首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Context

Spatial prioritization is an analytical approach that can be used to provide decision support in spatial conservation planning (SCP), and in tasks such as conservation area network design, zoning, planning for impact avoidance or targeting of habitat management or restoration.

Methods

Based on literature, we summarize the role of connectivity as one component of relevance in the broad structure of spatial prioritization in both marine and terrestrial realms.

Results

Partially diffuse, directed connectivity can be approximated in Zonation-based multi-criteria SCP by applying hydrodynamic modelling, knowledge on species traits, and information on species occurrences and quality of habitats. Sources and destinations of larvae or propagules can be identified as separate spatial layers and taken into account in full-scale spatial prioritization involving data on biota, as well as economic factors, threats, and administrative constraints. While population connectivity is an important determinant of metapopulation persistence, the importance of marine connectivity depends on species traits and the marine environment studied. At one end of the continuum are species that occupy isolated habitats and have long pelagic larval durations in deeper sea areas with strong directional currents. At the other extreme are species with short pelagic durations that occupy fragmented habitats in shallow topographically complex sea areas with weak and variable currents.

Conclusions

We conclude that the same objectives, methods, and analysis structures are applicable to both terrestrial and marine spatial prioritization. Marine spatial conservation planning, marine spatial planning, marine zoning, etc., can be implemented using methods originated in the terrestrial realm of planning.

  相似文献   

2.
Context

Biodiversity in tropical region has declined in the last decades, mainly due to forest conversion into agricultural areas. Consequently, species occupancy in these landscapes is strongly governed by environmental changes acting at multiple spatial scales.

Objectives

We investigated which environmental predictors best determines the occupancy probability of 68 bird species exhibiting different ecological traits in forest patches.

Methods.

We conducted point-count bird surveys in 40 forest sites of the Brazilian Atlantic forest. Using six variables related to landscape composition and configuration and local vegetation structure, we predicted the occupancy probability of each species accounting for imperfect detections.

Results

Landscape composition, especially forest cover, best predicted bird occupancy probability. Specifically, most bird species showed greater occupancy probability in sites inserted in more forested landscapes, while some species presented higher occurrence in patches surrounded by low-quality matrices. Conversely, only three species showed greater occupancy in landscapes with higher number of patches and dominated by forest edges. Also, several species exhibited greater occupancy in sites harbouring either larger trees or lower number of understory plants. Of uttermost importance, our study revealed that a minimum of 54% of forest cover is required to ensure high (> 60%) occupancy probability of forest species.

Conclusions

We highlighted that maintaining only 20% of native vegetation in private property according to Brazilian environmental law is insufficient to guarantee a greater occupancy for most bird species. We recommend that policy actions should safeguard existing forest remnants, expand restoration projects, and curb human-induced disturbances to minimise degradation within forest patches.

  相似文献   

3.
Context

Graph-theoretic evaluations of habitat connectivity often rely upon least-cost path analyses to evaluate connectedness of habitat patches, based on an underlying cost surface. We present two improvements upon these methods.

Objectives

As a case study to test these methods, we evaluated habitat connectivity for the endangered San Martin titi monkey (Plecturocebus oenanthe) in north-central Peru, to prioritize habitat patches for conservation.

Methods

First, rather than using a single least-cost path between habitat patches, we analyzed multigraphs made up of multiple low-cost paths. This allows us to differentiate between patches connected through a single narrow corridor, and patches connected by a wide swath of traversable land. We evaluate potential movement pathways by iteratively removing paths and recomputing connectivity metrics. Second, instead of performing a sensitivity analysis by varying costs uniformly across the landscape, we generated landscapes with spatially varying costs.

Results

This approach produced a more informative assessment of connectivity than standard graph analyses. Of the 4340 habitat patches considered across the landscape, we identified the most important 100, those frequently ranked highly through repeated network modifications, for multiple metrics and cost surfaces.

Conclusions

These methods represent a novel approach for assessing connectivity, better accounting for spatial configurations of habitat patches and uncertainty in cost surfaces. The ability to identify habitat patches with more possible routes to other patches is of interest for resiliency planning and prioritization in the face of continued habitat loss and climate change. These methods should be broadly applicable to conservation planning for other wildlife species.

  相似文献   

4.
Context

Insectivorous birds are sensitive to forest disturbances that may limit the availability of food consisting mainly of invertebrates. However, birds and invertebrates may be differently affected by forest disturbances while invertebrates may interact with disturbances.

Objectives

We aim to determine: (i) the effects of forest degradation on invertebrates and insectivorous birds; (ii) the effect of the availability of invertebrates as a food source on birds; (iii) interactions between food availability and forest degradation.

Methods

We selected 34 1-km radius landscape units, where the abundance of birds and invertebrates was sampled in the canopy and understory. Bird density as well as the abundance and richness of invertebrates were considered as dependent variables and analysed using Generalized Linear Mixed Model and Structural Equation Models. Remote-sensing indices of forest degradation were included as predictors.

Results

Eight indices of forest degradation affected canopy and understory invertebrates differently. Unlike invertebrates, bird abundance was affected by a smaller number of degradation indices, forest amounts as well as the cover of understory and canopy. Only two forest degradation indices had a comparable effect on bird abundance and invertebrates. We found causal relationships between understory invertebrates and the abundance of understory birds (all species and the small-sized ones), but also invertebrate abundance × forest cover interactions affected the abundance of a bird species.

Conclusions

Our results indicate that birds and invertebrates respond differently to forest degradation, but also provide evidence for bottom-up control by forest degradation and suggest food limitation varies with forest amounts.

  相似文献   

5.

Context

Species are expected to shift their distributions in response to global environmental changes and additional protected areas are needed to encompass the corresponding changes in the distributions of their habitats. Conservation policies are likely to become obsolete unless they integrate the potential impacts of climate and land-use change on biodiversity.

Objectives

We identify conservation priority areas for current and future projected distributions of Iberian bird species. We then investigate the extent to which global change informed priority areas are: (i) covered by existing protected area networks (national protected areas and Natura 2000); (ii) threatened by agricultural or urban land-use changes.

Methods

We use outputs of species distributions models fitted with climatic data as inputs in spatial prioritization tools to identify conservation priority areas for 168 bird species. We use projections of land-use change to then discriminate between threatened and non-threatened priority areas.

Results

19% of the priority areas for birds are covered by national protected areas and 23% are covered by Natura 2000 sites. The spatial mismatch between protected area networks and priority areas for birds is projected to increase with climate change. But there are opportunities to improve the protection of birds under climate change, as half of the priority areas are currently neither protected nor in conflict with urban or agricultural land-uses.

Conclusions

We identify critical areas for bird conservation both under current and climate change conditions, and propose that they could guide the establishment of new conservation areas across the Iberian Peninsula complementing existing protected areas.
  相似文献   

6.
Much of what is known about avian species-habitat relations has been derived from studies of birds at local scales. It is entirely unclear whether the relations observed at these scales translate to the larger landscape in a predictable linear fashion. We derived habitat models and mapped predicted abundances for three forest bird species of eastern North America using bird counts, environmental variables, and hierarchical models applied at three spatial scales. Our purpose was to understand habitat associations at multiple spatial scales and create predictive abundance maps for purposes of conservation planning at a landscape scale given the constraint that the variables used in this exercise were derived from local-level studies. Our models indicated a substantial influence of landscape context for all species, many of which were counter to reported associations at finer spatial extents. We found land cover composition provided the greatest contribution to the relative explained variance in counts for all three species; spatial structure was second in importance. No single spatial scale dominated any model, indicating that these species are responding to factors at multiple spatial scales. For purposes of conservation planning, areas of predicted high abundance should be investigated to evaluate the conservation potential of the landscape in their general vicinity. In addition, the models and spatial patterns of abundance among species suggest locations where conservation actions may benefit more than one species.  相似文献   

7.
Context

Forest management and disturbances cause habitat fragmentation for saproxylic species living on old-growth attributes. The degree of habitat spatiotemporal continuity required by these species is a key question for designing biodiversity-friendly forestry, and it strongly depends on species’ dispersal. The “stability–dispersal” model predicts that species using stable habitats should have lower dispersal abilities than species associated with ephemeral habitat and thus respond to habitat availability at smaller scales.

Objectives

We aimed at testing the stability–dispersal model by comparing the spatial scales at which saproxylic beetle guilds using substrates with contrasted stability (from stable to ephemeral: cavicolous, fungicolous, saproxylophagous and xylophagous guilds) are affected by landscape structure (i.e. habitat amount and aggregation).

Methods

We sampled saproxylic beetles using a spatially nested design (plots within landscape windows). We quantified habitat availability (tree cavities, polypores and deadwood) in 1-ha plots, 26-ha buffers around plots and 506-ha windows, and analyzed their effect on the abundance and diversity of associated guilds.

Results

The habitat amount within plots and buffers positively affected the abundance of the cavicolous and the fungicolous guilds whereas saproxylophagous and xylophagous did not respond at these scales. The habitat aggregation within windows only positively affected the saproxylophagous species richness within plots and also on the similarity in species composition among plots.

Conclusions

Beetle guilds specialized on more stable habitat were affected by landscape structure at smaller spatial scales, which corroborated the stability–dispersal model. In managed forests, the spatial grain of conservation efforts should therefore be adapted to the target habitat lifetime.

  相似文献   

8.
Context

Resource movements across ecosystem boundaries are important determinants of the diversity and abundance of organisms in the donor and recipient ecosystem. However the effects of cross-ecosystem movements of materials at broader spatial extents than a typical field study are not well understood.

Objectives

We tested the hypotheses that (1) variation in abundance of 57 forest songbird species within four foraging guilds is explained by modeled emergent aquatic insect biomass inputs from adjacent lakes and streams and (2) the degree of association varies across foraging guilds and species within guilds. We also sought to determine the importance of emergent aquatic insects while accounting for variation in local forest cover and edge.

Methods

We spatially modeled the degree to which distribution and abundance of songbirds in different foraging guilds was explained by modeled emergent aquatic insect biomass. We used multilevel models to simultaneously estimate the responses of species in four different insectivorous guilds. Bird abundance was summarized from point counts conducted over 24 years at 317 points.

Results

Aerial insectivores were more abundant in areas with high estimated emergent insect biomass inputs to land (regression coefficient 0.30, P?<?0.05) but the overall abundance of gleaners, bark-probers, and ground-foragers was not explained by estimated emergent insect abundance. The coursing aerial insectivores had the strongest association with emergent insects followed by willow flycatcher, olive-sided flycatcher, and alder flycatcher.

Conclusions

Modeling cross-ecosystem movements of materials at broad spatial extents can effectively characterize the importance of this ecological process for aerial insectivorous songbirds.

  相似文献   

9.

Context

Beyond the recognized importance of protecting large areas of contiguous habitat, conservation efforts for many species are complicated by the fact that patch suitability may also be affected by characteristics of the landscape within which the patch is located. Currently, little is known about the spatial scales at which species respond to different aspects of the landscape surrounding an occupied patch.

Objectives

Using grassland bird point count data, we describe an approach to evaluating scale-specific effects of landscape composition on patch occupancy.

Methods

We used data from 793 point count surveys conducted in idle and grazed grasslands across Wisconsin, USA from 2012 to 2014 to evaluate scale-dependencies in the response of grassland birds to landscape composition. Patch occupancy models were used to evaluate the relationship between occupancy and landscape composition at scales from 100 to 3000 m.

Results

Bobolink (Dolichonyx oryzivorus) exhibited a pattern indicating selection for grassland habitats in the surrounding landscape at all spatial scales while selecting against other habitats. Eastern Meadowlark (Sturnella magna) displayed evidence of scale sensitivity for all habitat types. Grasshopper Sparrow (Ammodramus savannarum) showed a strong positive response to pasture and idle grass at all scales and negatively to cropland at large scales. Unlike other species, patch occupancy by Henslow’s Sparrow (A. henslowii) was primarily influenced by patch area.

Conclusions

Our results suggest that both working grasslands (pasture) and idle conservation grasslands can play an important role in grassland bird conservation but also highlight the importance of considering species-specific patch and landscape characteristics for effective conservation.
  相似文献   

10.
van Schalkwyk  J.  Pryke  J. S.  Samways  M. J.  Gaigher  R. 《Landscape Ecology》2022,37(10):2535-2549
Context

Habitat edges are integral features of conservation corridors and can influence corridor function and effectiveness. Edge orientation is linked to corridor design and can shape edge responses by changing habitat conditions along edges as well as contrast between conserved habitats and transformed areas.

Objectives

We assess whether corridor orientation affects butterfly assemblages in conservation corridors. To do this, we investigate how edge orientation influences butterfly diversity and abundance along forestry plantation edges, and compare this to another important design variable, corridor width.

Methods

Butterflies were recorded along the sunny austral north- and shady austral south-orientated edges in grassland conservation corridors that dissect forestry plantations, as well as corridor interior sites. Species richness, abundance and similarity to interior sites were modelled using local habitat variables (ambient temperature, floral resources, and time of day), as well as corridor design variables (corridor width, orientation and an estimate of edge contrast influenced by orientation).

Results

Both edge orientation and corridor width were important for butterfly diversity along corridor edges. Wider corridors enhanced overall species richness and promoted similarity between edge and interior habitats. Concurrently, grassland specialist species preferred the sunnier edges (i.e., north facing in the southern hemisphere) while forest- specialists showed a preference for the shadier edges (south facing edges). Edge orientation influenced resident butterflies more strongly than transient butterflies and influenced specialists more strongly than generalists.

Conclusions

Corridor orientation and width are complementary design variables for butterfly conservation. Wide corridors at a variety of orientations benefit different subsets of the butterfly assemblage, and the whole corridor (including both edges) is important to consider in conservation planning to capture all biodiversity.

  相似文献   

11.
Ekroos  Johan  Tiainen  Juha  Seimola  Tuomas  Herzon  Irina 《Landscape Ecology》2019,34(2):389-402
Context

The current Common Agricultural Policy (CAP) of the European Union includes three greening measures, which are partly intended to benefit farmland biodiversity. However, the relative biodiversity effects of the greening measures, including joint effects of landscape context, are not well understood.

Objectives

We studied the effects of increasing crop diversity, proportions of production grasslands and fallows, corresponding to CAP greening measures, on open farmland bird diversity, whilst controlling for the effects of distance to forests, field edge density and proportion of built-up areas.

Methods

We surveyed open farmland birds using territory mapping in Southern Finland. We modelled effects of greening measures and landscape structure on farmland birds (7642 territories) using generalised linear mixed models.

Results

Increasing proportions of grasslands increased farmland bird species richness and diversity in open farmland, whereas increasing proportions of fallows increased bird diversity. Increasing crop diversity benefited individual species, but not species richness or diversity. Increasing field edge densities consistently increased the species richness of all farmland species, in-field nesters and non-crop nesters, as well as total farmland bird diversity. The relative effect of edge density was much stronger compared to the three greening measures.

Conclusions

Our results show that promoting fallows and grasslands, in particular grazed grasslands and various types of semi-natural grasslands, has the highest potential to benefit farmland bird diversity. Maintaining or increasing field edge densities, currently not supported, seems to be of even more benefit. In open farmland, with little or no field edges, fallows and grasslands are particularly beneficial.

  相似文献   

12.
Context

Functional connectivity of semiaquatic species is poorly studied despite that freshwater ecosystems are amongst the most threatened worldwide due to habitat deterioration. The Neotropical otter, Lontra longicaudis, is a threatened species that represents a good model to evaluate the effect of landscape-riverscape features on genetic structure and gene flow of freshwater species.

Objectives

We aimed to assess the spatial genetic structure of L. longicaudis and to evaluate the landscape-riverscape attributes that shape its genetic structure and gene flow at local sites (habitat patches) and between sites (landscape matrix).

Methods

We conducted the study in three basins located in Veracruz, Mexico, which have a high degree of ecosystem deterioration. We used a non-invasive genetic sampling and a landscape genetics individual-based approach to test the effect stream hierarchical structure, isolation-by-distance, and isolation-by-resistance on genetic structure and gene flow.

Results

We found genetic structure that corresponded to the latitudinal and altitudinal heterogeneity of the landscape and riverscape, as well as to the hierarchical structure of the streams. Open areas and steep slopes were the variables affecting genetic structure at local sites, whereas areas with suitable habitat conditions, higher ecosystem integrity and larger streams enhanced gene flow between sites.

Conclusions

The landscape-riverscape characteristics that maintain functional connectivity of L. longicaudis differed between the upper, middle, and lower basins. Our results have important implications for the conservation of the species, including the maintenance of larger suitable areas in Actopan and the necessity to improve connectivity in Jamapa, through the establishment of biological corridors.

  相似文献   

13.
Gamboa-Badilla  Nancy  Segura  Alfonso  Bagaria  Guillem  Basnou  Corina  Pino  Joan 《Landscape Ecology》2020,35(12):2745-2757
Context

It is known that land-use and land-cover (LULC) changes affect plant community assembly for decades. However, both the short- and the long-term effects of contrasting LULC change pathways on this assembly are seldom explored.

Objectives

To assess how LULC change pathways affect woody plant community parameters (i.e. species richness, diversity and evenness) and species’ presence and abundance, compared with environmental factors and neutral processes.

Methods

The study was performed in Mediterranean limestone scrublands in NE Spain. Cover of each woody species was recorded in 150 scrubland plots belonging to five LULC change pathways along the past century, identified using land-cover maps and fieldwork. For each plot, total woody and herbaceous vegetation cover, local environmental variables and geographical position were recorded. Effects of these pathways and factors on plant community parameters and on species presence and abundance were assessed, considering spatial effects potentially associated to neutral processes.

Results

Species richness and diversity were associated with LULC change pathways and elevation, while evenness was only associated with this last. Pathways and environmental variables explained similar variance in both species’ presence and cover. In general, while community parameters were affected by recent-past (1956) use, species presence and abundance were associated with far-past (pre-1900) cropping. No relevant spatial effect was detected for any studied factor.

Conclusions

Historical LULC changes and current environmental factors drive local-scale community assembly in Mediterranean scrublands to an equal extent, while contrasting time-scale effects are found at community and species level. Neutral, dispersal-based processes are found to be non-relevant.

  相似文献   

14.
Grof-Tisza  Patrick  Pepi  Adam  Holyoak  Marcel  Karban  Richard 《Landscape Ecology》2019,34(5):1131-1143
Context

Patch-based population models predominately focus on factors that affect regional processes namely, patch size and connectivity, as the primary drivers explaining patch occupancy. This trend persists despite the recognition that patch quality can strongly influence population demography at the local scale. The quality of patches is often temporally variable and influenced by abiotic conditions. However, few studies have explicitly investigated how climatic variables influence the spatial and temporal dynamics of spatially-structured populations either directly or indirectly through changes in patch quality.

Objectives

Using a 10-year census of a spatially-structured population of an outbreaking caterpillar, we determined the relative importance of patch quality (determined demographically), connectivity, precipitation, and their interactive effects on patch abundance, occupancy, colonization, and extinction.

Methods

We generated a series of statistical models and performed comparisons using Akaike’s information criterion. We subsequently used likelihood ratio tests to determine the influence of each parameter on model fit.

Results

Patch quality and precipitation were the strongest predictors of the observed dynamics. We found that the dynamics of the spatially-structured population of Arctia virginalis were strongly influenced by precipitation: all patches had a higher probability of occupancy, contained higher abundances of caterpillars, and experienced fewer extinctions following wet winters compared to years following droughts.

Conclusion

These findings suggest that precipitation may act to influence the strength of heterogeneity of patch quality. This work demonstrates that patch-based models that do not include local and climatic factors may produce poor predictions under future climatic regimes.

  相似文献   

15.
Conservation efforts should be based on habitat models that identify areas of high quality and that are built at spatial scales that are ecologically relevant. In this study, we developed habitat models for the Loggerhead Shrike (Lanius ludovicianus) in the Chihuahuan Desert of New Mexico to answer two questions: (1) are highly used habitats of high quality for shrikes in terms of individual fitness? and (2) what are the spatial scales of habitat associations relevant to this species? Our study area was Fort Bliss Army Reserve (New Mexico). Bird abundance was obtained from 10 min point counts conducted at forty-two 108 ha plots during a 3-year period. Measures of fitness were obtained by tracking a total of 73 nests over the 3 years. Habitat variables were measured at spatial scales ranging from broad to intermediate to local. We related habitat use and measures of fitness to habitat variables using Bayesian model averaging. We found a significant relationship between bird abundance and measures of fitness averaged across nesting birds in each plot (correlation up to 0.61). This suggests that measures of habitat use are indicative of habitat quality in the vicinity of Fort Bliss. Local- and intermediate-scale variables best explained shrike occurrence. Habitat variables were not related to any measures of fitness. A better understanding of the factors that limit individual bird fitness is therefore necessary to identify areas of high conservation value for this species.  相似文献   

16.
Context

Conservation for the Indiana bat (Myotis sodalis), a federally endangered species in the United States of America, is typically focused on local maternity sites; however, the species is a regional migrant, interacting with the environment at multiple spatial scales. Hierarchical levels of management may be necessary, but we have limited knowledge of landscape-level ecology, distribution, and connectivity of suitable areas in complex landscapes.

Objectives

We sought to (1) identify factors influencing M. sodalis maternity colony distribution in a mosaic landscape, (2) map suitable maternity habitat, and (3) quantify connectivity importance of patches to direct conservation action.

Methods

Using 3 decades of occurrence data, we tested a priori, hypothesis-driven habitat suitability models. We mapped suitable areas and quantified connectivity importance of habitat patches with probabilistic habitat availability metrics.

Results

Factors improving landscape-scale suitability included limited agriculture, more forest cover, forest edge, proximity to medium-sized water bodies, lower elevations, and limited urban development. Areas closer to hibernacula and rivers were suitable. Binary maps showed that 30% of the study area was suitable for M. sodalis and 29% was important for connectivity. Most suitable patches were important for intra-patch connectivity and far fewer contributed to inter-patch connectivity.

Conclusions

While simple models may be effective for small, homogenous landscapes, complex models are needed to explain habitat suitability in large, mixed landscapes. Suitability modeling identified factors that made sites attractive as maternity areas. Connectivity analysis improved our understanding of important areas for bats and prioritized areas to target for restoration.

  相似文献   

17.
We introduce a novel approach to building corridors in spatial conservation prioritization. The underlying working principle is the use of a penalty structure in an iterative algorithm used for producing a spatial priority ranking. The penalty term aims to prevent loss or degradation of structural connections, or, equivalently, to promote to a higher rank landscape elements that are required to keep networks connected. The proposed method shows several convenient properties: (1) it does not require a priori specification of habitat patches, end points or related thresholds, (2) it does not rely on resistance coefficients for different habitats, (3) it does not require species targets, and (4) the cost of additional connectivity via corridors can be quantified in terms of habitat quality lost across species. Corridor strength and width parameters control the trade-off between increased structural connectivity via corridors and other considerations relevant to conservation planning. Habitat suitability or dispersal suitability layers used in the analysis can be species specific, thus allowing analysis both in terms of structural and functional connectivity. The proposed method can also be used for targeting habitat restoration, by identifying areas of low habitat quality included in corridors. These methods have been implemented in the Zonation software, and can be applied to large scale and high resolution spatial prioritization, effectively integrating corridor design and spatial conservation prioritization. Since the method operates on novel principles and combines with a large number of features already operational in Zonation, we expect it to be of utility in spatial conservation planning.  相似文献   

18.

Context

Methods quantifying habitat patch importance for maintaining habitat network connectivity have been emphasized in helping to prioritize conservation actions. Functional connectivity is accepted as depending on landscape resistance, and several measures of functional inter-patch distance have been designed. However, how the inter-patch distance, i.e., based on least-cost path or multiple paths, influences the identification of key habitat patches has not been explored.

Objectives

We compared the prioritization of habitat patches according to least-cost distance (LCD) and resistance distance (RD), using common binary and probabilistic connectivity metrics.

Methods

Our comparison was based on a generic functional group of forest mammals with different dispersal distances, and was applied to two landscapes differing in their spatial extent and fragmentation level.

Results

We found that habitat patch prioritization did not depend on distance type when considering the role of patch as contributing to dispersal fluxes. However, the role of patch as a connector facilitating dispersal might be overestimated by LCD-based indices compared with RD for short- and medium-distance dispersal. In particular, when prioritization was based on dispersal probability, the consideration of alternatives routes identified the connectors that probably provided functional connectivity for species in the long term. However, the use of LCD might help identify landscape areas that need critical restoration to improve individual dispersal.

Conclusions

Our results provide new insights about the way that inter-patch distance is viewed changes the evaluation of functional connectivity. Accordingly, prioritization methods should be carefully selected according to assumptions about population functioning and conservation aims.
  相似文献   

19.
Assessing the associations between spatial patterns in population abundance and environmental heterogeneity is critical for understanding various population processes and for managing species and communities. This study evaluates responses in the abundance of the European rabbit (Oryctolagus cuniculus), an important prey for predators of conservation concern in Mediterranean ecosystems, to environmental heterogeneity at different spatial scales. Multi-scale habitat models of rabbit abundance in three areas of Doñana, south-western Spain, were developed using a spatially extensive dataset of faecal pellet counts as an abundance index. The best models included habitat variables at the three spatial scales examined: distance from lagoons (broad scale), mean landscape shrub coverage and interspersion of pastures (home-range scale), and shrub and pasture cover (microhabitat scale). These variables may well have been related to the availability of food and refuge for the species at the different scales. However, the models’ fit to data and their predictive accuracy for an independent sample varied among the study regions. Accurate predictions in some areas showed that the combination of variables at various spatial scales can provide a reliable method for assessing the abundance of ecologically complex species such as the European rabbit over large areas. On the other hand, the models failed to identify abundance patterns in a population that suffered the strongest demographic collapse after viral epidemics, underlining the difficulty of generalizing this approach. In the latter case, factors difficult to implement in static models such as disease history and prevalence, predator regulation and others may underlie the lack of association. Habitat models can provide useful guidelines for the management of landscape attributes relevant to rabbits and help improve the conservation of Mediterranean communities. However, other influential factors not obviously related to environmental heterogeneity should also be analyzed in more detail.  相似文献   

20.
Biodiversity persistence in non-woody tropical farmlands is poorly explored, and multi-species assessments with robust landscape-scale designs are sparse. Modeled species occupancy in agricultural mosaics is affected by multiple factors including survey methods (convenience-based versus systematic), landscape-scale agriculture-related variables, and extent of remnant habitat. Changes in seasonal crops can additionally alter landscape and habitat conditions thereby influencing species occupancy. We investigated how these factors affect modeled occupancy of 56 resident bird species using a landscape-scale multi-season occupancy framework across 24 intensively cultivated and human-dominated districts in Uttar Pradesh state, north India. Convenience-based roadside observations provided considerable differences in occupancy estimates and associations with remnant habitat and intensity of cultivation relative to systematic transect counts, and appeared to bias results to roadside conditions. Modeled occupancy of only open-area species improved with increasing intensity of cultivation, while remnant habitat improved modeled occupancy of scrubland, wetland and woodland species. Strong seasonal differences in occupancy were apparent for most species across all habitat guilds. Further habitat loss will be most detrimental to resident scrubland, wetland and woodland species. Uttar Pradesh’s agricultural landscape has a high conservation value, but will require a landscape-level approach to maintain the observed high species richness. Obtaining ecological information from unexplored landscapes using robust landscape-scale surveys offers substantial advantages to understand factors affecting species occupancy, and is necessary for efficient conservation planning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号