric relationships of mean tree height (H) to quadratic mean diameter D (HD θ ) and stand density N (HN δ ), i.e., A = θ/δ. The proposed model was fitted to Japanese cypress (Chamaecyparis obtusa Endl.) and red pine (Pinus densiflora) stands. The allometric exponents θ and δ were, respectively, 0.8995 and −0.5000 for cypress and 0.8612 and −0.6619 for pine. The difference between cypress and pine was significant for δ but not for θ. Inserting the exponents into the model resulted in predicted slopes of −1.7991 for cypress and −1.3011 for pine. The difference in the slope of the Reineke equation between the two species was produced by characteristics related to the tree crown, rather than characteristics related to stem slenderness. The proposed model enables us to estimate the slope of the Reineke equation from commonly measured stand attributes, such as mean tree height and quadratic mean diameter. Therefore, the proposed model is expected to be practical and convenient for estimating the slope of the Reineke equation and for explaining the mechanism of its variation among species. The model should be also accepted as a generalized model of the stand density versus quadratic mean diameter relationship, whereas the original Reineke equation should be seen as a specific case of this model.  相似文献   

10.
We investigated the biomass, vertical distribution, and specific root length (SRL) of fine and small roots in a chronosequence of Japanese cedar (Cryptomeria japonica D. Don) plantations in Nara Prefecture, central Japan. Roots were collected from soil blocks up to 50 cm in depth in five plantations of differing age: 4, 15, 30, 41, and 88 years old. Fine-root biomass reached a maximum (639 g m−2) in the 15-year-old stand before canopy closure, decreased in the 30-year-old stand (422 g m−2), and thereafter was stable. Except in the 30-year-old stand, fine-root biomass increased in deeper soil layers as stand age increased, and the depth at which the cumulative biomass of fine roots reached 90% exhibited a good allometric relationship with mean stem diameter. Both root-length density (root length per unit soil volume) and SRL decreased with soil depth in all stands, indicating that plants mainly acquire water and nutrients from shallow soils. The highest SRL was observed in the 4-year-old stand, but the relationship between SRL and stand age was unclear in older stands. The SRL in surface soils seemed to decrease with increases in root-length density, suggesting that branching of the fine-root system during development is related to density-dependent processes rather than age.  相似文献   

11.
The competition–density (C–D) effect law refers to the relationship between mean mass w and density ρ at a particular moment among a set of tree populations grown at a wide range of densities. The self-thinning law refers to the time trajectory of w and ρ in overcrowded stands. Because these two laws have not yet been theoretically harmonised, the aim of this paper is to achieve the unification of the two laws. Under the assumption that the reciprocal equation of the C–D effect in self-thinning stands and the self-thinning equation both hold, the slope of the reciprocal equation becomes the same as that of the self-thinning equation on logarithmic scales as the growth stage progresses. Finally, the reciprocal equation is converted to the wρ trajectory, eliminating the biological time from the reciprocal equation. The wρ trajectory of stands starting with any initial density has thus been explicitly formulated. Larger values of the relative mortality rate play an important role in relieving the C–D effect and cause the wρ trajectory to approach the self-thinning line at an earlier stage of growth. Stands exponentially decreasing in number obey the self-thinning law after a sufficient lapse of biological time, irrespective of their initial densities. Unknown functions, such as the survivorship curve and the ceiling biomass, have been explicitly represented as a function of biological time. The approximate expression for the wρ trajectory suitably mimics the time trajectory of mean stem and density in an eastern pine plantation.  相似文献   

12.
We developed site-specific allometric models for Leucaena leucocephala × pallida var. KX2 trees in a shaded coffee agroecosystem in Hawaii to predict above- and belowground biomass and the regrowth potential of pollarded trees. Models were used to compare tree growth rates in an experimental agroforestry system with different pollarding frequencies and additions of tree pruning residues as mulch. For all allometric equations, a simple power model (Y = aXb) provided the optimal prediction of biomass or regrowth after pollarding. For aboveground biomass components (stem, branches, leaves, and seed and pods), stem diameter alone was the best predictor variable. Stump diameter provided the best prediction of coarse root biomass and aboveground regrowth after pollarding. Predictions of biomass from generalized allometric models often fell outside the 95% confidence intervals of our site-specific models, especially as biomass increased. The combination of pollarding trees once per year plus the addition of tree mulch resulted in the greatest aboveground regrowth rates as well as accumulation of biomass and C in the stump plus coarse roots. Although optimal prediction required the development of site-specific allometric relationships, a simple power model using stem or stump diameter alone can provide an accurate assessment of above- and belowground tree biomass, as well as regrowth potential under specific management scenarios.  相似文献   

13.
We investigated conifer plantation management in Japan using high-resolution airborne data based on an individual tree crown (ITC) approach. This study is the first to apply this technique to Japanese forests. We found that forest resources can be measured at the level of a single tree. We also produced a tree-crown map for a test site with Chamaecyparis obtusa, Pinus densiflora, Larix kaempferi, Cryptomeria japonica, other conifers, and broadleaved trees, with a classification accuracy of 78%. Forest-stand polygons with tree-cover types were generated from this map, a tree-density map, and a crown-occupied-area map. Forest information for the stand polygons was extracted automatically and compared with detailed field-survey data. The error between our ITC estimates and the field-survey data ranged from 0.3 to 30.2%, depending on tree crown size, density, and other factors. Errors were highest for high-density stands with mixed compositions and tree crown diameters ≤5.0 m. However, the error for stands with crown diameters ≥6.2 m was 11.6% or less. Therefore, this technique is best suited to pure Japanese conifer plantations without multiple layers or high-density stands.  相似文献   

14.
A stand dynamic model was developed to predict the growth response in even-aged forest plantations of different initial planting densities. The model is based on the integration of three subcomponents: height growth, self-thinning, and diameter increment. The integrated model uses the height of dominant trees to simulate stand response to site quality and internal growth potential. An extended self-thinning submodel is used to simulate mortality in stands due to crowding and inter-tree competition. A diameter increment submodel is used to link the height growth and self-thinning submodels. The height growth submodel is based on an application of the “Pipe Model” theory. The three-parameter self-thinning submodel is developed from an extended self-thinning law that captures self-thinning in stands before they attain full stocking. The diameter increment model is based on the assumption that diameter increment is related to height growth and available growing space described by stand density. The integrated model is applied to data collected from a 45-year-old red pine (Pinus resinosa Ait.) plantation subsectioned with different initial planting densities. For the data used, only two parameters were required to capture 99% of measured variation in height growth. Additional data from sites with different planting intensities are required to formulate a more generalized height growth model. The slope of the linear self-thinning limit for red pine is approximately −1.5. Model predictions are consistent with field measurements.  相似文献   

15.
We present results of individual-based root system measurement and analysis applied for Larix gmelinii trees growing on the continuous permafrost region of central Siberia. The data of root excavation taken from the three stands were used for the analyses; young (26 years old), mature (105 years old), and uneven-aged over-mature stand (220 years old). In this article, we highlight two topics: (1) factors affecting spatio-temporal pattern of root system development, and (2) interactions between aboveground (i.e., crown) and belowground (i.e., root) competition. For the first topic, the detailed observation of lateral roots was applied to one sample tree of the overmature stand. The tree constructed a superficial (<30 cm in depth) and rather asymmetric root system, and each lateral root expanded mainly into elevated mounds rather than depressed troughs. This indicated that spatial development of an individual root system was largely affected by microtopography (i.e., earth hummocks). For these lateral roots, elongation growth curves were reconstructed using annual-ring data, and annual growth rates and patterns were compared among them. The comparison suggested that temporal root system development is associated with differences in carbon allocation among the lateral roots. For the second topic, we examined relationships between individual crown projection area (CA) and horizontal rooting area (RA) for the sample trees of each stand. RA was almost equal to CA in the young stand, while RA was much larger (three or four times) than CA in the mature and overmature stands. Two measures of stand-level space occupation, crown area index (aboveground: CAI; sum of CAs per unit land area) and rooting area index (belowground: RAI; sum of RAs), were estimated in each stand. The estimates of RAI (1.3–1.8 m2 m−2) exceeded unity in all stands. In contrast, CAI exceeded unity (1.3 m2 m−2) only in the young stand, and was much smaller (<0.3 m2 m−2) in the two older stands. These between-stand differences in RAI–CAI relationships suggest that intertree competition for both aboveground and belowground spaces occurred in the young stand, but only belowground competition still occurred in the two older stands. Based on this finding, we hypothesized that competition below the ground may become predominant as a stand ages in L. gmelinii forests. Methodological limitations of our analysis are also discussed, especially for the analysis using the two indices of space occupation (CAI, RAI).  相似文献   

16.
The objectives of our study were to explore the relationship of leaf area and stand density and to find a convenient way to measure stand leaf areas. During the 2004 growing season, from May to October, we used direct and indirect methods to measure the seasonal variation of the leaf areas of tree and shrub species. The trees were from Robinia pseudoacacia stands of four densities (3333 plants/hm2, 1666 plants/hm2, 1111 plants/hm2, and 833 plants/hm2) and Platycladus orientalis stands of three densities (3333 plants/hm2, 1666 plants/hm2, and 1111 plants/hm2). The shrub species were Caragana korshinskii, Hippophae rhamnoides, and Amorpha fruticosa. Based on our survey data, empirical formulas for calculating leaf area were obtained by correlating leaf fresh weight, diameter of base branches, and leaf areas. Our results show the following: 1) in September, the leaf area and leaf area index (LAI) of trees (R. pseudoacacia and P. orientalis) reached their maximum values, with LAI peak values of 10.5 and 3.2, respectively. In August, the leaf area and LAI of shrubs (C. korshinskii, H. rhamnoides, and A. fruticosa) reached their maximum values, with LAI peak values of 1.195, 1.123, and 1.882, respectively. 2) There is a statistically significant power relation between leaf area and leaf fresh weight for R. pseudoacacia. There are significant linear relationships between leaf area and leaf fresh weight for P. orientalis, C. korshinskii, H. rhamnoides, and A. fruticosa. Moreover, there is also a significant power relation between leaf area and diameter of base branches for C. korshinskii. There are significant linear relations between leaf area and diameter of base branches of H. rhamnoides and A. fruticosa. 3) In the hills and gully regions of the Loess Plateau, the LAIs of R. pseudoacacia stand at different densities converged after the planted stands entered their fast growth stage. Their LAI do not seem to be affected by its initial and current density. The same is true for P. orientalis stands. However, the leaf area of individual trees is negatively and linearly related with stand density. We conclude that, in the hills and gully regions of the Loess Plateau, the bearing capacity of R. pseudoacacia and P. orientalis stands we studied have reached their maximum limitation, owing to restricted access to soil water. Therefore, in consideration of improving the quality of single trees, a stand density not exceeding 833 and 1111 plants/hm2 is recommended for R. pseudoacacia and P. orientalis, respectively. In consideration of improving the quality of the entire stands, the density can be reduced even a little more. __________ Translated from Journal of Plant Ecology (Chinese Version), 2008, 32 (2): 440–447 [译自: 植物生态学报]  相似文献   

17.
Managed forest stands are typically younger and structurally less diverse than natural forests. Introduction of non-native tree species might increase the structural changes to managed forest stands, but detailed analyses of tree- and stand-structures of native and non-native managed forests are often lacking. Improved knowledge of non-native forest structure could help clarify their multiple values (e.g. habitat for native biodiversity, bioenergy opportunities). We studied the structural differences between the introduced, non-native Pinus contorta and the native Pinus sylvestris and Picea abies over young forest stand ages (13–34 years old) in managed forests in northern Sweden. We found that P. contorta stands had greater mean basal areas, tree heights, diameters at breast height, and surface area of living branches than the two native species in young stands. The surface area of dead attached branches was also greater in P. contorta than P. abies. Although this indicates greater habitat availability for branch-living organisms, it also contributes to the overall more shaded conditions in stands of P. contorta. Only one older 87 years old P. contorta stand was available, and future studies will tell how structural differences between P. contorta and native tree species develop over the full forestry cycle.  相似文献   

18.
Pinus densiflora f.umbraculifera, commonly known as utsukushimatsu, is a distinctively shaped form of Japanese red pine whose growth is restricted to a forest stand in Shiga Prefecture, Japan. The inheritance mode of morphological characteristics of utsukushimatsu was studied to preserve the genetic resource of this pine. As previously reported, F1 trees grown from open-pollinated seeds harvested from trees inhabiting the native stand showed two phenotypes: one resembling utsukushimatsu, which produces multiple trunks, and the other resembling normalP. densiflora, which produces one or a few trunks. In the present study, controlled pollination was carried out using F1 and normalP. densiflora trees. Segregation ratios of the two phenotypes observed in the F2 population showed that the morphological characteristics of utsukushimatsu are inherited recessively. This suggests that the mutation of one gene or a few closely linked genes controls the morphological characteristics of utsukushimatsu. Since multiple trunk formation of utsukushimatsu might be related to a loss of lateral bud inhibition, it follows that a simple gene mutation breaks apical dominance inP. densiflora.  相似文献   

19.
Subtropical forests in the Ryukyu Islands have been degraded by silvicultural practices, and thus their structural attributes are being shifted to other states dominated by a few tree species. This study clarified the mechanisms of the change, and examined the effect of clear logging on the resilience of a subtropical forest. Sprouting regeneration and typhoon disturbance were introduced into an individual-based model, SEIB-DGVM, for describing stand development and succession. The regeneration dynamics from young secondary to old-growth stands were reproduced fairly well with the model. Sprouting recruitment produced high stem density at the beginning of stand development, which caused a self-thinning trajectory following the −3/2 power law. In the late development stage after 70 years, tree species diversity fluctuated because of the regenerative response of sprouting species and the facilitatory effect of typhoon disturbance on the coexistence of subordinate species. The death of canopy trees because of typhoon disturbances reduced the dominance of Castanopsis sieboldii, and depressed its dominance in the understory. Consequently, the understory species could establish by virtue of fallen canopy trees, and tree species diversity increased at the stand level. Clear logging experiments in the model revealed that species diversity deteriorated, especially in the stand dominated by sprouting species. Resilience of subtropical forests was determined by initial species composition before clear logging. Our simulation results suggest that repeated logging drives subtropical forests with high species diversity to a stand monopolized by C. sieboldii.  相似文献   

20.
苦竹叶片性状及其异速生长关系的密度效应   总被引:1,自引:0,他引:1       下载免费PDF全文
[目的]揭示苦竹叶片性状及其异速生长关系对密度的响应特征,为苦竹林培育适宜林分密度构建提供参考。[方法]开展了3种密度(低密度,14 430~16 545株·hm~(-2),L;中密度,31 590~34 560株·hm~(-2),M;高密度,54 120~55 560株·hm~(-2),H)苦竹纯林1~3年生立竹叶长(LL)、叶宽(LW)、叶面积(LA)、叶干质量(LM)等主要叶性因子测定,采用标准主轴回归分析解析叶性因子及其异速生长关系随密度的变异规律。[结果]研究表明:随着立竹年龄的增加,相同密度苦竹林的叶长、叶形指数和比叶面积均呈先升高后降低趋势,叶宽和叶面积总体呈降低趋势。随着密度的增加,相同年龄立竹叶长、叶宽、叶形指数、叶面积和比叶面积总体均呈先升高后降低趋势,其中,叶面积和比叶面积不同密度竹林间差异显著。3种密度苦竹林b_(LL-LA)、b_(LW-LA)、b_(LL-LM)、b_(LW-LM)及中密度、低密度苦竹林b_(LA-LM)均显著小于1.0,呈异速生长关系,而高密度苦竹林b_(LA-LM)接近1.0,呈等速生长关系。随着密度的增加,b_(LL-LA)、b_(LL-LM)呈先升高后降低趋势,而b_(LW-LM)、b_(LA-LM)则相反,且b_(LL-LA)、b_(LL-LM)和b_(LA-LM)不同密度竹林间差异显著。b_(LW-LA)随密度的增加呈升高趋势,中密度、低密度竹林间无显著差异,均显著低于高密度竹林。[结论]密度对苦竹林主要叶性因子及其异速生长关系会产生明显的影响,其中叶长对密度变化敏感,中密度(31 590~34 560株·hm~(-2))苦竹林具有较大叶长、叶宽、叶面积和比叶面积,因而具有较高的生产能力,是苦竹林培育的适宜密度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号