首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 567 毫秒
1.
AIM: To explore the effect of recombinamt rat CC16 protein (rCC16) on LPS-induced expression of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and IL-8 in the rat tracheal epithelial (RTE) cells.METHODS: The RTE cells were incubated with rCC16 at concentrations of 0.5, 1.0 and 2.0 mg/L in serum-free media for 2 h prior to LPS (0.1 mg/L) treatment for further 24 h. The cells were harvested for assessing the mRNA levels of TNF-α, IL-6 and IL-8 by RT-qPCR. The cell culture supernatants were collected for analyzing the protein levels of TNF-α, IL-6 and IL-8 by ELISA. In addition, the nuclear translocation of nuclear factor-κB (NF-κB) p65 was tested by Western blot.RESULTS: rCC16 inhibited LPS-induced IL-6 and IL-8 expression at both mRNA and protein levels in the RTE cells in a concentration-dependent (0~2 mg/L) manner, as demonstrated by RT-qPCR and ELISA. However, no concentration-dependent manner between the dose of rCC16 and TNF-α expression was observed, and rCC16 inhibited LPS-induced TNF-α expression at lower concentration (0.5 mg/L). rCC16 concentration-dependently inhibited the effects of LPS on the level of nuclear translocation of NF-κB p65.CONCLUSION: rCC16 suppresses LPS-mediated TNF-α, IL-6 and IL-8 production through inactivation of NF-κB activity in RTE cells.[KEY WORDS] CC16 protein; Airway inflammation; LPS; Inflammatory mediators; Nuclear factor-κB  相似文献   

2.
ATM: To observe the expression of Toll-like receptor 4 (TLR4), nuclear factor-κB subunit P65 protein (NF-κB P65) and proliferating cell nuclear antigen (PCNA) in the pulmonary vascular tissues of the rats exposed to smoke, and to explore the possible mechanism of TLR4/NF-κB signaling pathway in pulmonary vascular remodeling. METHODS: SPF male healthy rats (n=48) were randomly divided into control group, smoke exposure for 4 weeks group (S4 group), smoke exposure for 8 weeks group (S8 group) and smoke exposure for 12 weeks group (S12 group), with 12 rats in each group. HE staining was used to observe the morphological changes of pulmonary vessels, and then the pulmonary vascular wall area/total vascular area (WA%) and vascular wall thickness/vascular external diameter (WT%) were measured by the medical image analysis system. The expression of TLR4, NF-κB P65 and PCNA in the pulmonary vascular tissues was detected by immunohistochemical staining. The protein content was expressed by the average integral absorbance. The mRNA expression of TLR4 in the pulmonary vessels was detected by RT-qPCR. The relationships between WA%, WT%,TLR4 protein, TLR4 mRNA, P65 protein, PCNA protein and pulmonary vascular remodeling, and another relationships between WA%, WT%, P65 protein, PCNA protein and TLR4 protein were analyzed.RESULTS: The WA% and WT% in smoke exposure groups significantly increased compared with control group, and the ratio was proportional to the time of smoke exposure. The protein expression of TLR4, p65 and PCNA, and the mRNA expression of TLR4 in smoke exposure groups also increased significantly compared with control group. CONCLUSION: The extent of pulmonary vascular remodeling in the rats increases when the protein expression of TLR4 is up-regulated. There is a positive correlation between pulmonary vascular remodeling and the protein expression of TLR4 and NF-κB P65. Pulmonary vascular remodeling may be related to the activation of TLR4/NF-κB signaling pathway.  相似文献   

3.
AIM: To investigate the effect of NOD8 on lipopolysaccharide (LPS)-induced releases of nitric oxide (NO), tumor necrosis factor α (TNF-α) and interleukin-1β (IL-1β) in RAW264.7 cells. METHODS: The plasmids of pEGFP-C2 and pEGFP-NOD8 were transfected into RAW264.7 cells respectively. The transfected and non-transfected cells were stimulated by LPS for 0, 6, 12 and 24 h. NO production was evaluated by Griess reagent assay, and the levels of IL-1β and TNF-α were measured by ELISA. The protein expression of NOD8 and the nuclear translocation of nuclear factor κB (NF-κB) p65 subunit were detected by Western blotting. The level of activated caspase-1 was determined by fluorimetric method. RESULTS: Compared with pEGFP-C2 group, the protein expression of NOD8 was significantly elevated in pEGFP-NOD8+LPS group. The releases of NO, IL-1β and TNF-α were obviously increased after RAW264.7 cells were treated with LPS for 6 h, 12 h and 24 h, and while the secretion of NO was significantly reduced in the cells transfected with pEGFP-NOD8 and induced by LPS for 12 h and 24 h, and the release of IL-1β was also significantly reduced at 6 h, 12 h and 24 h. However, no significant difference of TNF-α release was observed between pEGFP-C2+LPS group and pEGFP-NOD8+LPS group. The activation of caspase-1 in RAW264.7 cells stimulated with LPS for 6 h, 12 h and 24 h was markedly increased, and the expression of NF-κB p65 subunit in the cytoplasm was significantly decreased, indicating that p65 nuclear translocation was increased. In addition, the activation of caspase-1 and the nuclear translocation of p65 were significantly inhibited in pEGFP-NOD8+LPS group. CONCLUSION: NOD8 suppresses the releases of LPS-induced NO and IL-1β in RAW264.7 cells by inhibiting the activation of caspase-1 and NF-κB.  相似文献   

4.
5.
AIM: To investigate the effect of artemisinin on lipopolysaccharide(LPS)-induced intestinal epithelial barrier damage in IEC-6 cells and its molecular mechanism. METHODS: Cultured IEC-6 cells were divided to 5 groups: control group, LPS(100 mg/L) group and LPS+Artemisinin(30, 50 and 100 μmol/L) groups. The cytotoxicity was detected by MTT assay. The releases of TNF-α, IL-1β and IL-6 in the IEC-6 cells were measured by ELISA. The transepithelial electrical resistance(TER) was detected by electrical resistance tester, and the horseradish peroxidase(HRP) flux permeability were analyzed by a microplate reader. The expression of tight junction proteins, ZO-1, claudin-1 and occludin, and the expression of TLR4/MyD88/NF-κB at mRNA and protein levels were determined by RT-qPCR and Western blot. RESULTS: Artemisinin alone(up to 100 μmol/L) or in combination with LPS(100 mg/L) was not toxic to IEC-6 cells. Compared with control group, the releases of TNF-α, IL-1β and IL-6 in the culture supernatant of IEC-6 cells significantly increased after treatment with LPS. The expression of TLR4/MyD88/NF-κB was activated by LPS. LPS down-regulated the protein expression of ZO-1, claudin-1 and occludin. However, artemisinin treatment decreased the releases of TNF-α, IL-1β and IL-6 in the culture supernatant of IEC-6 cells. The expression of TLR4/MyD88/NF-κB at mRNA and protein levels was gradually reduced after treatment with artemisinin. In addition, artemisinin upregulated the protein expression of ZO-1, claudin-1 and occludin significantly(P<0.01) in a dose-dependent manner. CONCLUSION: Artemisinin attenuates LPS-induced intestinal epithelial barrier damage by inhibiting TLR4/MyD88/NF-κB activation in the IEC-6 cells.  相似文献   

6.
AIM: To investigate whether the opening of ATP-sensitive K+(KATP) channels protects H9c2 cardiac cells against high glucose(HG)-induced injury and inflammation by inhibiting the Toll-like receptor 4(TLR4)/nuclear factor-κB(NF-κB) pathway. METHODS: The protein levels of TLR4 and NF-κB p65 were determined by Western blot. The levels of interleukin-1β(IL-1β) and tumor necrosis factor-α(TNF-α) were detected by ELISA. The cell viability was measured by CCK-8 assay. Mitochondrial membrane potential(MMP) was examined by rhodamine 123(Rh 123) staining followed by photofluorography. The intracellular levels of reactive oxygen species(ROS) were detected by 2', 7'-dichlorfluorescein- diacetate(DCFH-DA) staining followed by photofluorography. The number of apoptotic cells was observed by Hoechst 33258 nuclear staining followed by photofluorography. RESULTS: After the H9c2 cardiac cells were treated with HG(35 mmol/L glucose) for 24 h, the protein levels of TLR4 and phosphorylated NF-κB p65(p-NF-κB p65) were significantly increased. Pretreatment of the cells with 100 μmol/L diazoxide(DZ, a KATP channel opener) for 30 min before exposure to HG considerably blocked the up-regulation of the TLR4 and p-NF-κB protein levels induced by HG. Moreover, co-treatment of the cells with 30 μmol/L TAK-242(an inhibitor of TLR4) obviously inhibited the HG-induced up-regulation of the p-NF-κB p65 protein level. On the other hand, pretreatment of the cells with 100 μmol/L DZ had a clear myocardial protection effect, which attenuated the HG-induced cytotoxicity, inflammatory response, mitochondrial damage, oxidative stress and apoptosis, evidenced by an increase in the cell viability, and decreases in the levels of IL-1β and TNF-α, MMP loss, ROS generation and the number of apoptotic cells. Similarly, co-treatment of H9c2 cardiac cells with 30 μmol/L TAK-242 or 100 μmol/L PDTC(an inhibitor of NF-κB) and HG for 24 h also obviously reduced the above injuries and inflammation induced by HG.CONCLUSION: The opening of KATP channels protects H9c2 cardiac cells against HG-induced injury and inflammation by inhibiting the TLR4/NF-κB pathway.  相似文献   

7.
AIM: To observe the inhibitory effect of madecassoside on the LPS-stimulated microglia and to investigate its possible mechanism. METHODS: Microglia cells of neonatal Sprague-Dawley (SD) rats were cultured, isolated and purified. Microglia cells were activated with lipopolysaccharide (LPS). The inhibitory effect of madecassoside on microglia was measured by MTT assay. Tumor necrosis factor alpha (TNF-α), interleukin 1β (IL-1β) were detected by ELISA. Cell cycle and apoptotic rate were evaluated by flow cytometry. The expression of TLR4 was detected by Western blotting. The expression of NF-κB was detected by RT-PCR. RESULTS: LPS induced the proliferation of microglia and release inflammatory cytokines significantly. Compared with LPS group, madecassoside inhibited the proliferation of microglia induced by LPS in a dose dependent manner. The IC50 value of madecassoside was 10.97 nmol/L to microglia after incubation for 48 h. Madecassoside also decreased the levels of TNF-α and IL-6, increased the ratios of microglia at the G2 phase and the apoptotic rate, decreased the expression of TLR4 and NF-κB significantly (P<0.05). CONCLUSION: Madecassoside has inhibitory effects on the proliferation of LPS-stimulated microglia, by which the mechanism may be related to inhibition of the expression of TLR4 and NF-κB, change of cell cycle distribution and induction of microglia apoptosis.  相似文献   

8.
AIM: To investigate the effects of eicosapentaenoic acid(EPA) on the expression of nuclear factor kappa B(NF-κB) and release of vascular endothelial growth factor(VEGF), IL-1α and IL-6 in cultured human umbilical vein endothelial cells(HUVECs) stimulated by lipopolysaccharide(LPS).METHODS: HUVECs were obtained from cell strain and cultured in vitro. HUVECs were divided into 4 groups: control group, LPS group, 0.030 g/L EPA treatment group and 0.050 g/L EPA treatment group. The cells were cultured with LPS alone in LPS group and incubated with EPA for 1 h in the EPA pretreatment groups at the concentrations of 0.030 g/L and 0.050 g/L before LPS stimulation. Twenty-four hours after stimulated by LPS, the protein expression of NF-κB p65 in HUVECs were assessed by Western blotting analysis at different time points. The production of VEGF, IL-1α and IL-6 in cultured HUVECs was evaluated by ELISA. The effects of EPA on the protein expression of NF-κB p65 and the production of VEGF, IL-1α and IL-6 in HUVECs challenged by LPS were also determined.RESULTS: Compared with control group, the protein expression of NF-κB p65 was significantly increased in HUVECs induced by LPS and was inhibited by EPA. Compared with control group, the protein expression of VEGF, IL-1α and IL-6 was dramatically increased in HUVECs induced by LPS and most of the increase was inhibited by EPA.CONCLUSION: LPS enhances the protein expression of NF-κB and the release of VEGF, IL-1α and IL-6. EPA inhibits the protein expression of NF-κB, and the production of VEGF and the inflammatory cytokines in cultured HUVECs stimulated by LPS, indicating that EPA may be useful for preventing and treating neovascular and inflammatory diseases.  相似文献   

9.
AIM: To investigate the role of canonical transient receptor potential channel 1 (TRPC1) in the epithelial-mesenchymal transition (EMT) of human bronchial epithelial (HBE) cells induced by transforming growth factor-β1 (TGF-β1). METHODS: EMT of 16HBE cells induced by TGF-β1 were identified by microscopy, immunofluorescence and Western blotting. Immunofluorescence, real-time PCR and Western blotting were applied to detect the mRNA and the protein expression of TRPC1 in the 16HBE cells. The influence of SKF96365 (a TRPC1 blocker) and siRNA-mediated silencing of TRPC1 on the EMT of the 16HBE cells were detected by microscopy and Western blotting. RESULTS: Treatment with TGF-β1 induced significant morphological changes of the 16HBE cells. Exposure to TGF-β1 decreased the expression of E-cadherin protein (P<0.01) and increased the expression of α-SMA protein (P<0.05) in the 16HBE cells. Immunofluorescence observation indicated that TRPC1 expression in the 16HBE cells was positive. The expression of TRPC1 at mRNA and protein levels was significantly increased in the 16HBE cells after stimulation with TGF-β1 (P<0.05). The morphological changes of the 16HBE cells induced by TGF-β1 were inhibited by SKF96365 and TRPC1 silencing compared with TGF-β1 group. The protein expression of E-cadherin and α-SMA induced by TGF-β1 were inhibited by SKF96365 and TRPC1 silencing compared with TGF-β1 group (P<0.05). CONCLUSION: TGF-β1 induces EMT with the mechanism of up-regulating TRPC1 in human bronchial epithelial cells.  相似文献   

10.
AIM:To observe the effects of angiopoietin 4 (Ang-4) on lipopolysaccharide (LPS)-induced injury of human umbilical vein endothelial cells (HUVECs). METHODS:The EnVision immunohistochemical method was used to identify the HUVECs. After pre-treated with different doses of Ang-4 for 0.5 h, HUVECs was exposed to LPS at concentration of 10 mg/L for 24 h. The cell viability was evaluated by MTT assay. The content of tumor necrosis factor-alpha (TNF-α) in the supernatant and the concentrations of intracellular and supernatant von Willebrand factor (vWF) were detected by ELISA. The mRNA levels of Toll-like receptor 4 (TLR4), NF-κB p65 and TNF-α were determined by real-time PCR. RESULTS:Factor Ⅷ in the cytoplasm was positive in the HUVECs.Compared with normal group, LPS reduced the cell viability (P<0.01), and significantly increased the secretion of TNF-α and vWF (P<0.01). The mRNA expression of TLR4, NF-κB p65 and TNF-α also increased (P<0.01). Ang-4 at concentration of 100 μg/L enhanced the cell viability (P<0.01), reduced the content of vWF and TNF-α, and inhibited the LPS-induced increases in the mRNA levels of TLR4, NF-κB p65 and TNF-α (P<0.01). CONCLUSION: Ang-4 antagonizes LPS-induced damage in HUVECs by inhibiting TLR4-NF-κB p65-TNF-α signaling pathways.  相似文献   

11.
AIM:To investigate the role of hypoxia-inducible factor-1α (HIF-1α) stable expression in myocardial inflammatory injury induced by ischemia and reperfusion (I/R) in rats. METHODS:Male Wistar rats were randomly divided into 4 groups:sham operation (sham) group, I/R group, HIF-1α stabilizer dimethyloxalyl glycine (DMOG)+I/R group and HIF-1α inhibitor YC-1+I/R group. The protein expression of myocardial Toll-like receptor 4 (TLR4) and nuclear factor-κB (NF-κB) was determined by Western blot. The mRNA levels of interleukin (IL)-1β, tumor necrosis factor-α (TNF-α), IL-6, TLR4 and NF-κB were detected by real-time PCR. The myeloperoxidase (MPO) activity in the myocardial tissues was measured. HE staining was used to observe the infiltration of inflammatory cells. RESULTS:HIF-1α decreased the infiltration of inflammatory cells, the MPO activity, and the mRNA levels of inflammatory factors IL-1β, IL-6 and TNF-α in the myocardial tissues. HIF-1α also reduced the expression of TLR4 and NF-κB at mRNA and protein levels (P<0.05). CONCLUSION:The stable expression of HIF-1α has an anti-inflammatory effect on the myocardial tissues after I/R injury in rats. The mechanism may be related to the inhibition of TLR4/NF-κB signaling pathway.  相似文献   

12.
13.
AIM:To investigate the effects of 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] on nuclear factor kappa B (NF-κB) signaling pathway in passively sensitized human airway smooth muscle cells (HASMCs). METHODS:HASMCs were passively sensitized with 10% serum from asthmatic patients. 1,25-(OH)2D3 was used as an interfering factor. Electrophoretic mobility shift assay (EMSA) was used to detect the DNA-binding activity of NF-κB. Immunocytochemical staining was used to observe the nuclear translocation of NF-κB p65. Western blotting was used for IκBα and phosphorylated IκBα protein detection. Real-time fluorescence quantitative PCR was used to determine vitamin D receptor (VDR), vitamin D 24-hydroxylase (CYP24) and IκBα mRNA expression. The mRNA expression of IκBα in HASMCs after actinomycin D treatment was also determined. RESULTS:(1) 1,25-(OH)2D3 significantly attenuated the DNA-binding activity of NF-κB and the nuclear translocation of NF-κB p65 in HASMCs passively sensitized by asthmatic serum. (2) 1,25-(OH)2D3 enhanced IκBα mRNA stability and inhibited IκBα protein phosphorylation in passively sensitized HASMCs, thus increasing IκBα expression in these HASMCs. (3) 1,25-(OH)2D3 up-regulated VDR mRNA level and evoked its functional response in passively sensitized HASMCs. CONCLUSION: 1,25-(OH)2D3 enhanced the expression of IκBα and therefore inhibited NF-κB signaling passway in HASMCs. This effect may be dependent on VDR, and responsible for the inhibitory effect of 1,25-(OH)2D3 on passively sensitized HASMCs.  相似文献   

14.
AIM:To explore the role of transient receptor potential channels subfamily C (TRPCs) and inflammation in left ventricular fibrosis induced by high salt and the effect of telmisartan. METHODS:Wistar rats were randomly divided into 3 groups: normal control (C) group (n=13), high salt (8%) model group (HS, n=24) and high salt+telmisartan (T) group (n=12). Tail-cuff artery pressure was determined every 2 weeks. The interstitial collagen deposition and inflammation were observed by Masson and HE staining, respectively. The expression of TRPC1, TRPC3, TRPC6, calcineurin (CaN), nuclear factor-κB p65 (NF-κB p65), transforming growth factor β1 (TGF-β1), interleukin-1β (IL-1β), vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1) and monocyte chemoattractant protein-1 (MCP-1) were determined by real-time PCR or Western blotting. RESULTS:Masson staining showed that left ventricle in HS group exhibited severer myocardial interstitial fibrosis compared with C group. TRPC, CaN and NF-κB assays showed that high-salt diet increased the protein expression of TRPC1, TRPC3 and TRPC6, and activated CaN and NF-κB as compared with C group. The results of HE staining, real-time PCR and Western blotting showed that high salt-treated Wistar rats had enhanced cardiac infiltration of inflammatory cells, as well as increased cardiac levels of proinflammatory cytokines (TGF-β1, IL-1β, VCAM-1, ICAM-1 and MCP-1) as compared with C group. After treated with telmisartan, left ventricular mass index and collagen volume fraction became much lower, and the levels of TRPC1, TRPC3, TRPC6, CaN, NF-κB p65, TGF-β1, ICAM-1 and MCP-1 were significantly reduced. CONCLUSION: Inflammation is exacerbated in left ventricular fibrosis induced by high salt. The mechanism may be related to the up-regulation of TRPCs, CaN and NF-κB at mRNA and protein levels. Telmisartan inhibits the expression of TRPCs and NF-κB, and ameliorates the inflammatory responses in left ventricular fibrosis.  相似文献   

15.
AIM: To investigate the effect of Chinese propolis on the activity of phosphatidylcholine-specific phospholipase C (PC-PLC) and the expression of Toll-like receptor 4 (TLR4) in LPS-treated vascular endothelial cells (VECs). METHODS: Confluent VECs were stimulated with LPS at the concentration of 100 μg/L in the presence of 0.5% fetal bovine serum. The cells were treated with Chinese propolis at the concentration of 12.5 mg/L for 12 h and 24 h. The viability of VECs and the level of nitric oxide (NO) were detected by sulforhodamine B (SRB) assay and chemical method, respectively. The activity of PC-PLC was measured using L-α-phosphatidylcholine as substrate. The protein levels of TLR4, nuclear factor-κB p65 (NF-κB p65) and p53 were determined by Western blotting. The level of intracellular reactive oxygen species (ROS) was examined using a fluorescent probe, 2,7-dichlorodihydrofluorescin (DCHF). For the measurement of mitochondrial membrane potential, the fluorescent dye JC-1 was used. RESULTS: Treatment with Chinese propolis for 24 h had no effect on the viability of VECs. However, the levels of NO and ROS were significantly decreased by Chinese propolis. PC-PLC activity and NF-κB p65 expression were significantly depressed by Chinese propolis treated for 12 h, and the expression of TLR4 and p53 were dramatically decreased by Chinese propolis treated for 12 and 24 h. No effect of Chinese propolis on mitochondrial membrane potential was observed. CONCLUSION: Chinese propolis depresses the activity of PC-PLC and the expression of TLR4, and then inhibits the downstream signal molecules such as NF-κB p65, p53, ROS and NO in VECs.  相似文献   

16.
AIM:To investigate the effect of capsaicin on lipopolysaccharide (LPS)-induced activation of cultured endothelial cells of mouse aorta in vitro. METHODS:The endothelial cells were isolated from mouse aorta and cultured in vitro, and the specific cell markers of the cells were identified by immunofluorescence staining. The cells were stimulated with LPS (100 μg/L) combined with or without capsaicin, and the cells and supernatant were collected at 12 h, 24 h and 48 h. The levels of soluble intercellular adhesion molecule 1 (sICAM-1), soluble vascular cell adhesion molecule 1 (sVCAM-1) and soluble P-selectin (sP-selectin) in the supernatant were measured by ELISA. The levels of nuclear NF-κB p65 and cytopasmic p-IκBα and IκBα were detected by Western blotting. RESULTS:Compared with control group, the levels of sP-selectin, sICAM-1 and sVCAM-1 in LPS group were significantly increased (P<0.05), and LPS promoted the expression of sICAM-1 and sVCAM-1 in a time-dependent manner. Compared with LPS group at the same time point, capsaicin inhibited the expression of sP-selectin, sICAM-1 and sVCAM-1 in a dose-dependent manner. Compared with control group, the protein levels of NF-κB p65 and p-IκBα in LPS group at 24 h were significantly increased (P<0.05), while the protein level of IκBα in LPS group at 24 h were significantly decreased (P<0.05). Compared with LPS group, capsaicin decreased the protein levels of NF-κB p65 and p-IκBα and increased the protein level of IκBα in a dose-dependent manner. CONCLUSION: Capsaicin has a protective effect on LPS-induced vascular endothelial cell activation, which potentially contributes to the suppression of IκBα degradation and NF-κB p65 nuclear translocation.  相似文献   

17.
AIM: To investigate the role of NF-κB/IκB signal pathway in the regulation of cyclooxygenase-2 (COX-2) expression in human mesangial cells (HMC). METHODS: The PGE2 concentration in supernatants of HMC was measured by radioimmunoassay. COX-2 mRNA and protein expression were determined by RT-PCR and Western blot. Electrophoretic mobility shift assay (EMSA) and Western blot were used to detect the activity of NF-κB and degradation of IκB. RESULTS: IL-1β significantly upregulated COX-2 expression and PGE2 production in HMC. Significant up-regulation of NF-κB activation, nuclear translocation of p65 subunit, and degradation of IκB α and IκB β were observed in IL-1β-induced HMC. CONCLUSION: Expression of COX-2 in IL-1β-induced HMC is mediated by NF-κB/IκB signal pathway.  相似文献   

18.
AIM: To investigate the role of TLRs/NF-κB pathway in experimental allergic encephalomyelitis (EAE) rats treated with tripterygium glycosides (TG) + dexamethasone (DX). METHODS: Lewis rats were used in the study and divided into control group, EAE model group, therapy 1 group (EAE rats treated with DX) and therapy 2 group (EAE rats treated with DX+TG). The mean clinical score of the rats was determined. The expression of TLR4 and TLR9 at mRNA and protein levels was detected by the methods of real-time quantitative RT-PCR and immunohistochemistry. The protein level of NF-κB p65 was also measured. The levels of TNF-α, IL-1β and IL-6 were assayed by ELISA. RESULTS: The mean clinical scores at 5th, 16th and 20th day were lower in therapy 1 group and therapy 2 group than that in EAE model group. The mean clinical score in therapy 2 group was even lower than that in therapy 1 group. At the 16th day (the peaking period), the mRNA expression of TLR4 and TLR9 in therapy 1 group and therapy 2 group were obviously lower than that in EAE model group. The protein levels of TLR4, TLR9 and NF-κB p65 were also significantly lower in therapy 1 group and therapy 2 group than those in EAE model group at peak stage of EAE. The levels of TNF-α, IL-1β and IL-6 were lower in therapy1 group and therapy2 group than those in EAE model group. The significant differences of the mean clinical score, the mRNA expression of TLR4 and TLR9, the positive ratio of NF-κB p65 and the levels of TNF-α, IL-1β and IL-6 between therapy 1 group and therapy 2 group were found. The result of orthogonal factorial analysis of variance indicated that the difference of therapeutic effect between DX and DX+TG was significant (F=75.749, P<0.01). CONCLUSION: The TLRs/NF-κB pathway takes part in the pathological process of EAE. TG combined with DX alleviates the symptoms of EAE by suppressing inflammatory and immunological reactions of EAE.  相似文献   

19.
AIM: To investigate the effect of high mobility group box-1 protein (HMGB1) on the expression of nuclear factor-κB (NF-κB) in BV-2 cells stimulated with amyloid β-protein (Aβ)25-35. METHODS: Cultured BV-2 cells in logarithmic growth phase were divided into 4 groups:normal cell group (without any treatment), model group (treated with Aβ25-35 at 40 μmol/L), RNA interference (RNAi) group (conducted with HMGB1-siRNA followed by Aβ25-35 stimulation) and solvent control group (treated with 0.1% DMSO). After treatment with Aβ25-35 for 24 h, the protein levels of HMGB1 and NF-κB in BV-2 cells were determined by Western blot. RESULTS: Aβ25-35 at 40 μmol/L was used to stimulate BV-2 cells. The GFP fluorescence-tagged HMGB1-siRNA (30 nmol/L) was used to transfect BV-2 cells and its transfection efficiency was about 80%~90%. The results of Western blot showed that the protein level of HMGB1 was significantly decreased after the interference of siRNA fragment (P<0.05). The protein levels of HMGB1 and nucleic NF-κB p65 were dramatically increased in BV-2 cells stimulated with Aβ25-35 (P<0.05). After RNA interference with HMGB1, the expression of HMGB1 and nucleic NF-κB p65 were significantly decreased in BV-2 cells stimulated with Aβ25-35 (P<0.05). CONCLUSION: RNA interference with HMGB1 reduces the expression of nucleic NF-κB in BV-2 cells stimulated with Aβ25-35.  相似文献   

20.
ZHOU Min  TANG Hui-ling 《园艺学报》2016,32(10):1887-1891
AIM: To investigate the effects of everolimus on the experimental IgA nephropathy in rats and its possible mechanisms.METHODS: The rat model of experimental IgA nephropathy was established. The rats were randomly divided into control group, IgA group and everolimus treatment group. After the corresponding treatments were given, urinary red blood cells, protein and N-acetyl-β-D-glucosaminidase (NAG) were examined. Immunofluorescence staining was used to analyze the level of IgA precipitation in the renal tissues. Additionally, the protein expression of myeloid differentiation factor 88 (MyD88), TLR4, NF-κB, IL-4 and IL-13 was determined by Western blot. The mRNA levels of IL-4 and IL-13 were detected by qPCR.RESULTS: Everolimus significantly inhibited the increases in the urinary levels of red blood cells, protein and NAG in experimental IgA nephropathy rats. Furthermore, IgA nephropathy-induced increases in the protein expression of MyD88, TLR4, NF-κB, IL-4 and IL-13 were attenuated after everolimus treatment. Similar results were obtained in the mRNA levels of IL-4 and IL-13 by qPCR detection.CONCLUSION: Everolimus improves the impairments of renal function in experimental IgA nephropathy rats as evidenced by decreasing urinary red blood cells, protein and NAG, which may be related to the inhibition of MyD88, TLR4, NF-κB, IL-4 and IL-13 expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号