首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Seedlings of yellow-poplar (Liriodendron tulipifera L.) and white oak (Quercus alba L.) were exposed continuously to one of three CO(2) concentrations in open-top chambers under field conditions and evaluated after 24 weeks with respect to carbon exchange rates (CER), chlorophyll (Chl) content, and diurnal carbohydrate status. Increasing the CO(2) concentration from ambient to +150 or +300 microl l(-1) stimulated CER of yellow-poplar and white oak seedlings by 60 and over 35%, respectively, compared to ambient-grown seedlings. The increases in CER were not associated with a significant change in stomatal conductance and occurred despite a reduction in the amounts of Chl and accessory pigments in the leaves of plants grown in CO(2)-enriched air. Total Chl contents of yellow-poplar and white oak seedlings grown at +300 microl l(-1) were reduced by 27 and over 55%, respectively, compared with ambient-grown seedlings. Yellow-poplar and white oak seedlings grown at +300 microl l(-1) contained 72 and 67% more morning starch, respectively, than did ambient-grown plants. In contrast, yellow-poplar and white oak seedlings grown at +300 microl l(-1) contained 17 and 27% less evening sucrose, respectively, than did plants grown at ambient CO(2) concentration. Diurnal starch accumulation and the subsequent depletion of sucrose contributed to a pronounced increase in the starch/sucrose ratio of plants grown in CO(2)-enriched air. All seedlings exhibited a substantial reduction in dark respiration as CO(2) concentration increased, but the significance of this increase to the carbohydrate status and carbon economy of plants grown in CO(2)-enriched air remains unclear.  相似文献   

2.
We studied assimilation, stomatal conductance and growth of Mangifera indica L. saplings during long-term exposure to a CO(2)-enriched atmosphere in the seasonally wet-dry tropics of northern Australia. Grafted saplings of M. indica were planted in the ground in four air-conditioned, sunlit, plastic-covered chambers and exposed to CO(2) at the ambient or an elevated (700 micro mol mol(-1)) concentration for 28 months. Light-saturating assimilation (A(max)), stomatal conductance (g(s)), apparent quantum yield (phi), biomass and leaf area were measured periodically. After 28 months, the CO(2) treatments were changed in all four chambers from ambient to the elevated concentration or vice versa, and A(max) and g(s) were remeasured during a two-week exposure to the new regime. Throughout the 28-month period of exposure, A(max) and apparent quantum yield of leaves in the elevated CO(2) treatment were enhanced, whereas stomatal conductance and stomatal density of leaves were reduced. The relative impacts of atmospheric CO(2) enrichment on assimilation and stomatal conductance were significantly larger in the dry season than in the wet season. Total tree biomass was substantially increased in response to atmospheric CO(2) enrichment throughout the experimental period, but total canopy area did not differ between CO(2) treatments at either the first or the last harvest. During the two-week period following the change in CO(2) concentration, A(max) of plants grown in ambient air but measured in CO(2)-enriched air was significantly larger than that of trees grown and measured in CO(2)-enriched air. There was no difference in A(max) between trees grown and measured in ambient air compared to trees grown in CO(2)-enriched air but measured in ambient air. No evidence of down-regulation of assimilation in response to atmospheric CO(2) enrichment was observed when rates of assimilation were compared at a common intercellular CO(2) concentration. Reduced stomatal conductance in response to atmospheric CO(2) enrichment was attributed to a decline in both stomatal aperture and stomatal density.  相似文献   

3.
Beech (Fagus sylvatica L.) seedlings were cultivated from seeds sown in pots or directly in the ground in outdoor chambers that were transparent to solar radiation, and provided either ambient air or CO(2)-enriched air (ambient + 350 &mgr;mol mol(-1)). The rooting volume was high in all experiments. In the short-term experiment, potted plants were assigned to a factorial CO(2) x nutrient treatment (optimal nutrient supply and severe nutrient shortage) for 1 year. In the long-term experiment, plants were grown directly in the ground and received an optimal supply of water and nutrients in both CO(2) treatments for 3 years. Nutrient stress caused carboxylation capacity (V(m)) to decrease in the potted seedlings exposed to CO(2)-enriched air during their first growing season. In the long-term experiment with optimal nutrient supply, CO(2)-enriched air did not affect V(m), but caused an upward acclimation of maximum electron transport rate (J(m)). Consequently, there was a 14% increase in the J(m)/V(m) ratio, indicating nitrogen reallocation to maintain an equilibrium between RuBP consumption and RuBP regeneration. Both V(m) and J(m) decreased during the growing season in both CO(2) treatments. Although upward acclimation of J(m) was no longer apparent at the end of the third growing season, plants in CO(2)-enriched air maintained a higher J(m)/V(m) ratio than plants in ambient air, indicating that photosynthetic acclimation always occurred. Second flush leaves appeared during each growing season. When expressed on the basis of foliar nitrogen concentration, their photosynthetic characteristics (V(m) and J(m)) were enhanced compared with other leaves. Because the number of second flush leaves was also increased in the elevated CO(2) treatment, this response should be taken into account when modeling the effects of elevated CO(2) concentration on canopy photosynthesis. Stomatal conductance decreased in response to atmospheric CO(2) enrichment; however, the stomatal response to irradiance followed a single relationship based on two stomatal conductance models.  相似文献   

4.
The interaction of drought and elevated carbon dioxide concentration ([CO(2)]) on carboxylation capacity of Rubisco (V(cmax)) and susceptibility to photoinhibition may be an important determinant of plant responses to seasonal fluctuations in precipitation in an anticipated elevated [CO(2)] environment. Japanese white birch (Betula platyphylla var. japonica) leaves that developed wholly during a period of drought showed an increase in leaf nitrogen and a decrease in leaf carbohydrates that could ameliorate photosynthetic down-regulation, defined as a decrease in V(cmax) in response to elevated [CO(2)]. Photochemical quenching (q(P)) was decreased by elevated [CO(2)] but increased by drought when compared at a given intercellular [CO(2)] (C(i)), indicating that elevated [CO(2)] could increase the risk of photoinhibition, whereas long-term drought could alleviate the risk of photoinhibition. However, only a small variation in q(P) was measured among seedlings in the various water availability x [CO(2)] treatment combinations, consistent with the small treatment differences in chronic photoinhibition among the seedlings, as indicated by the ratio of variable to maximum chlorophyll fluorescence after overnight dark-adaptation. Our results suggest that the offsetting responses-reduced V(cmax) plus increased C(i) at elevated [CO(2)] and increased V(cmax) plus reduced C(i) under drought conditions-resulted in a narrow range of susceptibility to photoinhibition at the growth [CO(2)] in Japanese white birch seedlings grown in various water availability x [CO(2)] treatment combinations.  相似文献   

5.
Zhang S  Dang QL 《Tree physiology》2005,25(5):523-531
One-year-old jack pine (Pinus banksiana Lamb.) and current-year white birch (Betula papyrifera Marsh.) seedlings were grown in ambient (360 ppm) or twice ambient (720 ppm) atmospheric CO2 concentration ([CO2]) and at three soil temperatures (Tsoil = 7, 17 and 27 degrees C initially, increased to 10, 20 and 30 degrees C two months later, respectively) in a greenhouse for 4 months. In situ foliar gas exchange, in vivo carboxylation characteristics and chlorophyll fluorescence were measured after 2.5 and 4 months of treatment. Low Tsoil suppressed net photosynthetic rate (Pn), stomatal conductance (g(s)) and transpiration rate (E) in jack pine in both CO2 treatments and g(s) and E in white birch in ambient [CO2], but enhanced instantaneous water-use efficiency (IWUE) in both species after 2.5 months of treatment. Treatment effects on g(s) and E remained significant throughout the 4-month study. Low Tsoil reduced maximal carboxylation rate (Vcmax) and PAR-saturated electron transport rate (Jmax) in jack pine in elevated [CO2] after 2.5 months of treatment, but not after 4 months of treatment. Low Tsoil increased actual photochemical efficiency of photosystem II (PSII) in the light (DeltaF/Fm') in jack pine, but decreased DeltaF/Fm' in white birch after 4 months of treatment. In response to low Tsoil, photosynthetic linear electron transport to carboxylation (Jc) decreased in jack pine after 2.5 months and in white birch after 4 months of treatment. Low Tsoil increased the ratio of the photosynthetic linear electron transport to oxygenation (Jo) to the total photosynthetic linear electron transport rate through PSII (Jo/J(T)) in both species after 2.5 months of treatment, but the effects became statistically insignificant in white birch after 4 months of treatment. High Tsoil decreased foliar N concentration in white birch. Elevated [CO2] increased Pn, IWUE and Jc but decreased Jo/J(T) in both species at both measurement times except Jc in white birch after 2.5 months of treatment. Elevated [CO2] also decreased g(s) and E in white birch at high Tsoil, Vcmax in both species and triose phosphate utilization in white birch at low Tsoil after 4 months of treatment, and DeltaF/Fm' in white birch after 2.5 months of treatment. Elevated [CO2] also increased foliar N concentration in both species. Low Tsoil caused no permanent damage to PSII in either species, but jack pine responded and acclimated to low Tsoil more quickly than white birch. Photosynthetic down-regulation and a decrease in photosynthetic electron transport to photorespiration occurred in both species in response to elevated [CO2].  相似文献   

6.
Seeds from two full-sib families of ponderosa pine (Pinus ponderosa) with known differences in growth rates were germinated and grown in an ambient (350 micro l l(-1)) or elevated (700 micro l l(-1)) CO(2) concentration. Gas exchange at both ambient and elevated CO(2) concentrations was measured 1, 6, 39, and 112 days after the seed coat was shed. Initial stimulation of CO(2) exchange rate (CER) by elevated CO(2) was large (> 100%). On Day 1, CER of seedlings grown in elevated CO(2) and measured at ambient CO(2) was significantly lower than the CER of seedlings grown and measured at ambient CO(2), indicating physiological adjustment of the seedlings exposed to elevated CO(2). Physiological acclimation to elevated CO(2) was complete by Day 39 when there was no significant difference in CER between seedlings grown and measured at ambient CO(2) and seedlings grown and measured at elevated CO(2). After 4 months, the light response of seedlings in the two treatments was determined at both ambient and elevated CO(2). Light compensation point, CER at light saturation, and apparent quantum efficiency of seedlings grown and measured at ambient CO(2) were not significantly different from those of seedlings grown and measured at elevated CO(2). With a short-term increase in CO(2), CER at light saturation (5.16 +/- 0.52 versus 3.13 +/- 0.30 micro mol CO(2) m(-2) s(-1)) and apparent quantum efficiency (0.082 +/- 0.011 versus 0.045 +/- 0.003 micro mol CO(2) micro mol(-1) quanta) were significantly increased. Leaf C/N ratio was significantly increased in the elevated CO(2) treatment. There were few significant differences between families for any response to elevated CO(2). Under the experimental conditions, high growth rate was not correlated with a greater response to elevated CO(2).  相似文献   

7.
Two-year-old beech (Fagus sylvatica L.) saplings were planted directly in the ground at high density (100 per m(2)), in an experimental design that realistically mimicked field conditions, and grown for two years in air containing CO(2) at either ambient or an elevated (ambient + 350 ppm) concentration. Plant dry mass and leaf area were increased by a two-year exposure to elevated CO(2). The saplings produced physiologically distinct types of sun leaves associated with the first and second growth flushes. Leaves of the second flush had a higher leaf mass per unit area and less chlorophyll per unit area, per unit dry mass and per unit nitrogen than leaves of the first flush. Chlorophyll content expressed per unit nitrogen decreased over time in plants grown in elevated CO(2), which suggests that, in elevated CO(2), less nitrogen was invested in machinery of the photosynthetic light reactions. In early summer, the photosynthetic capacity measured at saturating irradiance and CO(2) was slightly but not significantly higher in saplings grown in elevated CO(2) than in saplings grown in ambient CO(2). However, a decrease in photosynthetic capacity was observed after July in leaves of saplings grown in CO(2)-enriched air. The results demonstrate that photosynthetic acclimation to elevated CO(2) can occur in field-grown saplings in late summer, at the time of growth cessation.  相似文献   

8.
Will RE  Teskey RO 《Tree physiology》1997,17(10):655-661
To determine the effects of CO(2)-enriched air and root restriction on photosynthetic capacity, we measured net photosynthetic rates of 1-year-old loblolly pine seedlings grown in 0.6-, 3.8- or 18.9-liter pots in ambient (360 micro mol mol(-1)) or 2x ambient CO(2) (720 micro mol mol(-1)) concentration for 23 weeks. We also measured needle carbohydrate concentration and water relations to determine whether feedback inhibition or water stress was responsible for any decreases in net photosynthesis. Across all treatments, carbon dioxide enrichment increased net photosynthesis by approximately 60 to 70%. Net photosynthetic rates of seedlings in the smallest pots decreased over time with the reduction occurring first in the ambient CO(2) treatment and then in the 2x ambient CO(2) treatment. Needle starch concentrations of seedlings grown in the smallest pots were two to three times greater in the 2x ambient CO(2) treatment than in the ambient CO(2) treatment, but decreased net photosynthesis was not associated with increased starch or sugar concentrations. The reduction in net photosynthesis of seedlings in small pots was correlated with decreased needle water potentials, indicating that seedlings in the small pots had restricted root systems and were unable to supply sufficient water to the shoots. We conclude that the decrease in net photosynthesis of seedlings in small pots was not the result of CO(2) enrichment or an accumulation of carbohydrates causing feedback inhibition, but was caused by water stress.  相似文献   

9.
Acclimation of photosynthesis to increasing atmospheric carbon dioxide concentration ([CO2]; 350 to 2,000 micromol mol-1) was followed in silver birch (Betula pendula Roth.) and Scots pine (Pinus sylvestris L.) seedlings for two years. Chlorophyll fluorescence and concentrations of Rubisco, chlorophyll, total soluble protein and nitrogen were monitored together with steady-state gas exchange at three CO2 concentrations (ambient [CO2] (345 +/- 20 micromol mol-1), the growth [CO2] and 1950 +/- 55 micromol mol-1). Rubisco and chlorophyll concentrations decreased in birch and Scots pine with increasing growth [CO2]. A nonlinear response was recorded for Rubisco and chlorophyll concentrations in birch, which was correlated with a significant decrease in specific leaf area. Nitrogen concentration decreased in birch leaves, but was unchanged in Scots pine needles. The species differed substantially in their steady-state CO2 exchange response to increasing growth [CO2]. The principal effect in birch was a significant nonlinear decrease in the steady-state gas exchange rate at the ambient [CO2], whereas in Scots pine the main effect was a significant increase in the steady-state gas exchange rate at the growth [CO2].  相似文献   

10.
The 2-year-old seedlings of five different white birch species (Betula platyphylla, Betula papyrifera, Betula pubescens, Betula pendula (two types) and Betula resinifera x Betula pendula) grown both in a greenhouse and outdoors, were inoculated in a leaf disc assay with two different birch rust (Mel-ampsoridium betulinum) isolates from B. pendula and B. pubescens. The resistance of these birch species varied significantly. Resistance to the B. pubescens rust isolate was not related to the resistance of the B. pendula rust isolate. The behaviour of a birch genotype grown in the greenhouse did not correspond to the behaviour of the same genotype grown outdoors. The outdoor growth environment greatly increased the contents of soluble proteins, rubisco, chloro-phyll and nitrogen in the leaves of diploid birch species (B. platyphylla, B. pendula and B. resinifera x B. pendula). For tetraploid and pentaploid species (B. pubescens and B. papyrifera, respectively) there was no such clear difference in the leaf physiological status between the seedlings grown outdoors and in the greenhouse. The C:N ratio was higher for the greenhouse-grown seedlings in all the birch species, but the difference was significant only with the diploid species. The incidence of rust in the birch species did not correlate with any of the leaf physiological parameters studied. The adaptability of birch genotypes to the environment in relation to their resistance to birch leaf rust is discussed.  相似文献   

11.
Photosynthetic rates of 13-month-old Pinus radiata D. Don, Nothofagus fusca (Hook f.) ?rst. and Pseudotsuga menziesii (Mirb.) Franco seedlings grown and measured at elevated atmospheric concentrations of CO(2) (~620 microl l(-1)) were 32 to 55% greater than those of seedlings grown and measured at ambient (~310 microl l(-1)) concentrations of CO(2). Seedlings grown in ambient and elevated concentrations of CO(2) had similar rates of photosynthesis when measured at ~620 microl l(-1) CO(2), but when measured at ~310 microl l(-1) CO(2), the P. radiata and N. fusca seedlings which were grown at elevated CO(2) had lower rates of photosynthesis than the seedlings grown at an ambient concentration of CO(2). Stomatal conductances in general were lower when measured at ~620 microl l(-1) CO(2) than at ~310 microl l(-1) CO(2). Stomatal conductances declined in all species grown at both CO(2) concentrations when the leaf-air water vapor concentration gradient (DeltaW) was increased from 10 to 20 mmol H(2)O mol(-1) air. The percent enhancement in photosynthesis for P. radiata and P. menziesii at elevated CO(2) was greater at 20 mmol than at 10 mmol DeltaW, suggesting that elevated CO(2) may moderate the effects of atmospheric water stress. Dry matter allocation patterns were not significantly different for plants grown in ambient or high CO(2) air.  相似文献   

12.
Effects of phosphorus supply and mycorrhizal status on the response of photosynthetic capacity to elevated CO(2) were investigated in loblolly pine (Pinus taeda L.) seedlings. Seedlings were grown in greenhouses maintained at either 35.5 or 71.0 Pa CO(2) in a full factorial experiment with or without mycorrhizal inoculum (Pisolithus tinctorius (Pers.) Coker & Couch) and with an adequate or a limiting supply of phosphorus. Assimilation versus internal CO(2) partial pressure (C(i)) curves were used to estimate maximum Rubisco activity (V(c,max)), electron transport mediated ribulose 1,5-bisphosphate regeneration capacity (J(max)), phosphate regeneration capacity (PiRC) and daytime respiration rates (R(d)). Nonmycorrhizal seedlings grown with limiting phosphorus had significantly reduced V(c,max) and PiRC compared to seedlings in other treatments. Elevated CO(2) increased photosynthetic capacity in nonmycorrhizal seedlings in the low phosphorus treatment by increasing PiRC, whereas it induced phosphorus limitation in mycorrhizal seedlings in the low phosphorus treatment and did not affect the photosynthetic capacity of seedlings in the high phosphorus treatment. Despite the variety of effects on photosynthetic capacity, seedlings in the elevated CO(2) treatments had higher net assimilation rates than seedlings in the ambient CO(2) treatments. We conclude that phosphorus supply affects photosynthetic capacity during long-term exposure to elevated CO(2) through effects on Rubisco activity and ribulose 1,5-bisphosphate regeneration rates.  相似文献   

13.
We examined effects of elevated CO(2) and temperature on cold hardiness and bud burst of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings. Two-year-old seedlings were grown for 2.5 years in semi-closed, sunlit chambers at either ambient or elevated (ambient + ~ 4 degrees C) air temperature in the presence of an ambient or elevated (ambient + ~ 200 ppm) CO(2) concentration. The elevated temperature treatment delayed needle cold hardening in the autumn and slowed dehardening in the spring. At maximum hardiness, trees in the elevated temperature treatment were less hardy by about 7 degrees C than trees in the ambient temperature treatment. In general, trees exposed to elevated CO(2) were slightly less hardy during hardening and dehardening than trees exposed to ambient CO(2). For trees in the elevated temperature treatments, date to 30% burst of branch terminal buds was advanced by about 6 and 15 days in the presence of elevated CO(2) and ambient CO(2), respectively. After bud burst started, however, the rate of increase in % bud burst was slower in the elevated temperature treatments than in the ambient temperature treatments. Time of bud burst was more synchronous and bud burst was completed within a shorter period in trees at ambient temperature (with and without elevated CO(2)) than in trees at elevated temperature. Exposure to elevated temperature reduced final % bud burst of both leader and branch terminal buds and reduced growth of the leader shoot. We conclude that climatic warming will influence the physiological processes of dormancy and cold hardiness development in Douglas-fir growing in the relatively mild temperate region of western Oregon, reducing bud burst and shoot growth.  相似文献   

14.
Hieke S  Menzel CM  Lüdders P 《Tree physiology》2002,22(17):1249-1256
Effects of photosynthetic photon flux density (PPFD) on leaf gas exchange of lychee (Litchi chinensis Sonn.) were studied in field-grown "Kwai May Pink" and "Salathiel" orchard trees and young potted "Kwai May Pink" plants during summer in subtropical Queensland (27 degrees S). Variations in PPFD were achieved by shading the trees or plants 1 h before measurement at 0800 h. In a second experiment, potted seedlings of "Kwai May Pink" were grown in a heated greenhouse in 20% of full sun (equivalent to maximum noon PPFD of 200 micromol m(-2)xs(-1)) and their growth over three flush cycles was compared with seedlings grown in full sun (1080 micromol m(-2)xs(-1)). Young potted plants of "Kwai May Pink" were also grown outdoors in artificial shade that provided 20, 40, 70 or 100% of full sun (equivalent to maximum PPFDs of 500, 900, 1400 and 2000 micromol m(-2)xs(-1)) and measured for shoot extension and leaf area development over one flush cycle. Net CO2 assimilation increased asymptotically in response to increasing PPFD in both orchard trees and young potted plants. Maximum rates of CO2 assimilation (11.9 +/- 0.5 versus 6.3 +/- 0.2 micromol CO2 m(-2) s(-1)), dark respiration (1.7 +/- 0.3 versus 0.6 +/- 0.2 micromol CO2 m(-2) s(-1)), quantum yield (0.042 +/- 0.005 versus 0.027 +/- 0.003 mol CO2 mol(-1)) and light saturation point (1155 versus 959 micromol m(-2) s(-1)) were higher in orchard trees than in young potted plants. In potted seedlings grown in a heated greenhouse, shoots and leaves exposed to full sun expanded in a sigmoidal pattern to 69 +/- 12 mm and 497 +/- 105 cm(2) for each flush, compared with 27 +/- 7 mm and 189 +/- 88 cm(2) in shaded seedlings. Shaded seedlings were smaller and had higher shoot:root ratios (3.7 versus 3.1) than seedlings grown in full sun. In the potted plants grown outdoors in 20, 40, 70 or 100% of full sun, final leaf area per shoot was 44 +/- 1, 143 +/- 3, 251 +/- 7 and 362 +/- 8 cm(2), respectively. Shoots were also shorter in plants grown in shade than in plants grown in full sun (66 +/- 5 mm versus 101 +/- 2 mm). Photosynthesis in individual leaves of lychee appeared to be saturated at about half full sun, whereas maximum leaf expansion occurred at higher PPFDs. We conclude that lychee plants can persist as seedlings on the forest floor, but require high PPFDs for optimum growth.  相似文献   

15.
日本桦树育种研究概况   总被引:2,自引:0,他引:2  
桦属在日本有9个种,主要分布在本洲北部,其中日本白桦、日本岳桦和棘皮桦3种桦树最为重要,研究的也较多。自1958年以来主要研究了桦树的抗野兔、野鼠特性,以及桦属种间杂交的后代抗野兔、野鼠性的差异,桦属种间杂交和种内杂交其杂交方式不同对种子产量和成活率等的影响;日本白桦、棘皮桦种源试验;日本白桦无性系的测定与早期选择;棘皮桦材质材性的研究。制定了日本桦树的育种战略。  相似文献   

16.
We evaluated the effects of elevated carbon dioxide concentration ([CO2]) and two nutrient regimes on stem growth rate, annual ring structure and temporal variations in photosynthetic characteristics of seedlings of Japanese larch (Larix kaempferi (Lamb.) Carr.). Seedlings were grown in phytotron chambers in an ambient (360 ppm) or an elevated (720 ppm) [CO2] in two nutrient regimes for one growing season. Elevated [CO2] reduced stem height and increased stem basal diameter compared with ambient [CO2]. The effect of elevated [CO2] on growth tended to be greater at high-nutrient supply than at low-nutrient supply. Elevated [CO2] had no significant effect on ring width or the number of tracheids per radial file. There was no obvious difference in cell wall thickness or the relative area of the cell wall between seedlings grown in ambient or elevated [CO2]. Although growth in elevated [CO2] resulted in a slight increase in cell diameter, the increase had a relatively minor effect on the relative area of the cell wall. Net assimilation rate increased in response to elevated [CO2]; however, the increase in whole-crown photosynthetic rate (Total Agrowth) in seedlings in the elevated [CO2] treatment was minimal because of the smaller specific needle area and acclimation of the photosynthetic characteristics of the needles to the growth [CO2]. In conclusion, we observed no obvious enhancement in the capacity for carbon fixation in Japanese larch seedlings grown in the presence of elevated [CO2] that might be attributable to changes in stem growth. However, elevated [CO2] caused changes in the temporal pattern of stem growth and in some anatomical features of the tracheids.  相似文献   

17.
Low water availability reduces the establishment of the invasive shrub Prosopis on some grasslands. Water deficit survival and traits that may contribute to the postponement or tolerance of plant dehydration were measured on seedlings of P. glandulosa Torr. var. glandulosa (honey mesquite) grown at CO(2) concentrations of 370 (ambient), 710, and 1050 micro mol mol(-1). Because elevated CO(2) decreases stomatal conductance, the number of seedlings per container in the elevated CO(2) treatments was increased to ensure that soil water content was depleted at similar rates in all treatments. Seedlings grown at elevated CO(2) had a greater root biomass and a higher ratio of lateral root to total root biomass than those grown at ambient CO(2) concentration; however, these seedlings also shed more leaves and retained smaller leaves. These changes, together with a reduced transpiration/leaf area ratio at elevated CO(2), may have contributed to a slight increase in xylem pressure potentials of seedlings in the 1050 micro mol mol(-1) CO(2) treatment during the first 37 days of growth (0.26 to 0.40 MPa). Osmotic potential was not affected by CO(2) treatment. Increasing the CO(2) concentration to 710 and 1050 micro mol mol(-1) more than doubled the percentage survival of seedlings from which water was withheld for 65 days. Carbon dioxide enrichment significantly increased survival from 0% to about 40% among seedlings that experienced the lowest soil water content. By increasing seedling survival of drought, rising atmospheric CO(2) concentration may increase abundance of P. glandulosa on grasslands where low water availability limits its establishment.  相似文献   

18.
Increased exudation of carbon compounds from roots may provide a mechanism for enhancement of nutrient availability to plants growing in a CO(2)-enriched atmosphere. Therefore, the effect of atmospheric CO(2) concentration on carbon allocation and root exudation was investigated in Pinus echinata Mill. (shortleaf pine) seedlings. After 34 and 41 weeks, seedlings growing in 695 microl l(-1) CO(2) allocated proportionately more (14)C-labeled photosynthate to fine roots than did seedlings growing in ambient air. This was associated with greater fine root mass and mycorrhizal density in CO(2)-enriched plants after 34 weeks. Exudation of soluble, (14)C-labeled compounds from roots also was greater in these plants at 34 weeks, but the effect of CO(2) concentration on exudation did not persist at 41 weeks.  相似文献   

19.
Sitka spruce (Picea sitchensis (Bong.) Carr.) seedlings were supplied with solutions containing nitrogen (N) at 0.1 x or 2 x the optimum rate (low-N and high-N supply, respectively) and grown either outside in a control plot or inside open-top chambers and exposed to ambient (355 &mgr;mol mol(-1)) or elevated (700 &mgr;mol mol(-1)) CO(2) concentration ([CO(2)]). Gas exchange measurements, chlorophyll determinations and nutrient analysis were made on current-year (< 1-year-old) shoots of the upper whorl after the seedlings had been growing in the [CO(2)] treatments for 17 months and the nutrient treatments for 6 months. Total seedling biomass and biomass allocation were assessed at the end of the experiment. Nutrient treatment had a significant effect on the light response curves, irrespective of [CO(2)] or chamber treatment; seedlings supplied with high-N rates had higher net photosynthetic rates than seedlings supplied with low-N rates. The degree of photosynthetic stimulation in response to elevated [CO(2)] was larger in seedlings receiving high-N rates than in seedlings receiving low-N rates. Light-saturated net photosynthesis of seedlings grown and measured in elevated [CO(2)] was 26% higher than that of seedlings grown and measured in ambient [CO(2)]. There was no significant effect of [CO(2)] or chamber treatment on the CO(2) response curves of seedlings receiving High-N supply rates. In contrast, analysis of the CO(2) response curves of seedlings receiving Low-N supply rates showed acclimation to elevated [CO(2)]. Both maximum rate of carboxylation (V(cmax)) and maximum electron transport capacity (J(max)) were lower and J(max)/V(cmax) higher in seedlings in the elevated [CO(2)] treatment. There was no effect of elevated [CO(2)] on stomatal conductance, although it was highly dependent on foliar [N], ranging from ~60 mmol m(-2) s(-1) at ~1.5 g N m(-2) to 200 mmol m(-2) s(-1) at ~5 g N m(-2). In the high-N and low-N treatments, foliar N concentration was 10 and 28% lower in seedlings grown in elevated [CO(2)] than in seedlings grown in ambient [CO(2)], respectively. There was no [CO(2)] effect on foliar phosphorus concentration ([P]). Chlorophyll concentration increased with increasing N supply in all treatments. There was no significant effect of elevated [CO(2)] on specific leaf area. Chlorophyll concentration expressed either on an area or dry mass basis for a given foliar [N] was higher in seedlings grown in elevated [CO(2)] than in seedings grown in ambient [CO(2)]. Elevated [CO(2)] increased total biomass accumulation by 37% in seedlings in the high-N treatment but had no effect in seedlings in the low-N treatment. There was a proportionally bigger allocation of biomass to roots of seedlings in the elevated [CO(2)] + low-N supply rate treatment compared with seedlings in other treatments. This resulted in a reduction in aboveground biomass compared with corresponding seedlings grown in ambient [CO(2)].  相似文献   

20.
Photosynthesis of tree seedlings is generally enhanced during short-term exposure to elevated atmospheric CO2 partial pressure, but longer-term studies often indicate some degree of photosynthetic adjustment. We present physiological and biochemical evidence to explain observed long-term photosynthetic responses to elevated CO2 partial pressure as influenced by needle age and canopy position. We grew Pinus radiata D. Don. trees in open-top chambers for 5 years in sandy soil at ambient (36 Pa) and elevated (65 Pa) CO2 partial pressures. The trees were well watered and exposed to natural light and ambient temperature. In the fourth year of CO2 exposure (fall 1997), when foliage growth had ceased for the year, photosynthetic down-regulation was observed in 1-year-old needles, but not in current-year needles, suggesting a reduction in carbohydrate sink strength as a result of increasing needle age (Turnbull et al. 1998). In 5-year-old trees (spring 1997), when foliage expansion was occurring, photosynthetic down-regulation was not observed, reflecting significantly large sinks for carbohydrates throughout the tree. Net photosynthesis was stimulated by 79% in trees growing in elevated CO2 partial pressure, but there was no significant effect on photosynthetic capacity or Rubisco activity and concentration. Current-year needles were more responsive to elevated CO2 partial pressure than 1-year-old needles, exhibiting larger relative increases in net photosynthesis to elevated CO2 partial pressure (98 versus 64%). Lower canopy and upper canopy leaves exhibited similar relative responses to growth in elevated CO2 partial pressure. However, needles in the upper canopy exhibited higher net photosynthesis, photosynthetic capacity, and Rubisco activity and concentration than needles in the lower canopy. Given that the ratio of mature to juvenile foliage mass in the canopy will increase as trees mature, we suggest that trees may become less responsive to elevated CO2 partial pressure with increasing age. We conclude that tree response to elevated CO2 partial pressure is based primarily on sink strength and not on the duration of exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号