首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 500 毫秒
1.
为解决大田冬小麦叶片叶绿素含量估测模型精度低、通用性弱的问题,在获取冬小麦拔节期和抽穗期冠层红光波段反射率(BRred)和近红外波段反射率(BRnir)的基础上,计算归一化差值植被指数(NDVI)、差值植被指数(DVI)、比值植被指数(RVI)、土壤调节植被指数(SAVI)、改进型比值植被指数(MSR)、重归一化植被指数(RDVI)、II型增强植被指数(EVI2)和非线性植被指数(NLI)等8个植被指数。经统计分析,选择与叶片叶绿素含量(SPAD值)相关性较好的5个遥感光谱指标(NDVI、MSR、NLI、BRred和RVI)作为输入变量,建立了冬小麦叶片叶绿素含量的BP神经网络估测模型(WWLCCBP),并对估测模型进行精度验证。结果表明,WWLCCBP估测模型在拔节期估测的决定系数(r2)为0.84,均方根误差(RMSE)为5.39,平均相对误差(ARE)为9.87%。抽穗期的估测效果与拔节期较为一致。将WWLCCBP和高分六号影像...  相似文献   

2.
基于冠层反射光谱的夏玉米叶片色素含量估算模型研究   总被引:2,自引:0,他引:2  
通过分析不同施氮水平下夏玉米叶片色素含量与冠层光谱反射率及其衍生的比值植被指数(RVI)、归一化植被指数(NDVI)、正交植被指数(MTVI2、MCARI2、SAVI、MSAVI)以及叶绿素吸收比值指数(CARI)之间的关系,建立夏玉米叶片叶绿素a(Chla)、叶绿素b(Chlb)、叶绿素a+b(Chl a+b)和类胡萝卜素(Car)含量估算模型。结果表明:NDVI与夏玉米叶片色素含量的相关性最好,RVI、RVI、CARI位居其次。通过逐步回归分析确立的夏玉米叶片Chla、Chlb、Chl a+b及Car含量的估算模型R2分别为0.790 8、0.832 4、0.808 8和0.761 7,说明利用冠层NDVI可以对夏玉米叶片Chla、Chlb、Chl a+b和Car含量进行可靠的监测。  相似文献   

3.
为筛选可用于干旱半干旱区春小麦冠层叶绿素含量估算的高光谱植被指数,2017年通过测定春小麦关键生育时期冠层的田间高光谱与叶绿素含量,利用光谱指数波段优化算法分别计算400~1 300 nm光谱波段中不同波段两两组合的比值光谱指数(ration spectral index,RSI)、归一化光谱指数(normalized difference spectral index,NDSI)、叶绿素指数(chlorophyll index,CI)、简化光谱指数(CI/NDSI,NPDI),并将这些参数及其他17个不同高光谱植被指数分别与实测冠层叶绿素含量进行Pearson相关分析,通过变量重要性准则筛选最优光谱参数,使用偏最小二乘回归法建立冠层叶绿素含量的预测模型。结果表明:(1)RSIs、NDSIs、CIs和NPDIs与冠层叶绿素含量的相关性都优于前人研究中定义的17种高光谱植被指数,并且冠层叶绿素含量与NDSI(R_(849),R_(850))、RSI(R_(849),R_(850)),CI(R_(849),R_(850))和NPDI(R_(849),R_(850))表现出强相关性。(2)用此4个优化光谱指数分别建模时,以CI(R_(849),R_(850))、 CI(R_(539),R_(553))、 CI(R_(540),R_(553))、 CI(R_(536),R_(553))为自变量的X-3模型预测精度最高(r~2=0.74,RMSE=0.272 mg·g~(-1))。(3)结合4个优化光谱指数构建的组合模型预测精度,其r~2=0.83,RMSE=0.187 mg·g~(-1)。  相似文献   

4.
为利用无人机航拍图像实现水稻叶绿素含量的高通量检测,以籼型三系杂交水稻品种兆优5431为材料,设置3个密度水平和5个施氮量水平,共15个处理,在水稻不同生育期通过大疆精灵4RTK无人机获取航拍图像和人工测定水稻叶片SPAD值,并选取7种与水稻叶片SPAD值显著相关的可见光植被指数,采用线性回归和机器学习方法构建了水稻叶片SPAD值反演模型,通过精度验证确定水稻叶片SPAD值最优预测模型。结果表明,机器学习模型中,随机森林模型精度均高于其他回归模型,该算法构建的模型具有较高的预测精度,其模型各项指标分别是建模集R2为0.85、RMSE为2.73,验证集R2为0.76、RMSE为3.64。因此,机器学习模型能为水稻叶片SPAD值进行无损、快速监测提供参考。  相似文献   

5.
为了丰富大田尺度下冬小麦叶面积指数的遥感估算方法并提高估算精度,以关中地区冬小麦为对象,基于Sentinel-2多光谱卫星数据与地面同步观测的冬小麦叶面积指数样点数据,应用偏最小二乘回归(PLSR)、反向传播神经网络(BPNN)和随机森林(RF)法构建冬小麦叶面积指数估算模型,进行区域冬小麦叶面积指数遥感反演。结果表明,Sentinel-2多光谱卫星影像中心842nm近红外B8波段与冬小麦叶面积指数相关性最好,样本总体相关系数为0.778;植被指数中反向差值植被指数(IDVI)与冬小麦叶面积指数相关性最好,样本总体相关系数为0.776。各种估算模型中LAI-RF模型预测效果最佳,r~2为0.72,RMSE为0.53,RE为16.83%。基于LAI-RF估算模型,应用Sentinel-2多光谱卫星数据较好地反演了研究区冬小麦叶面积指数区域分布,其结果总体上与地面真实情况接近,说明以Sentinel-2卫星影像数据建立LAI-RF估算模型,可应用于区域冬小麦LAI反演制图。  相似文献   

6.
为了解连续小波转换对利用冬小麦冠层高光谱数据反演叶片含水量精度的提高效果,以河北省衡水市安平县为研究区,基于野外高光谱数据,提取、筛选其光谱特征敏感波段,应用光谱指数、连续小波变换进行光谱处理,并采用偏最小二乘法构建冬小麦叶片含水量的定量反演模型。结果表明,连续小波变换可明显凸显冬小麦冠层光谱特征,提升其对叶片含水量的敏感性。在连续小波变换下,基于1尺度构建的冬小麦叶片含水量的反演模型为最优模型,模型的决定系数(r~2)和RMSE分别为0.756和0.994%,独立样本验证时r~2和RMSE分别为0.766和1.713%,说明反演模型的拟合效果和预测精度均较高。因此,利用连续小波变换可将冠层光谱信息进行二次分配,能有效将有益信息与噪声信息进行分离,提升光谱信息对冬小麦叶片水含量的敏感性,增强冬小麦叶片水含量的预测能力与稳定性。  相似文献   

7.
为提高冬小麦冠层光谱对叶绿素含量的估算精度,以陕西省乾县冬小麦为研究对象,利用SVC-1024i光谱仪和SPAD-502型叶绿素仪实测了冬小麦冠层反射率和叶绿素含量,分析了一阶导数光谱、10种特征参数和9种植被指数与叶绿素含量的相关性,并利用主成分分析(PCA)对叶绿素敏感的可见光波段(390~780 nm)一阶导数光谱进行降维,将特征值大于1的主分量结合特征参数和植被指数形成不同的输入变量,用偏最小二乘回归和随机森林回归构建冬小麦冠层叶绿素估算模型,并利用独立样本对模型进行验证。结果表明,小麦冠层叶绿素含量与一阶导数光谱在751 nm处的相关性最高(r=0.71),特征参数中红边蓝边归一化(SDr-SDb)/(SDr+SDb)与叶绿素含量的相关性最高(r=0.66),植被指数(VI)中修正归一化差异指数(mND705)相关性最高(r=0.74)。在输入变量相同的情况下,基于随机森林(RF)回归的预测模型均优于偏最小二乘回归(PLSR)模型,其中PCA-VI-RF模型的各精度指标均达到最优(r2=0.94,RMSE=1.05,RPD=3.70),是冬小麦冠层叶绿素...  相似文献   

8.
冬小麦叶片花青素相对含量高光谱监测   总被引:1,自引:0,他引:1  
为探究冬小麦叶片花青素含量的高光谱监测方法,以陕西省关中地区冬小麦为研究对象,分析了叶片光谱反射率与花青素含量的相关性,建立以不同波段组合的RSI、DSI和NDSI光谱指数为自变量的一元回归模型以及利用偏最小二乘法构建的多元回归模型,并进行模型精度比较。结果表明,所有模型中,开花期的PLS模型精度最高,预测效果最好(建模r~2=0.872 3,RMSE=0.005 9;检验r~2=0.912 8,RMSE=0.004 8),是预测冬小麦花青素的最优模型;各生育时期中,开花期模型精度较高,表现稳定,是预测冬小麦花青素的最佳生育时期。  相似文献   

9.
基于无人机多时相遥感影像的冬小麦产量估算   总被引:1,自引:0,他引:1  
为高效准确地预测小麦产量,以浙江省冬小麦为研究对象,利用四旋翼无人机精灵4多光谱相机获取冬小麦5个关键生育时期(拔节期、孕穗期、抽穗期、灌浆期、成熟期)的冠层多光谱数据,选取多光谱相机的五个特征波段计算各生育时期的72个植被指数,分别通过逐步多元线性回归(SMLR)、偏最小二乘回归(PLSR)、BP神经网络(BPNN)、支持向量机(SVM)、随机森林(RF)构建不同生育时期的产量估算模型,最后采用决定系数(R)、均方根误差(RMSE)和相对误差(RE)对估算模型进行评价,筛选出最优估算模型。结果表明,基于随机森林建立的模型估算效果最优,SMLR、PLSR和SVM三种方法建立的模型估算效果接近。利用随机森林算法所建拔节期、孕穗期、抽穗期、灌浆期、成熟期模型的R、RMSE和RE分别为0.92、0.35、11%;0.93、0.33、10%;0.94、0.32、9%;0.92、0.36、9%;0.77、0.67、33%。模型验证时,抽穗期估算效果最好(R、RMSE和RE分别为0.91、0.35和15%),拔节期、孕穗期、灌浆期估算效果接近且有很好的估算能力,成熟期估算精度最差(R、RMSE和RE分别为0.71、0.47和13%)。由此说明,结合机器学习算法和无人机多光谱提取的植被指数可以提高小麦产量估算效果。  相似文献   

10.
为及时准确高效监测小麦叶面积指数(leaf area index,LAI),获取了冬小麦挑旗期和开花期地面实测光谱与无人机高光谱遥感影像数据,并基于查找表建立PROSAIL辐射传输模型得到冬小麦冠层模拟光谱数据,利用数学统计回归模型与偏最小二乘回归法分别构建冬小麦LAI单变量、多变量预测模型,以实测LAI数据对预测结果进行精度评价,将最佳预测模型应用于无人机高光谱影像以分析LAI空间分布情况。结果表明,冬小麦各生育时期的预测模型均具有较高的预测精度,单变量预测模型和多变量预测模型的决定系数分别为0.598~0.717和0.577~0.755,其中以基于植被指数的多变量预测模型表现最优,其在开花期的验证精度最高,RMSE和MAPE分别为0.405和12.90%。在LAI空间分布图中,开花期预测效果优于挑旗期,各试验小区的LAI分布较为均匀。  相似文献   

11.
为及时、准确地掌握小麦产量动态信息,基于无人机遥感平台,分别分析了小麦4项生理指标[地面实测叶面积指数、叶片含氮量、叶片含水量及叶片叶绿素相对含量(SPAD值)]及10项植被指数与产量的相关性,以筛选出与产量最为敏感的生理指标与植被指数,并比较了3种建模方法(一元回归UR、多元逐步回归SMLR和主成分回归PCAR)在小麦各生育时期估产的适用性,进而得到小麦最优估产模型。结果表明:(1)不同生育时期两类变量与产量的相关性变化特征一致,均表现为抽穗期>灌浆期>成熟期;不同生理指标、植被指数与产量的相关性在各生育时期均存在差异,生理指标表现为叶片含氮量>LAI>SPAD>叶片含水量;而植被指数在各时期表现不同;(2)以生理指标与植被指数为自变量,采用SMLR模型构建的抽穗期估产模型拟合精度最高,R、RMSE和nRMSE分别为0.828、362.53 kg·hm-2和12.35%;(3)小麦估产模型在各生育时期的预测精度表现为抽穗期>灌浆期>成熟期。  相似文献   

12.
为探讨基于多源遥感数据和机器学习算法预测冬小麦产量的可行性,利用中麦175/轮选987重组自交系F7代群体中70个家系开展田间试验,通过无人机遥感平台和地面表型车平台及手持式冠层鉴定平台,获取冬小麦灌浆期光谱数据,分别用4种机器学习方法和集成方法建立产量预测模型。结果表明,在61个光谱指数中,除MCARI、DSI、PVI外,其余指数均与产量显著相关或极显著相关,700 nm和800 nm组合的高光谱指数能够比较准确地预测产量。相对于高光谱和多光谱,RGB传感器预测产量精度最高,平均决定系数(r2)为0.74,平均均方根误差(RMSE)为517.78 kg·hm-2。相对于决策树(DT)、随机森林(RF)、支持向量机(SVM)三种传统机器学习算法,岭回归(RR)算法预测产量的精度最高,平均r2为0.73,平均RMSE为516.1 kg·hm-2。与单一的传统机器学习算法相比,DT、RF、SVM、RR结合集成算法的预测精度高且稳定,r2高达0.77,RMSE也较低。SVM 、RF、DT、RR四种机器学习算法和RGB、ASD、UAV、UGV四个传感器构成的算法-传感器集成方法的预测精度提升,r2为0.79,RMSE降至469.98 kg·hm-2。因此,利用Stacking集成方法将不同算法、传感器进行结合,能够有效地提高冬小麦产量预测精度。  相似文献   

13.
冬小麦叶面积指数的品种差异性与高光谱估算研究   总被引:2,自引:0,他引:2  
为给小麦叶面积指数(LAI)的高光谱估算提供技术支持,基于2年大田试验,以4个河南主推品种为材料,对小麦LAI和冠层光谱变化特点、估算模型及其品种间的差异等进行了系统分析。结果表明,在生育期内不同冬小麦品种冠层光谱反射率的变化与LAI变化有差异;在相同LAI下,不同冬小麦品种的光谱曲线存在差异。利用400~900 nm范围内冠层光谱反射率的任意两波段组合的比值光谱指数(RSI)、归一化差值光谱指数(NDSI)和差值光谱指数(DSI)所建立的单品种模型以及不同品种综合模型的决定系数(r)均达到0.84以上,单品种模型的r和调整r分别较综合模型高出3.1%~4.8%和2.0%~4.2%。利用独立于建模样本以外的数据对上述模型进行检验,单品种模型预测的r较综合模型提高了0.6%~11.0%,而均方根误差降低了10.0%~37.0%。因此,在利用高光谱遥感技术估算冬小麦LAI时,可以通过建立单品种模型来提高估算精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号