首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Next to CO2, methane (CH4) is the second important contributor to global warming in the atmosphere and global atmospheric CH4 budget depends on both CH4 sources and sinks. Unsaturated soil is known as a unique sink for atmospheric CH4 in terrestrial ecosystem. Many comparison studies proved that forest soil had the biggest capacity of oxidizing atmospheric CH4 in various unsaturated soils. However, up to now, there is not an overall review in the aspect of atmospheric CH4 oxidation (consumption) in forest soil. This paper analyzed advances of studies on the mechanism of atmospheric CH4 oxidation, and related natural factors (Soil physical and chemical characters, temperature and moisture, ambient main greenhouse gases concentrations, tree species, and forest fire) and anthropogenic factors (forest clear-cutting and thinning, fertilization, exogenou saluminum salts and atmospheric deposition, adding biocides, and switch of forest land use) in forest soils. It was believed that OH4 consumption rate by forest soil was limited by diffusion and sensitive to changes in water status and temperature of soil.CH4 oxidation was also particularly sensitive to soil C/N, Ambient CO2, CH4 and N2O concentrations, tree species and forest fire.In most cases, anthropogenic disturbances will decrease atmospheric CH4 oxidation, thus resulting in the elevating of atmos-pheric CH4. Finally, the author pointed out that our knowledge of atmospheric CH4 oxidation (consumption) in forest soil was insufficient. In order to evaluate the contribution of forest soils to atmospheric CH4 oxidation and the role of forest played in the process of global environmental change, and to forecast the trends of global warming exactly, more researchers need to studiesfurther on CH4 oxidation in various forest soils of different areas.  相似文献   

2.
利用静态箱-气相色谱法对中亚热带常绿阔叶天然林与杉木人工林地表CH4氧化速率进行17个月的定位观测研究.结果表明:在观测期间(2009 - 04-2010 - 08),天然林与人工林均表现为大气CH4汇,天然林与杉木人工林地表CH4年均氧化速率分别为32.01和25.31 μg·m -2h-1,天然林地表CH4氧化速率为10.83 ~75.02μg·m -2h-1,人工林地表CH4氧化速率为7.66 ~46.40 μg·m-2h-1;地表CH4氧化速率受土壤温度、含水量及其交互作用的影响,土壤体积含水量显著影响地表CH4氧化速率,而土壤温度对地表CH4氧化速率的影响则因土壤体积含水量和土壤深度而异.  相似文献   

3.
Forested wetlands and peatlands are important in boreal and terrestrial biogeochemical cycling, but most general-purpose forest process models are designed and parameterized for upland systems. We describe changes made to Biome-BGC, an ecophysiological process model, that improve its ability to simulate poorly drained forests. Model changes allowed for: (1) lateral water inflow from a surrounding watershed, and variable surface and subsurface drainage; (2) adverse effects of anoxic soil on decomposition and nutrient mineralization; (3) closure of leaf stomata in flooded soils; and (4) growth of nonvascular plants (i.e., bryophytes). Bryophytes were treated as ectohydric broadleaf evergreen plants with zero stomatal conductance, whose cuticular conductance to CO(2) was dependent on plant water content. Individual model changes were parameterized with published data, and ecosystem-level model performance was assessed by comparing simulated output to field data from the northern BOREAS site in Manitoba, Canada. The simulation of the poorly drained forest model exhibited reduced decomposition and vascular plant growth (-90%) compared with that of the well-drained forest model; the integrated bryophyte photosynthetic response accorded well with published data. Simulated net primary production, biomass and soil carbon accumulation broadly agreed with field measurements, although simulated net primary production was higher than observed data in well-drained stands. Simulated net primary production in the poorly drained forest was most sensitive to oxygen restriction on soil processes, and secondarily to stomatal closure in flooded conditions. The modified Biome-BGC remains unable to simulate true wetlands that are subject to prolonged flooding, because it does not track organic soil formation, water table changes, soil redox potential or anaerobic processes.  相似文献   

4.
Soil microorganisms have numerous functional roles in forest ecosystems, including: serving as sources and sinks of key nutrients and catalysts of nutrient transformations; acting as engineers and maintainers of soil structure; and forming mutualistic relationships with roots that improve plant fitness. Although both prescribed and wildland fires are common in temperate forests of North America, few studies have addressed the long-term influence of such disturbances on the soil microflora in these ecosystems. Fire alters the soil microbial community structure in the short-term primarily through heat-induced microbial mortality. Over the long-term, fire may modify soil communities by altering plant community composition via plant-induced changes in the soil environment. In this review, we summarize and synthesize the various studies that have assessed the effects of fire on forest soil microorganisms, emphasizing the mechanisms by which fire impacts these vital ecosystem engineers. The examples used in this paper are derived primarily from studies of ponderosa pine-dominated forests of the Inland West of the USA; these forests have some of the shortest historical fire-return intervals of any forest type, and thus the evolutionary role of fire in shaping these forests is likely the strongest. We argue that the short-term effects of fire on soil microflora and the processes they catalyze are transient, and suggest that more research be devoted to linking long-term plant community responses with those of the mutually dependent soil microflora.  相似文献   

5.
Precipitation of mineral phosphate is often recognized as a factor of limiting the availability of P in acidic soils of tropical and subtropical forests. For this paper, we studied the extractable P pools and their transformation rates in soils of a tropical evergreen forest at Xishuangbanna and a subtropical montane wet forest at the Ailao Mountains in order to understand the biogeochemical processes regulating P availability in acidic soils. The two forests differ in forest humus layer; it is deep in the Ailao forest while little is present in the Xishuangbanna forest. The extractable P pools by resin and sodium-bicarbonate decreased when soil organic carbon content was reduced. The lowest levels of extractable P pools occurred in the surface (0–10 cm) mineral soils of the Xishuangbanna forest. However, microbial P in the mineral soil of the Xishuangbanna forest was twice that in the Ailao forest. Potential rates of microbial P immobilization were greater than those of organic P mineralization in mineral soils for both forests. We suggest that microbial P immobilization plays an essential role in avoiding mineral P precipitation and retaining available P of plant in tropical acidic soils, whereas both floor mass accumulation and microbial P immobilization function benefit retaining plant available P in subtropical montane wet forests. Translated from Acta Ecologica Sinica, 2006, 26(7): 2,294–2,300 [译自: 生态学报]  相似文献   

6.
Forest soils and carbon sequestration   总被引:36,自引:0,他引:36  
R. Lal   《Forest Ecology and Management》2005,220(1-3):242-258
Soils in equilibrium with a natural forest ecosystem have high carbon (C) density. The ratio of soil:vegetation C density increases with latitude. Land use change, particularly conversion to agricultural ecosystems, depletes the soil C stock. Thus, degraded agricultural soils have lower soil organic carbon (SOC) stock than their potential capacity. Consequently, afforestation of agricultural soils and management of forest plantations can enhance SOC stock through C sequestration. The rate of SOC sequestration, and the magnitude and quality of soil C stock depend on the complex interaction between climate, soils, tree species and management, and chemical composition of the litter as determined by the dominant tree species. Increasing production of forest biomass per se may not necessarily increase the SOC stocks. Fire, natural or managed, is an important perturbation that can affect soil C stock for a long period after the event. The soil C stock can be greatly enhanced by a careful site preparation, adequate soil drainage, growing species with a high NPP, applying N and micronutrients (Fe) as fertilizers or biosolids, and conserving soil and water resources. Climate change may also stimulate forest growth by enhancing availability of mineral N and through the CO2 fertilization effect, which may partly compensate release of soil C in response to warming. There are significant advances in measurement of soil C stock and fluxes, and scaling of C stock from pedon/plot scale to regional and national scales. Soil C sequestration in boreal and temperate forests may be an important strategy to ameliorate changes in atmospheric chemistry.  相似文献   

7.
Secondary forests are gaining increased importance in tropical landscapes and have recently been reported to act as potential belowground carbon sinks. While economic interest in the management of secondary forests to mitigate carbon emissions is rising, the dynamics of soil carbon stocks under these ecosystems remain poorly understood. Recent studies report conflicting results concerning soil carbon trends as well as multiple confounding factors (e.g. soil type, topography and land-use history) affecting these trends. In this study, organic carbon stocks were measured in the mineral soil up to 20 cm depth of at 24 active pastures, 5-8-year-old, and 12-15-year-old secondary forest sites on former pastures. Additionally, we estimated carbon stocks under a 100-year-old secondary forest and compared them to those of nearby mature forests. Abiotic conditions in the study area were homogenous, enabling us to isolate the effect of land-use change on soil organic carbon stocks. Contrary to our expectations, soil carbon stocks in the top 10 cm did not change with young secondary forest development. Pasture soils stored 24.8 ± 2.9 Mg ha−1 carbon (mean ± standard error) in the top 10 cm, and no accumulation of soil carbon was apparent during the first 15 years of secondary succession. Soil carbon stocks under 100-year-old secondary forests, averaging 43.0 ± 7.9 Mg ha−1 (mean ± standard error), were clearly higher than those recorded at younger sites and approached levels of soil carbon stocks under mature forests. These data indicate that soil carbon stocks in this region of Panama are not affected by the land-use transition from pasture to young secondary regrowth. However, an increase of soil carbon storage might be possible over a longer period of time. Our results support trends observed in other tropical areas and highlight the importance of environmental conditions such as soil properties rather than land-use transitions on soil carbon dynamics. While our understanding of organic carbon dynamics in tropical soils remains limited, these results underscore the challenges of undertaking short-term reforestation projects with the expectation of increasing soil carbon sequestration.  相似文献   

8.
李海防 《林业研究》2010,21(3):301-310
CH4是重要的温室气体之一,其主要排放源是森林土壤。本研究采用静态箱法对华南地区尾叶桉林(Eucalyptusurophylla)(B1),厚荚相思林(Acacia crassicarpa)(B2),10个树种的混交林(B3)和30个树种的混交林(B4)4种林型土壤CH4通量进行了原位测定,研究剔除林下灌草和添加翅荚决明(Cassia alata)对土壤CH4通量的影响。4个处理包括:(1)剔除林下灌草并添加翅荚决明(UR+CA);(2)仅剔除林下灌草(UR);(3)仅添加翅荚决明(CA);(4)对照(CK)。研究结果表明:林型变化对土壤CH4通量有重要影响,B1和B2表现为CH4的汇,而B3和B4为CH4的源,剔除林下灌草能改善土壤微生物活性,加快土壤矿化速度,促进CH4的吸收;而林下添加翅荚决明,由于翅荚决明根系的固氮作用,能加快土壤CH4的排放,表层土壤温度和湿度与土壤CH4通量具有强相关性;土壤有机碳(SOC)和可溶性N也是影响CH4通量的重要因子。本研究对探寻人工林管理措施对土壤CH4捧放影响机制具有重要的意义。  相似文献   

9.
Forest soils are important components of the global carbon cycle because they both store and release carbon. Carbon dioxide is released from soil to the atmosphere as a result of plant root and microbial respiration. Additionally, soils in dry forests are often sinks of methane from the atmosphere. Both carbon dioxide and methane are greenhouse gases whose increasing concentration in the atmosphere contributes to climate warming. Thinning treatments are being implemented in ponderosa pine forests across the southwestern United States to restore historic forest structure and reduce the risk of severe wildfire. This study addresses how thinning alters fluxes of carbon dioxide and methane in ponderosa pine forest soils within one year of management and examines mechanisms of change. Carbon dioxide and methane fluxes, soil temperature, soil water content, forest floor mass, root mass, understory plant biomass, and soil microbial biomass carbon were measured before and after the implementation of a thinning and in an unthinned forest. Carbon dioxide efflux from soil decreased as a result of thinning in two of three summer months. Average summer carbon dioxide efflux declined by an average of 34 mg C m−2 hr−1 in the first year after thinning. Methane oxidation did not change in response to thinning. Thinning had no significant short-term effect on total forest floor mass, total root biomass, or microbial biomass carbon in the mineral soil. Understory plant biomass increased after thinning. Thinning increased carbon available for decomposition by killing tree roots, but our results suggest that thinning reduced carbon dioxide emissions from the soil because the reduction in belowground autotrophic respiration was larger than the stimulation of heterotrophic respiration. Methane oxidation was probably not affected by thinning because thinning did not alter the forest floor mass enough to affect methane diffusion from the atmosphere into the soil.  相似文献   

10.
The low nutrient supply of heathland soils is often insufficient for the nutrient demand of growing forests and woodlands, and additional atmospheric input of nutrients is beneficial for the tree growth. On old heathland soils tree species influencing nutrient input with regard to higher amounts have competitive benefits on the early stages of succession and/or as first planted trees with consequences for both the successional development and the nutrition and management of heathland and forests. In three stages of heathland forest succession on highly acidified and nutrient poor soil, the influence of the canopies of a Calluna heathland, a pioneering birch-pine woodland, and a terminal oak-beech forest on nutrient input was investigated. Of all investigated species Scots pine has the highest interception of water and nutrients (N, K, Ca, Mg). As a consequence, the nutrient input into the pioneering birch-pine forest is the highest of the three types of ecosystems. This ability to meliorate the nutrient supply by increasing the nutrient input favours pine in the early stages of the succession. The enhanced nutrient input and accumulation within the young successional forest ecosystems involves two different succession and/or management considerations depending upon the further ecosystem development.
  • 1.The increasing nutrient availability mitigates the negative influence of the highly acidified nutrient poor soil on the growth of oak and beech and facilitates the conversion of pine dominated woodlands and forests into forests dominated by broadleaved species.
  • 2.For regeneration of heathland from naturally established pine woodlands and forests, deforestation have to be combined with techniques of nutrient impoverishment of the soil.
  相似文献   

11.
Elevated atmospheric nitrogen(N) deposition has been detected in many regions of China, but its effects on soil N transformation in temperate forest ecosystems are not well known. We therefore simulated N deposition with four levels of N addition rate(N0, N30, N60, and N120) for6 years in an old-growth temperate forest in Xiaoxing'an Mountains in Northeastern China. We measured gross N transformation rates in the laboratory using ~(15)N tracing technology to explore the effects of N deposition on soil gross N transformations taking advantage of N deposition soils. No significant differences in gross soil N transformation rates were observed after 6 years of N deposition with various levels of N addition rate. For all N deposition soils, the gross NH_4~+ immobilization rates were consistently lower than the gross N mineralization rates,leading to net N mineralization. Nitrate(NO_3~-) was primarily produced via oxidation of NH_4~+(i.e., autotrophic nitrification), whereas oxidation of organic N(i.e., heterotrophic nitrification) was negligible. Differences between the quantity of ammonia-oxidizing bacteria and ammonia-oxidizing archaea were not significant for any treatment, which likely explains the lack of a significant effect on gross nitrification rates. Gross nitrification rates were much higher than the total NO_3~- consumption rates,resulting in a build-up of NO_3~-, which highlights the high risk of N losses via NO_3~- leaching or gaseous N emissions from soils. This response is opposite that of typical N-limited temperate forests suffering from N deposition,suggesting that the investigated old-growth temperate forest ecosystem is likely to approach N saturation.  相似文献   

12.
In several areas in Northeast Thailand, evergreen and deciduous forests coexist under uniform terrain and climatic conditions. We compared depth and physical properties of soils between evergreen and deciduous forests in the Sakaerat Environmental Research Station to clarify what factor determines their distribution. The averaged soil depths were 79 ± 27 cm and 135 ± 58 cm in the deciduous and evergreen forests, respectively. The soils in the deciduous forests were relatively coarser in soil texture than those in the evergreen forests, particularly in the surface layers. The average available water capacity of the solum was lower in the deciduous forest soils (78 mm) than in the evergreen forest soils (123 mm). Compared with the evapotranspiration from the evergreen forest in the study area, the available water capacity of the evergreen forest soil was almost the same as the water deficit during the dry season (November–February), while that of the deciduous forest soil was lower and insufficient to maintain the evapotranspiration. These results suggest that the distribution of deciduous and evergreen forests in the study area was associated with soil water availability, which mainly depends on soil depth.  相似文献   

13.
In several areas in Northeast Thailand, evergreen and deciduous forests coexist under uniform climatic conditions. To identify the factors that determine the distribution of these different forest types, we compared soil depth and soil physical properties between evergreen and deciduous forests, and monitored soil moisture conditions for a year in both forest types at the Sakaerat Environmental Research Station. The soil was significantly deeper under the evergreen forests (mean 97 cm) than under the deciduous forest (mean 64 cm). The soil under the evergreen forests retained much more water throughout the year than the soil under the deciduous forest, and there was also a clear tendency for the evergreen forests to occur in ravine areas, regardless of soil depth. It is possible that the evergreen trees can maintain transpiration during the dry season on thicker soils or in ravine areas, whereas shallower soils cannot provide enough water for these trees to maintain their evapotranspiration during the dry period. From the present study, we showed that soil water availability could be a significant factor determining the distribution of the deciduous and evergreen forests in our catchments.  相似文献   

14.
Lowland evergreen rainforests in southern Chile growing on highly productive soils and accessible sites have been subjected to traditional and industrial logging of valuable timber trees. Old-growth rain forests in this area are characterized by highly conservative N cycles, which results in an efficient N use of ecosystems. We hypothesize that different logging practices, by changing forest structure and species composition, can alter the quantity and quality (i.e. C/N ratio) of litterfall and soil organic matter and soil microbial processes that determine N storage and availability. To test this hypothesis we investigated chemical properties, microbial N transformations, N fluxes and N storage in soils of lowland evergreen rainforests of Chiloé Island after 10 years since industrial selective logging (ISL) and in stands subjected to traditional selective logging (TSL) by landowners in small properties. We compared them to reference unlogged old-growth stands (OG) in the same area. Tree basal area was more reduced in the stands subjected to ISL than to TSL. Litterfall inputs were similar in both logging treatments as in OG stands. This was due to greater biomass of understory species after logging. In TSL understory tree species determined a higher litterfall C/N ratio than ISL. We found higher soil N availability and content of base cations in surface soils of logged forests than in OG. The litter horizon of OG forest had significantly higher rates of non-symbiotic N fixation than logged forests. In the ISL treatment there was a trend toward increasing soil denitrification and significantly higher NO3–N/Nt ratio in spring waters, which led to a stronger δ15N signal in surface and deep soils. We conclude that massive understory occupation by the shade-intolerant native bamboo Chusquea quila in ISL led to enhanced litter quality (lower C/N ratios) relaxing the tightness of the N cycle, which increased soil N availability leading to a higher proportion of nitrate in spring waters and higher gaseous N losses. In contrast, under TSL a higher litterfall C/N ratio slowed decomposition and net N mineralization rates thus reducing the chances for N losses, and enhancing C and N storage in soil. We suggest that sustainable logging practices in these rain forests should be based on lower rates of canopy removal to enhance colonization of the understory by shade-tolerant trees, which are associated with a more efficient N cycle.  相似文献   

15.
文峪河上游河岸林与相邻高地林土壤属性比较分析   总被引:1,自引:0,他引:1  
以文峪河上游河岸林为例,分析了河岸林与相邻高地林林下土壤的理化性质。研究结果显示,河岸林土壤含水量、速效磷和速效钾含量均高于相邻高地林;河岸林土壤有机质和全氮含量低于相邻高地林。不同类型河岸林和相邻高地林土壤含水量差异均达到极显著,土壤有机质含量均差异显著,土壤酸碱度差异均不显著。河岸林与相邻高地林土壤全氮和有机质含量呈极显著正相关(r=0.946 4)。土壤含水量、速效磷和速效钾含量在不同林型河岸林和高地林下的分布格局不同。  相似文献   

16.
森林土壤酶的研究进展   总被引:79,自引:4,他引:79  
杨万勤  王开运 《林业科学》2004,40(2):152-159
土壤酶在土壤生态系统的物质循环和能量流动方面扮演重要的角色。目前 ,在几乎所有的森林生态系统研究中 ,土壤酶活性的监测似乎成为必不可少的研究内容。森林凋落物分解过程中的酶活性动态 ,植被特征与土壤酶活性的关系 ,土壤微生物与土壤酶的关系 ,植物 -土壤界面的土壤酶 ,森林土壤质量评价指标的土壤酶及人类活动干扰对森林土壤酶活性的影响等是当前森林土壤酶学的研究重点。由于土壤酶的功能和生态重要性 ,森林土壤酶研究可能包括 :(1 )土壤酶系统分异 ;(2 )作为森林土壤质量综合评价指标的土壤酶活性 ;(3)植被动态与土壤酶的关系 ;(4 )退化森林生态系统的土壤酶活性特征 ;(5 )人工林土壤酶活性特征 ;(6 )人类活动对森林土壤酶系统的影响。本文从土壤酶系统分异和生态系统的角度对土壤酶在森林生态系统中的作用和地位进行了综述 ,这对于加深理解森林生态系统中的物质循环、土壤酶的生态重要性以及森林生态系统退化机理有重要作用  相似文献   

17.
文章在分析杭州市主要城市森林生态系统碳汇/源基础上,提出了增加杭州市城市森林生态系统碳汇效益的主要技术措施.包括合理区划和选择土地利用方式、合理的森林生态系统管理方式和退化生态系统恢复、农田生态系统合理管理和耕作等。  相似文献   

18.
森林碳汇研究进展   总被引:2,自引:0,他引:2  
评价森林的碳源、碳汇功能,认为森林是一个大的碳汇,但随着森林破坏、退化的加剧以及火灾等干扰因素的影响,森林生态系统就可能成为碳源.列举森林碳储量及固碳经济效益计算的方法.认为目前大多数相关研究尤其是国内学者仅限于对现存森林CO2吸收或排放的计算,未能阐明森林碳汇、碳源的分布格局,研究对象多为大尺度的,在森林固碳经济效益计算方面缺乏公认的方法.  相似文献   

19.
Forest soils account for a large part of the stable carbon poolheld in terrestrial ecosystems. Future levels of atmosphericCO2 are likely to increase C input into the soils through increasedabove- and below-ground production of forests. This increasedinput will result in greater sequestration of C only if theadditional C enters stable pools. In this review, we comparecurrent observations from four large-scale Free Air FACE Enrichment(FACE) experiments on forest ecosystems (EuroFACE, Aspen-FACE,Duke FACE and ORNL-FACE) and consider their predictive powerfor long-term C sequestration. At all sites, FACE increasedfine root biomass, and in most cases higher fine root turnoverresulted in higher C input into soil via root necromass. However,at all sites, soil CO2 efflux also increased in excess of theincreased root necromass inputs. A mass balance calculationsuggests that a large part of the stimulation of soil CO2 effluxmay be due to increased root respiration. Given the durationof these experiments compared with the life cycle of a forestand the complexity of processes involved, it is not yet possibleto predict whether elevated CO2 will result in increased C storagein forest soil.  相似文献   

20.
Two types of measures have traditionally been used to monitor changes after disturbances in the nutrient availability of forest ecosystems: (1) soil nutrient pools and transformation rates and (2) foliar nutrient content. We used a wildfire chronosequence in natural and unmanaged Pinus canariensis forests to determine which kind of measure is more effective in discriminating between disturbed and undisturbed plots and to determine whether the different availability indices provide comparable and consistent results within the chronosequence and between different sampling dates. The results showed that (1) foliar N and P concentrations were the variables that best discriminated between the plots of the chronosequence, (2) the various soil N availability indices neither showed steady relationships nor predicted the plant nutrient availability, and (3) P availability indices showed steady relationships and predicted plant nutrient availability. Due to the changing nature of the soil N pools, repeated sampling over a long period of time could yield results different from those presented here. However, the large sampling effort required would favor the use of foliar nutrient concentrations as the most desirable first approach to the community’s nutritional status, especially when time or budget constraints are relevant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号