首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Potato nutrient management in sustainable cropping systems   总被引:2,自引:0,他引:2  
Sustainable nutrient management involves a set of management practices designed to conserve soil resources, to maintain or enhance productivity, and to help reduce growers’ reliance on chemical fertilizers. Sustainable nutrient management systems will most certainly rely heavily on the use of legume rotation crops and/or organic soil amendments. To realize the full benefit to the crop ecosystem, sustainable nutrient management programs will also likely require longer crop rotations with less frequent potato production. There is considerable research evidence indicating that these systems can maintain or increase productivity while having positive impacts on nutrient supply, soil physical properties, and soil conservation. However, their successful adoption and continued use on a large scale will require resolution of uncertainties related to economic risk associated with inconsistent nutrient availability in alternative nutrient management systems, potential environmental risks associated with excessive P applications in animal manures, and the potential for increased potato pest incidence resulting from manure application.  相似文献   

2.
This study aims to assess the risks and opportunities posed by climate change to potato growers in South Africa and to evaluate adaptation measures in the form of changes in planting time growers could adopt to optimise land and water use efficiencies in potato, using a climate model of past, present-day and future climate over southern Africa and the LINTUL crop growth model. This was done for distinct agro-ecosystems in South Africa: the southern Mediterranean area where potato still is grown year round with a doubling of the number of hot days between 1960 and 2050, the Eastern Free State with summer crops only and Limpopo with currently autumn, winter and spring crops where the number of hot days increases sevenfold and in future the crop will mainly be grown in winter. A benefit here will be a drastic reduction of frost days from 0.9 days per winter to 0. Potato crops in the agro-ecosystems will benefit considerably from increased CO2 levels such as increased tuber yield and reduced water use by the crop, if planting is shifted to appropriate times of the year. When the crop is grown in hot periods, however, these benefits are counteracted by an increased incidence of heat stress and increased evapotranspiration, leading in some instances to considerably lower yields and water use efficiencies. Therefore year-round total production at the Sandveld stabilizes at around 140 Mg?ha?1 (yield reduction in summer and yield increase in winter), increases by about 30% in the Free State and stays at about 95 t?ha?1 at Limpopo where yield increase due to CO2 is annulled by a shorter growing season. When the crop is grown in a cool period, there is an additional benefit of a reduced incidence of cold stress and a more rapid canopy development in the early stages of crop growth. In all three areas, potato growers are likely to respond to climate change by advancing planting. In Limpopo, a major benefit of climate change is a reduction in the risk of frost damage in winter. The relevance of these findings for potato grown in agro-ecosystems elsewhere in the world is discussed.  相似文献   

3.
Phosphorus (P) losses from agricultural systems are a cause of degraded surface water quality of lakes and streams. In freshwater systems, P is often the most limiting nutrient for algae growth and an increase in P additions to these systems can cause a shift in ecology. These shifts can result in a degradation of the water resource as habitat or for recreation. In an effort to combat the negative effects of agriculture management practices on surface water quality, federal and state regulations require some level of assessment to guide P applications. Areas with large amounts of potato production are of particular concern with respect to P loss since potatoes are a high P demanding crop and are inefficient users of applied P. In many cases, soils in potato production are managed with a higher soil test P concentration compared to other crops and P applications for optimum production exceed P removal. When potato production fields are maintained at high soil test P levels, this may increase the risk of P loss in runoff. However, based on soils and landscape positions where potatoes are grown, there may be little risk of transport. While there appears to be little risk of P loss on low-sloping, sandy soils, output from the Wisconsin Phosphorus Index suggests that more steeply sloping fields can pose some risk, especially when soil test P concentrations exist at above optimum levels. At high soil test P levels, no P may be required for optimum yield in rotated crops, but production practices of these crops may need to be altered to reduce P losses. Furrow-irrigated and tile-drained fields may also pose risks of P loss to the environment. While the P demands of potato are greater than those for most crops, it is likely that most of this P will not be exported via surface runoff. Careful management considerations must be made when producing potatoes on high sloping soils, especially those close to surface water bodies. Future considerations of P management and water quality will focus on assessing leaching risk of P and this contribution to surface waters.  相似文献   

4.
Improving nitrogen use efficiency is important for the potato crop, because of its relatively low ability to take up available soil mineral nitrogen (N). Splitting of N fertilizer application is a suitable approach to better match N need and supply. In-season crop N monitoring methods are therefore required to support such strategies. This paper deals with the state of the art and potential development of characteristics, use and implementation of well known and more recent methods aimed to assess in-season potato Crop Nitrogen Status (CNS). A short overview of this concept is given for the potato crop. The most important and available methods for CNS assessment are evaluated for their accuracy, precision, sensitivity, sensibility and feasibility. These are: the petiole sap nitrate concentration test; the leaf chlorophyll concentration measurement using a hand-held chlorophyll meter; the measurement of crop light reflectance through a hand-held radiometer using passive sensors. More recent methods still under investigation based on near, ground-based, air-borne or space-borne remote sensing are discussed for their scientific and practical interest in the near future. The current and potential use and implementation of these methods into decision support systems for potato N fertilization management aimed at improving the potato crop nitrogen use efficiency are analysed by: comparing relative and raw data; establishing threshold values of CNS; and combining or integrating the CNS values into models dedicated to N recommendation or to crop growth simulation.  相似文献   

5.
Potato cropping systems in Maine include both continuous potatoes and short-term potato rotations with small grains. Producers recognize the benefits of increased rotations, but the economics of producing a high-valued crop such as potatoes (Solanm tuberosum L.) create incentives for continuous potato production. Research at the USDA-ARS research site in Newport, ME, is evaluating the agronomic and economic impacts of five crops in two-year rotations on potato production and whole-farm profitability. The rotation crops are barley (Hordeum vulgare L.), sweet corn (Zea mays L.) green bean (Phaseolus vulgares L.), soybean (Glycine max L., Mer.), and canola (Brassica napus L.). Enterprise budgets for the five crops were developed. The budgets and historical prices and yields were used as inputs to a Monte Carlo simulation. The simulation was conducted to determine the impact of rotation crops on whole-farm profitability and income risk, as measured by income variability. The net incomes of the five rotation sequences were compared against continuous potatoes. Two rotation crops, sweet corn and green beans, resulted in an increase in net income relative to continuous potatoes. AU of the rotation crops were found to greatly reduce income risk and chance of economic losses. In the case of green beans and sweet corn, the analysis was rerun using data from the research trials on the following potato crop yields. Depending on whether the rotation effect was negative or positive, net income either fell or rose when compared to fist analysis. However, even when the rotation crop led to decreased yields in the following potato crop, income variability and likelihood of economic loss was still superior to the continuous potato rotation. These findings provide support for including rotation crops as a method to improve potato production and sustainability, increase wholefarm profitability, and reduce income risk.  相似文献   

6.
An experiment was conducted in three fallow paddy fields situated on the mid-tropical plain zone of a northeastern Indian state(Tripura) to provide rice fallow management options using leftover soil moisture and nutrients. The three experimental fields were managed by growing rice under the system of rice intensification as the rainy season crop and then groundnut, lentil, rapeseed and potato as the post-rainy season crops. Fertilization under the integrated nutrient management system and lifesaving irrigation at critical stages of each post-rainy season crop were provided. Results showed that the field water use efficiency values were 5.93, 2.39, 2.37 and 59.76 kg/(hm2·mm) and that the yield of these crops increased by approximately 20%, 34%, 40% and 20% after applying two lifesaving irrigations in groundnut, lentil, rapeseed and potato, respectively. Therefore, fallow paddy field can provide possible profitable crops during the post-rainy season by utilizing the residual moisture and minimum supplemental irrigation under improved nutrient management practices.  相似文献   

7.
8.
不同茬口对小麦养分利用和产量的影响   总被引:2,自引:0,他引:2  
为了探究不同茬口对小麦生产的影响,在测定玉米、大豆、花生、甘薯4种不同作物收获后土壤养分状况的基础上,对不同茬口下小麦植株养分吸收、利用和产量进行了研究。结果表明,与玉米茬相比,大豆茬的土壤速效磷含量降低,土壤速效氮和速效钾含量提高,花生茬的土壤速效氮和速效磷含量提高,甘薯茬的土壤速效氮和速效钾含量下降;大豆、花生和甘薯茬有利于小麦植株养分的积累,并能显著提高千粒重,但甘薯茬的小麦产量显著低于玉米茬。因此,大豆和花生可作为冬小麦种植区两熟复种模式的适宜前茬作物。  相似文献   

9.
Optimizing nitrogen (N) fertilizer management in irrigated potato (Solanum tuberosum L.) on coarse-textured soils is challenging. The “4R” nutrient stewardship framework of using N fertilizer at the right rate, right source, right placement and right time provides approaches to improve fertilizer use efficiency while maintaining or improving yield. This 3-years replicated field plot study evaluated effects from a series of N fertilization strategies including 10 combinations of sources, placement and timing, as well as fertigation, on irrigated processing potato (cv. Russet Burbank) grown for a total of five site-years in the Province of Manitoba, Canada. Treatments were designed to provide early to late availability of N to the potato crop. Nitrogen was applied to 80% of Provincial N recommendation to increase the likelihood of observing improved fertilizer use efficiency and effects of treatments on yields. Measurements were tuber yield, size distribution, specific gravity, hollow-heart rate, fertilizer apparent N recovery (ANR) and agronomic nitrogen use efficiency (NUE). Results showed differences in yield, quality, ANR and NUE between fertilizer treatments were generally very small or absent. Average tuber marketable yields for fertilizer treatments were significantly greater than those for the unfertilized control (P?<?0.001). Split application of urea at planting and hilling, and urea at planting with fertigation occasionally increased tuber marketable yields on sites of coarse textured soils (P?<?0.05). Use of polymer-coated urea (ESN) or stabilized urea with inhibitors (SuperU) did not affect yield, quality or N use of potato. Site-year difference (P?<?0.001) were apparent for all measures highlighting the importance of soil and climatic conditions on agronomic and environmental effects of N management practices. The results indicate current grower practice of split urea application at planting and hilling and urea at planting following by in-season fertigation are sound. Results indicate growers could shift to the more convenient practice of ESN at planting without reducing yields. Absence of treatment effects suggests N was generally not a limiting factor for the current study, indicating that the current recommendation for potato production in Manitoba over-estimate site-specific crop N needs.  相似文献   

10.
随着种植业结构的调整,景宁畲族自治县农业部门在部分高山探索出以传统作物,春马铃薯、赤皮稻、萝卜进行新布局,引进新良种、推广新技术,得到山区农民的直观效果,取得了明显社会和经济效益。通过"春马铃薯—赤皮稻—萝卜"三熟制的种植,山区农民易接受,其产品适应市场的需求,尤其在高山生产无化学污染,为农产品安全提供得天独厚的条件。通过水旱轮作,能保持土壤的团粒结构,具有保水保肥能力,增强土壤里的通透性,有利农作物的根系生产。该整套的春马铃薯、赤皮稻、萝卜的栽培技术要点,可供同纬度的种植地带借鉴。  相似文献   

11.
通过对马铃薯间作玉米、玉米间作大豆、净作玉米、净作马铃薯、净作大豆5种种植模式的比较分析认为:虽然间作时单一作物的产量、产值比净作时降低,但综合产量提高。通过调整搭配作物的种植密度可以达到作物间的相对平衡,从而获得各种作物的丰收。在作物搭配时应以其中一种作物为主,另一种作物为辅,不能同时并重。马铃薯间作玉米以马铃薯为主,玉米间作大豆时以玉米为主,能够获得较高的收益。  相似文献   

12.
Summary Three experiments on intercopping potatoes with cabbage are reported in which the cabbage crop was transplanted between rows of potatoes prior to planting. The cabbages were removed before the canopies of the component crops overlapped, but comparison with sole crops showed that the ground cover of both crops had been retarded. This early competition affected both the amount of radiation intercepted by the potato crop and its efficiency of conversion into dry matter. As a result the sum of the radiation intercepted by the intercrops in no instance exceeded that of the sole potato crops. The evidence suggests that largely before any significant competition for light due to mutual shading, competition for water, nitrogen and possibly other essential elements, took place, with repercussions for canopy growth for the remainder of the growing season.  相似文献   

13.
14.
Management of fertilizer phosphorus (P) is a critical component of potato production systems as potato has a relatively high P requirement and inefficiently uses soil P. Phosphorus promotes rapid canopy development, root cell division, tuber set, and starch synthesis. Adequate P is essential for optimizing tuber yield, solids content, nutritional quality, and resistance to some diseases. Although soil test P is the primary tool for assessing P fertilizer needs, in some areas petiole P analysis has been successfully utilized to guide in-season P applications. Potato has been shown in some studies to respond to fertilizer P at soil test levels considered very high for most other crops (100+ mg kg?1 Bray P1 or Mehlich I or III and 20+ mg kg?1 sodium bicarbonate) especially on medium- to finer-textured soils. Even on high-testing soils, fertilizer P rates for top yields sometimes exceed 150 kg P2O5 ha?1. In addition, many states/provinces continue to recommend half or more of the amount of P in the harvested portion of the crop irrespective of soil test P level. In most situations, few differences are expected among fertilizer P sources; however, high rates of diammonium phosphate (DAP) or urea-phosphate (UAP) should not be band-applied in contact or near the seed piece. Most research determined that fertilizer P was most efficiently used when band-applied at planting (e.g., 5 cm to each side of the seed piece); however, some western USA work on high-pH soils showed increased yields and petiole P levels with preplant broadcast applications. In-season applications with the irrigation water can be successful when the potato roots are sufficiently close to the soil surface; however, most research indicates that P applications are more effective when applied at planting or early in the season. Potato fertilizer phosphorus best management practices include: (1) apply the fertilizer P rate calibrated for local soils; (2) band-apply fertilizer P at least 5 cm from the seed piece, especially on very sandy soils or where DAP or UAP are used; (3) use petiole P tests to determine the need for in-season applications; (4) account for all P sources applied, including animal manures; and (5) utilize the best soil conservation practices to reduce P losses to surface waters.  相似文献   

15.
Cover cropping can have various beneficial effects to the cropping system such us the increase of soil nutrient content and weed suppression. In this respect, the species used for covering is of great importance. This paper reports results on the yield and weed control effects in potato crops preceded by different cover crops over a 2-year period (2003 and 2004) in Central Italy (Viterbo). Results were obtained in the frame of a more complex study set up in 2002 where in a 3-year chick-pea/potato/tomato rotation, each crop was preceded by 7 different soil managements: 5 cover crops (rapeseed, Italian ryegrass, hairy vetch, snail medick and subclover) + 1 unfertilised weedy fallow (cover crop absent) + 1 control (weedy fallow fertilised with mineral N at a rate of 170 kg ha−1 for potato). Two different weed control regimes in potato were also applied [weed-free crop (1 inter-row hoeing + 1 hilling up + manual weeding on the row); mechanical control (1 inter-row hoeing + 1 hilling up)]. Cover crops were sown in September and cut and ploughed just before potato planting in March. The potato crops following the cover crops were only fertilised with green manure. Averaged over years, all the cover crops produced more above-ground dry biomass than the weedy fallow (4.79 t ha−1 on average vs 2.36 t ha−1). Hairy vetch and subclover accumulated the highest N in the incorporated biomass (169 and 147 kg ha−1), followed by snail medick (108), rapeseed (99), ryegrass (88) and weedy fallow (47). Rapeseed and ryegrass were the most efficient weed suppressors and had the least proportion of weed biomass (<1%) of the total produced by the cover, while they also reduced weed emergence in the following potato crops (8.8 plants m−2vs 25.5 plants m−2 with all other cover crops). Following subclover and hairy vetch the potato crop yield was similar to that obtained by mineral N-P-K fertilisation (48.5 t ha−1 of fresh marketable tubers). Mechanical weed control compared to weed free crop always reduced potato yield and the reduction, averaged over years, was greater in N-P-K mineral fertilised control (−23.6%) and smaller in ryegrass (−7.9%).  相似文献   

16.
Soilborne potato diseases are persistent problems in potato production. Use of disease-suppressive rotation crops, such as Brassica spp. (mustards, rapeseed) and sudangrass, has shown potential for management of soilborne diseases and enhanced yield in various crop production systems. However, how to best implement these crops into productive potato cropping systems has not yet been determined. In this research, potential disease-suppressive crops were evaluated under four different types of production management (as a cover crop, green manure, harvested crop-residue incorporated, and harvested crop-residue not incorporated) in potato rotation field trials, and their effects on disease, yield, and economic viability determined. Mustard blend, sudangrass, and rapeseed rotations reduced the tuber disease black scurf (by 16–27 %) and increased yield (by 6–11 %) relative to a barley rotation control, but only mustard blend consistently reduced common scab (by 11 %). All rotation crops managed as green manures produced lower disease (by 15–26 %) and higher yields (by 6–13 %) than other management practices. Overall, the combination of mustard blend managed as a green manure was most effective, reducing scurf by 54 % and increasing yield by 25 % relative to a soybean cover crop. The use of mustard or rapeseed as a harvested crop with incorporation provided the best economic return, increasing net income by more than $860/ha relative to the standard barley rotation, but mustard blend grown as a green manure or non-incorporated harvest crop also substantially increased net income ($600 to $780/ha).  相似文献   

17.
Since the 1970s climate in Europe warmed rapidly. Over the next years climate is expected to become gradually milder and more humid in northern Europe and hotter and drier in southern Europe. These changes are forecasted to be responsible for major changes in the distribution of plant and animal species, pathogen/pest prevalence and their biodiversity. On the other hand, some changes in variability and epidemiology of pathogens are affected by biological factors. In the first part of this paper an overview is given of pathogens and pests that are potentially affected by climate change and are or will become a significant threat in potato production. The second part of the paper deals with integrated crop protection of potato against various pathogens and pests, considered the best solution for these disease and pest problems. Management of persistent and recurrent diseases and pests of potato requires the integration of many control measures to achieve an efficient crop protection. The protection of potato has to start very early before planting.  相似文献   

18.
Summary Fifteen experiments were carried out in different sites of Italy, Belgium, Scotland and The Netherlands from 1995 to 1999 to study the possible use of chlorophyll meter to assess the nitrogen status and to guide nitrogen fertilization of the potato crop. The results are gathered here and reviewed together with available information in literature. The paper deals with measuring principles of chlorophyll meter; relation between chlorophyll meter readings and analytical measurements of chlorophyll, analytical measurements of nitrogen, crop nitrogen content, tuber yield, and physiological processes in leaves; variations in chlorophyll meter readings related to nitrogen supply, potato cultivar, crop management, and sampling methods; use of chlorophyll meter readings for decision making in the management of supplemental nitrogen fertilization (assessment of chlorophyll meter critical threshold, plant response to addition of supplementary N).  相似文献   

19.
Explorations of the impact of climate change on potential potato yields were obtained by downscaling the projections of six different coupled climate models to high spatial resolution over southern Africa. The simulations of daily maximum and minimum temperatures, precipitation, wind speed, and solar radiation were used as input to run the crop growth model LINTUL-Potato. Pixels representative for potato growing areas were selected for four globally occurring agro-ecosystems: rainy and dry winter and summer crops. The simulated inter-annual variability is much greater for rainfall than for temperature. Reference evapotranspiration and radiation are projected to hardly decline over the 90-year period, whilst temperatures are projected to rise significantly by about 1.9 °C. From literature, it was found that radiation use efficiency of potato increased with elevated CO2 concentrations by almost 0.002 g?MJ?1?ppm?1. This ratio was used to calculate the CO2 effect on yields between 1960 and 2050, when CO2 concentration increases from 315 to 550 ppm. Within this range, evapotranspiration by the potato crop was reduced by about 13% according to literature. Simulated yield increase was strongest in the Mediterranean-type winter crop (+37%) and least under Mediterranean summer (+12%) and relatively warm winter conditions (+14%) closer to the equator. Water use efficiency also increased most in the cool rainy Mediterranean winter (+45%) and least so in the winter crop closer to the equator (+14%). It is concluded from the simulations that for all four agro-ecosystems possible negative effects of rising temperatures and reduced availability of water for potato are more than compensated for by the positive effect of increased CO2 levels on water use efficiency and crop productivity.  相似文献   

20.
《Journal of Crop Improvement》2013,27(1-2):217-244
SUMMARY

Since CO2 is a primary input for crop growth, there is interest in how increasing atmospheric CO2 will affect crop productivity and alter cropping system management. Effects of elevated CO2 on grain and residue production will be influenced by crop selection. This field study evaluated soybean [C3; Glycine max(L.) Merr.] and grain sorghum [C4; Sorghum bicolor (L.) Moench.] cropping systems managed under conservation tillage practices and two atmospheric CO2 concentrations (ambient and twice ambient) for three growing seasons. Elevated CO2 increased soybean and sorghum yield by 53% and 17% increase, respectively; reductions in whole plant water use were also greater for soybean than sorghum. These findings suggest that increasing CO2 could improve future food security, especially in soybean production systems. Elevated CO2 increased aboveground residue production by > 35% for both crops; such shifts could complement conservation management by increasing soil surface cover, thereby reducing soil erosion. However, increased residue could negatively impact crop stand establishment and implement effectiveness during tillage operations. Elevated CO2 increased total belowground dry weight for both crops; increased root proliferation may alter soil structural characteristics (e.g., due to increased number and extent of root channels) which could lead to increases in porosity, infiltration rates, and subsequent soil water storage. Nitrate leaching was reduced during the growing season (due to increased N capture by high CO2-grown crops), and also during the fallow period (likely a result of altered decomposition patterns due to increased C:N ratios of the high CO2-grown material). Enhanced crop growth (both above-and be-lowground) under elevated CO2 suggests greater delivery of C to soil, more soil surface residue, and greater percent ground coverage which could reduce soil C losses, increase soil C storage, and help ameliorate the rise in atmospheric CO2. Results from this study suggests that the biodegradability of crop residues and soil C storage may not only be affected by the environment they were produced in but may also be species dependent. To more fully elucidate the relationships between crop productivity, nutrient cycling, and decomposition of plant materials produced in elevated CO2 environments, future studies must address species effects (including use of genetically modified crops) and must also consider other factors such as cover crops, crop rotations, soil series, tillage practices, weed management, and regional climatic differences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号