首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
4年生及13年生西南桦人工林生物量的分布特征   总被引:4,自引:0,他引:4  
通过对西双版纳普文林场4年生、13年生西南桦人工林生物量分布特点进行了研究。结果表明:西南桦人工林生物量4年生为19.54 t/hm2,13年生为84.29 t/hm2;西南桦年平均净生产力4年生为8.76 t/hm2.a,13年生为26.52 t/hm2.a。两个龄级林分生态系统的生物量分配格局为乔木层>草本层>灌木层>枯枝落叶层。其中乔木层生物量4年生为7.55 t/hm2,13年生为56.22 t/hm2;净生产力4年生为2.67 t/hm2.a,13年生为5.45 t/hm2.a;其生物量分配格局都为树干>根>枝>叶。同时,建立了预测两种龄级西南桦人工林及其器官生物量的回归模型,以供生产中推广运用。  相似文献   

2.
《福建林业科技》2015,(4):33-36
以广西南宁市10年生灰木莲人工林为研究对象,研究其生长过程和生物生产力特征。结果表明:110年生灰木莲人工林平均胸径(去皮)、树高、单株材积分别达到13.4 cm、12.9 m、0.0909 m3;灰木莲树高和胸径生长均以前6 a最快,随后随林龄的增长而下降;材积生长在10年生时仍未达到峰值。210年生灰木莲人工林林分生物量为104.73 t·hm-2,其中乔木层、林下植被层和凋落物层生物量依次为93.54、0.24、10.95 t·hm-2,分别占89.31%、0.23%、10.46%。林分乔木层年净生产力为11.80 t·hm-2·a-1,不同器官净生产力大小顺序为树干、树叶、树根、树枝、树皮。  相似文献   

3.
辐射松人工幼林生物量和生产力研究   总被引:4,自引:0,他引:4  
本文对岷江上游干旱河谷区引种栽培的5 a生辐射松幼林生物量和生产力进行了测定和研究,用"平均标准木法"和"样方收获法"分别调查了乔木层、灌木层、草本层、苔鲜层和凋落物层的生物量.据调查数据,用"相对生长法则"建立了乔木层单株立木及其各器官干重的回归方程,方程的精度均在97%以上.同时还研究了林分平均净生产量和产量结构.结果表明岷江上游干旱河谷区5 a生辐射松人工林分生物量平均为19.507 t/hm2,净生产量为3 902.40kg/(hm2·a).其中,乔木层生物量为8.510 t/hm2,占林分总量的43.62%;净生产量1.702 t/(hm2·a),占林分净生产量的43.63%.灌木的生物量和净生产量分别为2.171 t/hm2、434.20 kg/(hm2·a);草本的生物量和净生产量分别为8.091 t/hm2、1 618.20 kg/(hm2·a);苔鲜层的生物量和净生产量分别为0.464 t/hm2、92.80kg/(hm2·a);凋落物的生物量和净生产量分别为0.271 t/hm2、54.20 kg/(hm2·a).辐射松人工林与同区域同龄油松和岷江柏相比,其生物量和生产力都远高于它们.  相似文献   

4.
通过测定 9年生马褂木人工林生物量和建立其估算模型 ,分析了生物量分配规律及林分生产力水平。结果表明 :人工林总生物量为64.538.t/hm2 ,乔木层、林下植物层和凋落物所占比例分别为 :93.4 0 %、3.63%和 2 .97%。乔木层各器官生物量大小顺序依次为 :干、根、枝、皮、叶 ,所占比例依次为 :62 .79%、 16. 61%、 11. 11%、7.12 %、2 .4 7%。林分净生产力为7.17t/hm2 ·a,略低于中、北亚热带地区森林植被的平均净生产力  相似文献   

5.
以广西国有三门江林场30年生的红椿人工林为研究对象,采用标准样地法、树干解析法分析其生长过程、生物量及生产力特征。结果表明:红椿在桂北具有较强的生长适应性,30年生平均胸径(去皮)、平均树高和平均单株材积分别达到31.4 cm、25.2 m、0.3997 m3,红椿树高和胸径生长均以前8 a最快,树高平均生长量在0.8~1.6 m·a-1范围,胸径年平均生长量在1.367 cm左右;材积生长在26 a时达到最大生长速率,随后持续下降;拟合出最优回归模型,红椿人工林树高、胸径与林龄的最优回归模型为苏马克模型,R2值分别为0.9890、0.9929,材积的最优模型是坎派兹方程,拟合相关系数高达0.9846;30年生红椿人工林林分生物量为390.28 t·hm~(-2),其中生物量大小为:乔木层(380.62 t·hm~(-2))灌木层(5.42t·hm~(-2))凋落物层(3.02 t·hm~(-2))草本层(1.22 t·hm~(-2)),分别占97.52%、1.38%、0.77%、0.31%,林分乔木层年净生产力为21.605 t·hm~(-2)·a-1,不同器官净生产力大小次序为:树叶树干树根树枝树皮。  相似文献   

6.
对在西双版纳普文林场营造的西南桦纯林(13年生),西南桦 肉桂混交林(15年生)两种幼林期西南桦人工林的生物量进行了研究。结果表明:幼林期,西南桦 肉桂混交林的总生物量为137.329 2 t/hm2,西南桦人工林的总生物量为84.979 2 t/hm2。两种林分幼林期生物量的层次分配比例以乔木层所占的比例最大,占66%以上;灌木层所占比例相差不大;因林分的群落结构不同,草本层及层间植物的生物量相差较大。生物量的器官分配比例以干材所占比例最大,都达到55%以上,其乔木层各器官生物量的分配比例顺序为:干材>根>枝>叶。两种西南桦人工林幼林期生物量的研究结果还表明,林分的总生物量由其群落结构、植被种类组成所决定,群落结构越复杂,其生物量越高。另还建立了西南桦林木各器官的生物量回归模型。  相似文献   

7.
采用样地法对西双版纳13年生的西南桦纯林和西南桦+肉桂混交林两种西南桦人工林林分的生物量进行了测定,并与当地相同林龄的天然西南桦次生林和热带次生林进行了对比研究.结果表明:西南桦+肉桂混交林的生物量最大,为136.94 t/hm2 ,西南桦纯林次之,为115.89 t/hm2 ,西南桦次生林为102.48 t/hm2 ,热带次生林为68.19 t/hm2 .西南桦+肉桂混交林林分生物量的年增长量达9.18 t/hm2 ,西南桦纯林为8.02 t/hm2 ,西南桦次生林也达到了7.42 t/hm2 ,热带次生林为4.84 t/hm2 .4 种林分中,地上部分生物量最大的是西南桦+肉桂混交林,达91.22 t/hm2 ,最小的是热带次生林,仅46.16 t/hm2,西南桦纯林和西南桦次生林分别以84.35 t/hm2 和80.23 t/hm2 居中;地下部分生物量方面,西南桦+肉桂混交林最大,为28.11 t/hm2 ,西南桦纯林以19.48 t/hm2 位居其次,西南桦次生林与热带次生林差异不大,分别为16.20 t/hm2 和16.81 t/hm2 ;凋落物层生物量方面,西南桦+肉桂混交林最大,为17.61 t/hm2 ,西南桦纯林以12.06 t/hm2 位居其次,西南桦次生林为6.05 t/hm2 ,大于热带次生林的5.22 t/hm2 .  相似文献   

8.
长白落叶松人工林生物量的结构与分布   总被引:1,自引:0,他引:1  
采用径级标准木和样方收获法,对24a生长白落叶松人工林的生物量和生产力进行了研究。结果表明:24a生长白落叶松人工林分生物量为120.55t/hm2,年平均净生产力为8.47 t/(hm2.a),生态系统的生物量分配格局为乔木层>枯枝落叶层>下木层>草本层,其中乔木层生物量为102.17t/hm2,净生产力为8.09t/(hm2.a),其生物量分配格局为树干>树根>树皮>树枝>树叶;在林分产量结构方面,8 m以下树干生物量占其总量的81.80%,树枝和树叶的生物量主要分布在10~14 m,分别占树枝和树叶总生物量的71.11%和73.05%,地下根系生物量分配格局为粗根(直径大于5 cm)>根头>中根(0.5~5 cm)>细根(<0.5cm),粗根生物量占根总生物量的53.98%。  相似文献   

9.
广西大青山12年生杉木人工林的生物生产力   总被引:2,自引:0,他引:2  
通过对广西大青山实验林场12年生杉木(Cunninghamia lanca)lata)人工林的生长量、生物量和生产力进行研究,结果表明:12年生杉木人工林平均胸径、平均树高和蓄积年均生长量分别为13.7cm、11.8m、18.6m^3/hm^2;林分生物量和净生产量分别为92.502t/hm^2、9.763t/(hm^2.a),其中,乔木层的生物量及净生产量分别占林分总量的96.06%和93.78%,灌木层和草本层的生物量及净生产量依次占林分总量的0.97%、2.98%、1.59%、4.63%。由于该实验区位于两山夹一沟,气候湿润,水热条件很适宜杉木的生长,所以生产力水平较高。  相似文献   

10.
观光木人工林生物量及生产力研究   总被引:1,自引:0,他引:1  
对广西南宁良凤江国家森林公园27年生的观光木生物量和生产力进行测定研究,分析观光木人工林不同径阶生物量的分配规律和林分生物量、生产力,并根据林木各器官之间的相关关系,建立D2H与各器官生物量的估测模型。结果表明,观光木生物量随着径阶的增大而增大,不同径阶间差异显著;通过不同径阶D2H拟合的生物量估算模型,拟合精度高,可用于实际生产对该林分生物量的估算;观光木林分生物量为102.57 t/hm2,其中乔木层占了87.07%,林下灌木层、草本层及腐殖质层生物量分别为8.61 t/hm2、1.83 t/hm2、2.82 t/hm2。观光木人工林林分生产力为7.4 t/(hm2.a),具有较高的净生产力。  相似文献   

11.

In Scandinavia, moose (Alces alces L.) sometimes cause severe browsing damage to economically-important pine. Moose-vehicle accidents have spurred construction of fences along roads, and these may interfere with moose migration between summer and winter ranges, or the road alone may be a barrier. If this happens and moose build up along roads, landowners may suffer economically. Therefore, this study investigated whether roads, fences or other factors influence the use of young pine stands by moose. Eighty stands along roads in northern Sweden were evaluated in which individually-browsed branches were counted on 9972 pines. Moose browsing was not significantly related to birch (Betula pendula Roth, B. pubescens Ehrh.) density, nor did it differ between pines (Pinus contorta Douglas or P. sylvestris L.). However, increased pine density, site productivity and proximity to a highway were associated with increased browsing. Further large-scale studies are needed to understand moose habitat selection and the effects of roads.  相似文献   

12.

The root systems of 2-yr-old Picea glauca, Picea mariana and Pinus banksiana seedlings were submitted to various frost temperatures during an artificial frost to induce different levels of root damage. Frost-damaged and control seedlings were placed in a greenhouse under high and low soil moisture regimes. Seedling growth and physiology were evaluated periodically. Seedling survival was reduced when root damage reached levels of 60-80%. Root systems of all three species showed partial to total recovery by the end of the experiment. In general, root freezing damage caused reductions in seedling growth, with these reductions becoming less significant over time. Root damage had little to no effect on black spruce and jack pine seedling physiology, while white spruce CO 2 uptake decreased with increasing root damage. Shoot nitrogen content of all three species decreased slightly with increasing root damage.  相似文献   

13.
Contour hedgerows of multipurpose tree species in the sloping tea lands of Sri Lanka are expected to reduce soil erosion and also add significant amounts of plant nutrients to the soil via periodic prunings. The objective of this experiment was to characterize the biomass decomposition pattern and quantify the amount of nutrients added through prunings of six tree species (Calliandra calothyrsus, Senna spectabilis, Euphatorium innulifolium, Flemingia congesta, Gliricidia sepium and Tithonia diversifolia) currently being used in hedgerows associated with tea. Withered leaf and stem prunings (50 g) were enclosed in 2-mm litter bags, placed at 5-cm depth and retrieved after one, three, six, nine and 12 weeks. Loss of initial dry weight, N, P and K was measured. Single exponential decay function adequately described both dry weight and nutrient loss. Tree species differed significantly in their rate of breakdown with decomposition constants (k) varying from 0.0299 to 0.2006 week−1 for leaves and from 0.0225 to 0.0633 week−1 for stems. Gliricidia showed the highest k for leaves with the rest in the following descending order: Senna > TithoniaEuphatorium > Calliandra > Flemingia. A similar pattern was observed for loss of all nutrients with Calliandra and Flemingia always having lower k values than the rest. Although N immobilization was not observed, immobilization of P and K was observed during the first week of incubation in some species, particularly in stem prunings. Annual biomass of prunings differed significantly between tree species in the following descending order: Calliandra > Senna > Flemingia > Tithonia > Gliricidia > Euphatorium. Calliandra added the greatest amount of nutrients annually to the soil with Euphatorium adding the least. Calliandra prunings provided the annual total K requirement and 49% of the N requirement of mature tea. However, none of the species provided more than 5% of the P requirement. It is concluded that among the tree species tested, Calliandra and Flemingia are the most suitable for contour hedgerows in tea plantations of this agroclimatic region because of their higher soil nutrient enrichment capacity and slower decomposition rates which would minimize leaching losses. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.

This study investigated the stand structure in pine, spruce and deciduous forests in the border district of Finland and Russia. A total of 46 mature forest stands was selected as pairs, the members of each pair being as similar as possible with respect to their forest site type, age, moisture and topography. The stands were then compared between the two countries by means of basal areas and number of stems. The proportions of dominating tree species were 2-12% lower, and correspondingly the proportions of secondary tree species higher, in Russian forests. The density of the forest stock was also higher in each forest type in Russia. The forests in the two countries differed most radically in terms of the abundance of dead trees. The amount was two to four times higher in Russian deciduous and spruce forests, and in pine forests the difference was 10-fold. The stand structures indicated that Russian coniferous stands, in particular, were more heterogeneous than intensively managed pine and spruce stands in Finland.  相似文献   

15.

The root collar diameter and the height:diameter ratio are of particular importance in container-grown seedlings where a high density in the containers may produce spindly seedlings. Temperature regimes and light quality are known to affect plant growth. The aim of this study was to identify responses in Picea abies (L.) Karst. seedlings grown with light providing different red:far-red ratios and under temperature regimes with alternating day (DT) and night temperature (NT) from negative (DT < NT) to positive (DT > NT) difference (DIF) between DT and NT. Experiments were conducted in controlled environment chambers and in a daylight phytotron. Only limited thermoperiodic responses appeared in P . abies seedlings with respect to seedling height and dry weight accumulation. The formation of terminal buds, however, was clearly delayed in seedlings grown at negative DIF. The results indicate a requirement for day extension light that is high in far-red, to prevent terminal bud formation under natural short-day conditions. An extended study should be conducted to clarify the minimum level of light intensity and the optimal light quality needed to prevent terminal bud formation under natural short-day conditions.  相似文献   

16.
本文分析了CAD在设计中引起的正面和负面影响,并进行了系统的阐述,从而使设计者在应用中能够保持客观的态度。  相似文献   

17.

The effects of seed weight and seed type on seedling growth of Pinus sylvestris (L.) were studied by seeding individually weighed orchard and stand seed in different mixtures under harsh (direct seeding in field) and optimal (seeding in nursery) conditions. In the nursery experiment an increase in the seed weight from 3 to 7 mg increased the seedling height by 10-27% and total weight by 27-113%, and decreased the height/diameter ratio by 5-6% after 2 yrs. With elimination of seed weight effects, orchard seedlings were 2% taller than stand seedlings in year 2. Without elimination of seed weight effects, orchard seedlings were 7-13% taller. In the field experiment an increase in the seed weight from 3 to 7 mg increased seedling height by 18-65%, stem volume by 81-274% and the number of top-buds by 23-34% in year 5. After elimination of seed weight effects, orchard seedlings were 7-13% taller than stand seedlings and without elimination of seed weight effects 20-21% taller after 5 yrs. Even after elimination of both seed weight and genetic effects orchard seedlings were 3-9% larger than stand seedlings in the field experiment. In conclusion, the influence of seed weight and seed type on growth traits and slenderness is highly significant and the influence seems to be greater in harsh conditions.  相似文献   

18.
Heterobasidion parviporum and Heterobasidion annosum are widely distributed root‐rot fungi that infect conifers throughout Europe. Infection of conifer stumps by spores of these pathogens can be controlled by treating fresh stumps with a competing non‐pathogenic fungus, Phlebiopsis gigantea. In this study, growth of three Latvian strains of P. gigantea and the biological control agent ‘Rotstop’ strain was evaluated in stem pieces of Norway spruce, Scots pine, lodgepole pine, Douglas‐fir, Weymouth pine, Siberian larch and Sitka spruce. The growth rates of one H. parviporum and one H. annosum isolate were also measured in the same stem pieces. The growth rate of P. gigantea varied greatly in wood of different conifer species. It was higher in the three pine species, lower in Norway spruce and lowest in Sitka spruce and Siberian larch, and in Douglas‐fir, this fungus did not grow. The largest area of wood occupied by P. gigantea was in lodgepole pine. Growth of Latvian isolates of P. gigantea in the wood of Pinus and Picea species was comparable to that of the Rotstop isolate. Consequently, stump treatment with local P. gigantea isolates should be recommended. However, our results suggest that Douglas‐fir stump treatment against Heterobasidion by P. gigantea may be ineffective and other stump treatment methods should be considered.  相似文献   

19.
Baobab leaves form an important part of the local diet in Sahel countries and elsewhere in Africa. Existing leaf nutritional data and agroforestry performance information are based solely on Adansonia digitata L., the baobab of continental Africa. The introduction potential of Adansonia species from the center of diversity in Madagascar and from Australia remains untapped. To assess this potential, the mineral contents and B1 and B2 vitamin levels of dried baobab leaves were determined for five-year old trees of A. digitata, A. gibbosa (A. Cunn.) Guymer ex D. Baum, A. rubrostipa Jum. & H. Perrier (syn. A. fony Baill.), A. perrieri Capuron and A. za Baill. grown in an introduction trial in Mali. Nutritional data were evaluated against survival and vigor to identify promising germplasm. Leaf vitamin and crude protein contents were highest in the Madagascar species, especially A. rubrostipa (B1 88 mg 100 g−1, B2 187 mg 100 g−1, protein 20.7% dry weight). However, the local species far outperformed the introductions in survival, tree height, basal diameter and resistance to termites. We suggest grafting as a way of harnessing the vigor of well-adapted local baobab varieties to the superior nutritional profiles of A. rubrostipa and others. Cross-species grafting tests in Adansonia were successful, thus creating new agroforestry possibilities with different scion/rootstock combinations.  相似文献   

20.
Abstract

Wood in general and wooden studs in particular are often distorted owing to uneven shrinkage during the drying process in the sawmill. Twist is often the most detrimental of all types of distortion, and it is caused by spiral grain in combination with variations in moisture content. For sawmills, the objective is to produce dried, straight boards, and one method of dealing with boards with excessive spiral grain is to sort them out and then dry them in a pretwisted position to obtain straight boards after drying. A model using the finite element (FE) method for the simulation of drying twist distortions was first calibrated against laboratory experiments in which boards were dried with and without restraints and pretwists. After the calibration, the FE results were compared with industrial test results for boards that were dried without restraints or with restraints with zero pretwist, i.e. straight restraints. The FE model used an elastic–ideally plastic material model to obtain permanent deformations. The calibration was to set the yield stresses so that there was a good match between FE results and results from the laboratory experiments. The comparison between the industrial test results and the FE results showed that the FE model is capable of realistic simulations of drying boards with and without restraints and presumably also pretwists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号