首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
《Field Crops Research》2006,98(1):68-75
Direct seeding instead of transplanting for rice (Oryza sativa L.) has increasingly been used in northern and eastern China because of labor and cost saving. However, poor germinability is still one of the major problems faced in the adoption of direct seeding under low temperature (low temperature germinability: LTG) and anoxia (anoxia germinability: AG) condition. To gain an understanding of the genetic control of seed germinability under these unfavourable conditions, two rice lines, USSR5 (japonica type) and N22 (indica type) and F2 individuals derived from the cross USSR5 × N22 were tested for LTG and AG. USSR5 and N22 differ significantly for both LTG and AG. The LTG of the F2 individuals ranged from 0 to 100% after a 10 days incubation. AG ranged from 0.0 to 4.0 cm shoot length. Based on segregation in the F2 population, a linkage map was constructed using 121 SSR markers. The map covered 1821.5 cM, with a mean inter-marker distance of 16.7 cM. Eleven putative QTLs for LTG were detected, one on each of chromosomes 3–5, 7, 9–11, and four on chromosome 5. The USSR5 alleles in all these QTLs acted to increase LTG. Two QTLs for AG were located on chromosomes 5 and 11, respectively, at both of which the USSR5 alleles acted to increase AG. We propose that USSR5 could make a major contribution to improving LTG and AG in rice breeding programs.  相似文献   

2.
Stigma exsertion is an important trait for outcrossing ability in rice. Stigma exsertion rate (SER) of male sterile lines (MSLs) is a key factor affecting F1-seed production in hybrid rice. In this study, seven QTLs for SER were detected on five chromosomes using a set of single-segment substitution lines (SSSLs) derived from O. glaberrima. Three of the QTLs were mapped in the estimated intervals of 92.5–333.0 kb. qSER-5 was located in a substitution segment of 92.5 kb. qSER-1b and qSER-8b were respectively limited to 333.0 kb and 107.5 kb by secondary substitution mapping. qSER-1b and qSER-3 had bigger additive effects of 11.5% and 11.9%, respectively, while the other five QTLs had smaller additive effects from 5.7% to 8.6%. Open reading frames were identified in the regions of qSER-5 and qSER-8b in O. sativa and O. glaberrima genomes. Fine mapping of the QTLs laid a foundation for the cloning of genes, and QTLs for SER will be used to develop MSLs with strong ability of outcrossing.  相似文献   

3.
The environmental temperature occurring during the grain filling stage is an important factoraffecting starch synthesis and accumulation in rice. We investigated starch accumulation, amylaseactivity and starch granule size distribution in two low-amylose japonica rice varieties, Nanjing 9108 andFujing 1606, grown in the field at different filling temperatures by manipulating sowing date. The two ricevarieties exhibited similar performances between two sowing dates. Total starch, amylose andamylopectin contents were lower at the early-filling stage of T1 treatment (Early-sowing) compared withthose at the same stage in T2 treatment (Late-sowing). In contrast, at the late-filling stage, when fieldtemperatures were generally decreasing, total starch and amylopectin contents in T1 were highercompared to those in T2. The ideal temperature for strong activity of ADP-glucose pyrophosphorylaseand soluble starch synthase was about 22℃. A higher temperature from the heading to maturity stagesin T1 increased the activities of starch branching enzyme and suppressed the activities of granule boundstarch synthetase and starch debranching enzyme. We found that rice produced larger-sized starchgranules under the T1 treatment. These results suggested that due to the early-sowing date, the hightemperature (30℃) occurring at the early-filling stage hindered starch synthesis and accumulation,however, the lower temperatures (22 ℃) at the late-filling stage allowed starch synthesis and accumulationto return to normal levels.  相似文献   

4.
《Field Crops Research》2006,95(2-3):367-382
For maximizing water retention and attaining high yields, transplanting into puddled soil (TPR) is often considered the optimal method of rice (Orzya sativa L.) establishment. Alternative management techniques like direct seeding (DSR) and deep tillage have been proposed as mechanisms to improve soil physical properties for subsequent dry-season crops, but the risks to rice are uncertain. In this full factorial study on a valley terrace in Nepal, the influence of tillage (shallow—T1, deep chisel—T2, deep chisel + moldboard plough—T3) and establishment practice (TPR, DSR) on the field water balance and rice performance were evaluated in two adjacent landscape settings (terrace edge “upland”, central terrace “lowland”). Although deep tillage had only modest influences on seepage and percolation (SP) rates in both years (Y1, Y2), landscape placement and establishment practice had significant implications for the water balance (e.g. Y2 SP cm day−1: TPR-lowland = 1.6, DSR-lowland = 2.3, TPR-upland = 4.1, DSR-upland = 6.1). During low rainfall periods, however, soil water potential and drought vulnerability were governed solely by landscape placement. Despite water balance differences, there was little evidence that rice rooting behavior was substantially modified by landscape or establishment method. Weed biomass was higher in DSR, but was uncorrelated with water balance and productivity trends. In Y1, lower SP rates and more days with continuous flooding were positively associated with rice productivity. DSR yields were significantly lower than TPR in both landscape positions, with the lowland outperforming the upland (Y1 mt ha−1: TPR-lowland = 6.4, DSR-lowland = 5.2, TPR-upland = 5.7, DSR-upland = 4.7). To determine if N dynamics were contributing to productivity differences, fertilizer nitrogen was increased from 120 to 150 kg N ha−1 in Y2. Results suggest that DSR performance is comparable – and landscape less important – if nitrogen is non-limiting (Y2 mt ha−1: TPR-lowland = 6.9, DSR-lowland = 6.5, TPR-upland = 7.0, DSR-upland = 6.5); no aspect of the field water balance was associated with yield variability in Y2. For direct seeding in N-deficient farming systems, landscape criteria may prove useful for minimizing production risks by identifying field areas with lower SP rates.  相似文献   

5.
《Field Crops Research》2006,95(2-3):355-366
Nitrogen (N) demand of soybean [Glycine max (L.) Merrill] can be supplied via biological nitrogen fixation (BNF), however, higher yielding cultivars increase plant demand for N. Phenotypes differing for traits associated with biological nitrogen fixation result from the expression of the multiple genes of both the host plant and the microsymbiont, but limited studies have been done on the genetics of the soybean BNF. Integrated maps of soybean with simple sequence repeat (SSR) markers [Cregan, P.B., Jarvik, T., Bush, A.L., Shoemaker, R.C., Lark, K.G., Kahler, A.L., Kaya, N., Van Toai, T.T., Lohnes, D.G., Chung, J., Specht, J.E., 1999. An integrated genetic linkage map of the soybean genome. Crop Sci. 39, 1464–1491.] offer an excellent opportunity for the identification of traits related to BNF. This study aimed at the identification of quantitative trait loci (QTLs) controlling BNF and nodulation in an F2 population of 160 plants derived from an intraspecific cross between two Brazilian cultivars, Embrapa 20 × BRS 133, previously identified as having good potential for mapping of QTLs [Nicolás, M.F., Arias, C.A.A., Hungria, M., 2002. Genetics of nodulation and nitrogen fixation in Brazilian soybean cultivars. Biol. Fertil. Soils 36, 109–117.]. From 252 SSR markers tested in the parental genotypes 45 were polymorphic with high heterozygotes resolution. Mapping was performed with those 45 SSR markers for nodulation [nodule number (NN) and nodule dry weight (NDW)] and plant growth [shoot dry weight (SDW)] phenotypes in F2:3 lines. A total of 21 SSR loci were mapped with a likehood of odds (LOD) value of 3.0 and a maximum Haldane distance of 50 cM, and were distributed in nine linkage groups with coverage of 251.2 cM. The interval mapping analysis with Mapmaker/QTL revealed two genomic regions associated with NN and NDW, with a contribution of putative QTLs of 7.1 and 10%, respectively. The regression analysis identified 13 significant associations between the marker loci and QTLs due to additive effects, with some of them being significantly associated with more than one phenotypic trait. Effects were observed in all variables studied, ranging from 2 to 9%. A one-way analysis of variance (ANOVA) also detected 13 significant associations, related to dominance effects. A two-way-ANOVA showed six epistatic interactions among non-linked QTLs for SDW, NN and NDW, explaining up to 15% of the trait variation and increasing the phenotypic expression from 8 to 28%. The data obtained in this work establish the initial stage for additional studies of the QTLs controlling BNF and indicate that effective marker-assisted selection using SSR markers may be feasible for enhancing BFN traits in soybean breeding programs.  相似文献   

6.
通过对比玉米苗期叶片在田间和室内条件下NSC日变化特征,分析自然条件下光照和温度变化与光合碳同化产物间的关联性,对室外水培条件下玉米苗期根系蔗糖、总可溶性糖和淀粉日变化特性进行探讨。结果表明,玉米苗期叶片NSC累积呈先升高后降低的特征,不同处理NSC峰值均出现在光照结束阶段;田间光温条件下淀粉和可溶性糖累积浓度均高于室内水培。光温变化对NSC积累的影响达极显著水平(P0.01);前一时间点的光照与后一时间点的淀粉和可溶性总糖之间相关性均达极显著水平(R2=0.77;R2=0.90)。根系中可溶性糖浓度呈明显的日变化特征,淀粉则在141.9~161.9 mg/g DM范围内波动。  相似文献   

7.
In this study, sugar cane bagasse was pretreated with the white rot fungus Pleurotus sajor-caju PS 2001, and this biomass was subsequently used in the production of cellulases and xylanases by the fungus Penicillium echinulatum. Despite the environmental advantages offered by this type of pretreatment, the enzymatic activity obtained with biologically pretreated sugar cane bagasse (PSCB) was lower than that of the control treatments, which were carried out with untreated sugar cane bagasse (SCB) and cellulose. For medium supplemented with PSCB, the average peak activities obtained were 0.13, 1.0, 0.18, and 0.33 U ml?1 for FPA, endoglucanase, β-glucosidases, and xylanases, respectively. For the cellulose, control values of 0.52, 1.20, 0.20, and 1.46 U ml?1, and SCB values of 0.95, 1.60, 0.21, and 1.49 U ml?1 were obtained, respectively. Although the enzymatic activities of the culture with biologically pretreated sugar cane bagasse were lower than the cultures carried out with untreated sugar cane bagasse, it should be noted that production of enzymes of the cellulase and hemicellulase complex after production of the mushrooms is another way to add value to this agricultural residue.  相似文献   

8.
Chitosan film has potential applications in agriculture, food, and pharmacy. However, films made only from chitosan lack water resistance and have poor mechanical properties. Forming miscible, biodegradable composite film from chitosan with other hydrophilic biopolymers is an alternative. The objective of this study was to prepare chitosan/starch composite films by combining chitosan (deacetylated degree, 90%) solution and two thermally gelatinized cornstarches (waxy starch and regular starch with 25% amylose). The film’s tensile strength (TS), elongation-at-break (E), and water vapor transmission rate (WVTR) were investigated. The possible interactions between the two major components were evaluated by X-ray diffraction and Fourier-transform infrared spectroscopy (FTIR). Regardless of starch type, both the TS and E of the composite films first increased and then decreased with starch addition. Composite film made with regular starch showed higher TS and E than those with waxy starch. The addition of starch decreased WVTRs of the composite films. The introduction of gelatinized starch suppressed the crystalline peaks of chitosan film. The amino group band of chitosan molecule in the FTIR spectrum shifted from 1578 cm−1 in the chitosan film to 1584 cm−1 in composite films. These results indicated that there was a molecular miscibility between these two components.  相似文献   

9.
The research of alternative crops for biomass production for energy indicates giant reed (Arundo donax L.), widespread spontaneous plant in Mediterranean regions, among the species at high aptitude for accumulation of biomass. Within the activity of an E.U. programme (CEE FAIR CT 97-2028 “Giant reed (A. donax L.) Network. Improvement, productivity and biomass quality”, germplasm of giant reed were collected to evaluate potential production and the phenotypic and genotypic variability, the heritability in order to selecting the best genotypes.In 1997 and 1998, trials were carried out in Primosole site (Piana of Catania, sea level, 37°25′N latitude; 15°30′E longitude), utilizing rhizomes of 39 clones collected in Sicily and Calabria. The rhizomes were transplanted in springtime. Phenological (date of flowering), biometrical (stem density, stem height, number of nodes per stem, diameter and thickness of stems, weight of fresh and dry biomass of leaves, stems and inflorescence) and productive (yield) data were measured. Harvest were carried out in February 1988 and 1989.Yield of 39 clones studied was, in the average, 10.6 t ha−1 of dry matter in the first year and 22.1 t ha−1 in the second one. The clone no. 4 (Piazza Armerina) and the clone no. 20 (Capo d’Orlando) maintained their high productive aptitude in both years; they yielded respectively, 13.1 and 14.1 t ha−1 in the first year and 34.2 and 26.9 t ha−1 in the second one.The yield results positively correlated to stem density, stem weight and plant height. Four characters: biomass yield, stem weight, stem density and stem height showed a significant variance among clones without significant interaction with year. Among the eleven characters measured only yield, stem weight, stem density and stem height had moderate heritability (h2), comprised between 23 and 48% showing promise for genetic improvement.  相似文献   

10.
Breeding program strategies to develop novel short grain white rice varieties such as japonica (short grain) that introgress biotic stress resistance and high grain quality have been developed using indica rice (Pin Kaset + 4 and Riceberry) for applications in japonica rice (Koshihikari) improvement. Four breeding lines showing promising agronomic performance with short grain and low amylose content (< 20%) were obtained. In addition, sensory testing of these breeding lines showed high scores that similar to Koshihikari. Two promising lines, KP48-1-5 and KP48-1-9, which possessed a combination of four genes resistance to different biotic stresses (Bph3 + TPS + Xa21 + Pi-ta) and four genes for grain quality (GS3 + SSIIa + wxb + badh2), were developed using marker-assisted selection (MAS) with the pedigree method. The current study clearly illustrated the successful use of MAS in combining resistance to multiple biotic stresses while maintaining a high yield potential and preferred grain quality. Moreover, the results indicated that this breeding program, which includes crossing temperate japonica with indica, can create novel short grain rice varieties adapted to a tropical environment, like the japonica type.  相似文献   

11.
To compare the heterosis levels among various groups of parental lines used extensively in China, identify foundational heterotic groups in parental pools and understand the relationship between genetic distance and heterosis performance, 16 parental lines with extensive genetic variation were selected from various sub-groups, and 39 hybrid combinations were generated and evaluated in Fujian and Hainan Provinces of China. The main results were as follows:(1) The 16 parental lines can be grouped into 7 sub-groups consisting of 1 maintainer sub-group and 6 restorer sub-groups;(2) Mean grain yield of the restorer lines was higher than that of the maintainer lines, and mean yield of parental lines was higher than that of the hybrid combinations;(3) The two best heterotic patterns were II-32A × G5 and II-32A × G6, moreover, the order of restorer sub-groups according to grain yield, from the highest to lowest, was G7, G6, G5, G4, G3 and G2; High specific combining ability values were observed for combinations of II-32A × G5, II-32A × G6 and Tianfeng A × G7;(4) Hybrid combinations derived from II-32A crossed with 13 restorer lines had higher yield trait values(mid-parent heterosis, better-parent heterosis, standard heterosis over check and specific combining ability) than any other combinations;(5) Genetic distance was positively correlated with panicle number, grain length and length-to-width ratio(P 0.05) and negatively correlated with grain width, grain yield, seed-setting rate, as well as mid-parent heterosis, standard heterosis over check, and specific combining ability for grain yield(P 0.01). These heterotic groups and patterns and their argonomic traits will provide useful information for future hybrid rice breeding programs.  相似文献   

12.
The sustainability of cropping systems can be increased by introducing a cover crop, provided that the cover crop does not reduce the cash crop yield through competition. The cover crop may be sown at the same time as a cash crop in the crop rotation. We carried out an experiment in 1999–2000 and 2000–2001 in the Paris Basin, to analyze the effects of simultaneously sowing winter wheat (Triticum aestivum L.) and red fescue (Festuca rubra L.), a turf grass. Competition between wheat and fescue was analyzed with one variety of red fescue, Sunset, and two varieties of wheat, Isengrain and Scipion, each sown at a density of 150 plants m?2. In this study, we evaluated the effect of undersown fescue on wheat yield and analyzed the competition between the two species in detail. The undersown red fescue decreased wheat yield by about 12% for Isengrain (8.7 t ha?1 for undersown Isengrain versus 9.8 t ha?1 for Isengrain alone) and 7% for Scipion (7.4 t ha?1 for undersown Scipion versus 8.0 t ha?1 for Scipion alone). During the early stages of wheat growth (up to the ‘1 cm ear’ stage, corresponding to stage 30 on Zadoks’ scale), undersown fescue and fescue sown alone grew similarly. However, fescue biomass levels were much lower (5.6 and 4.7 g m?2 for fescue grown alone and undersown fescue) than wheat biomass levels on the undersown plots (120 g m?2 for Isengrain and 111 g m?2 for Scipion). From the e1 stage onwards, the wheat canopy rapidly extended, whereas that of red fescue remained sparse. The time lag between the beginning of the rapid increase in LAI and PAR interception by wheat grown alone and that for fescue grown alone was 590 dd in the second year. This resulted in much slower growth rates for undersown fescue than for undersown wheat. Biomass production rate was therefore low for undersown fescue (12% those of fescue grown alone, on average, at the time of wheat harvest), as were levels of water and nitrogen use. Neither the water deficit that occurred during the second experiment nor the nitrogen nutrition status of the wheat on plots with undersown fescue significantly affected wheat biomass production after anthesis.The global interception efficiency index IG?i indicated that the fraction of the PARo intercepted by the wheat during its growth (255 days) was 0.35.  相似文献   

13.
《Field Crops Research》2004,85(2-3):213-236
Three different experiments were designed to study the effects of N fertilizer rate, timing and splitting, and the response to combined application of N and S fertilizer on the bread-making quality of hard red spring wheat (Triticum aestivum L.) over a 3-year period in Vertisols under rainfed Mediterranean conditions. The following parameters were analyzed: grain yield, test weight, grain protein content, gluten index and alveograph parameters (W: alveogram index; P: dough tenacity; L: dough extensibility; P/L: tenacity–extensibility ratio). The N rate experiment included rates of 0, 100, 150 and 200 kg N ha−1 applied on four different sites. The experiment was designed as a randomized complete block with four blocks. For the experiment on N timing and splitting, a single rate of 150 kg N ha−1 was used, different fractions being applied at sowing, tillering and stem elongation, at a single site; again, experimental design was a randomized complete block with four blocks. Finally, for the experiment on the response to combined application of N and S fertilizer, a single fertilizer dose of 150 kg N ha−1 was applied in two forms (urea+ammonium nitrate and urea+ammonium nitrosulfate) with one leaf application at ear emergence (zero, 25 kg S ha−1, 25 kg N ha−1, 25kgSha−1+25 kg N ha−1 and 50 kg N ha−1), also at a single site, using a split-plot design with four replications. Year-on-year variation in rainfall led to marked variations in wheat yield, grain protein content and bread-making quality indices. A close correlation was observed between rainfall over the September–May period and both grain yield and grain protein content (optimum values for both being recorded in the rainfall range 500–550 mm) as well as the alveogram index. A negative correlation was observed between mean maximum temperatures in May and both test weight and alveogram index (W). N fertilizer rate had a more consistent effect on bread-making quality than on grain yield. The highest values for grain yield were recorded at an N rate of 100 kg ha−1, while maximum grain protein content values were recorded at 150 kg ha−1. Application of half or one-third of total fertilizer N at stem elongation improved grain yield and grain protein content with respect to applications at sowing alone or at both sowing and tillering. Increased N rates led to a considerable increase in W values and to a reduction in the P/L ratio, thus improving dough balance, with a negative effect on the gluten index. Leaf application of N at ear emergence only affected grain protein content and the W index. Soil or leaf application of S had no effect on protein quality indices. The response of grain yield and grain protein content to fertilizer N differed from that reported for temperate climates.  相似文献   

14.
《Field Crops Research》2004,86(1):33-42
The study was undertaken to assess the variation within a bread wheat (Triticum aestivum L.) cultivar, primarily for grain yield, and the implications for wheat breeding. During the 1998–1999 growing season, cv. Nestos was established in a non-replicated (NR-0) honeycomb experiment, in the absence of competition (11 547 plants ha−1). Ten high yielding (H) and 10 low yielding (L) plants were selected, the seeds of which were used to form the respective H and L lines. The 20 lines, along with their original cultivar, were evaluated in two locations either in the absence of competition (11 547 plants ha−1) during the 1999–2000 season or under competition (5 000 000 plants ha−1) during the 2000–2001 season. Results showed significant differentiation between lines for grain yield, determined both in the absence of competition at the single-plant level, i.e. yield per plant (YP), and under competition at the crop yield level, i.e. yield per plot (CY). Significant differences between lines were also found for grain protein content (PC), grain carbon isotope discrimination (Δ), and grain ash content (ASH), either in the absence of competition or under competition. A positive relationship was found between YP and CY (r=0.53,P<0.02). Results showed that selection within a bread wheat cultivar, under very low density and on the basis of individual plant grain yield, could be an effective way to either upgrade or maintain the cultivar, whereas the use of Δ or ASH as indirect selection criteria instead of grain yield was not supported by the study.  相似文献   

15.
《Field Crops Research》1999,63(1):79-86
This paper explores the possibility of improving yields of spring wheat (Triticum aestivum) by using plastic film mulching. Field experiments compared three mulching treatments viz. for 20 d (M1), 40 d (M2), and 60 d (M3) after sowing (DAS), with a non-mulch control (CK). Mulching increased temperature and moisture in the upper 5 cm of soil, and shoots emerged 8 d earlier than in CK. Mulching also increased number of tillers, length of the growing period, spikelet and grain numbers per spike, and the duration from flowering to harvest. In the mulched treatments, photosynthesis rate and soluble sugar content were higher in the vegetative period, but soluble sugar content was lower in the grain filling period relative to CK. Grain yield following 20 d mulching was greatest (8207 kg ha−1), and decreased gradually as the mulching period increased (7847 and 6702 kg ha−1 for M2 and M3, respectively). Plastic film removed after 20 d maximizes yield and minimizes soil pollution.  相似文献   

16.
Weeds and insect pests are two important biotic stresses resulting in yield loss in rice, and wide compatibility is the essential characteristic of breeding inter-subspecific hybrid rice. This study focused on glyphosate resistance, lepidopteran resistance and wide compatibility as well as identification of molecular and some agronomic characteristics of transgenic male sterile line E1 C4008 S. The results indicated that glyphosate resistance gene Epsps# and lepidopteran resistance gene Cry1 ca~# were transferred into japonica wide compatibility male sterile line 4008 S by Agrobacterium-mediated method, and four independent transformation events named E1 C4008 S-1, E1 C4008 S-2, E1 C4008 S-3 and E1 C4008 S-4 were obtained, in which E1 C4008 S-3 and E1 C4008 S-4 were of single copy insertion. The EPSPS protein contents of E1 C4008 S-3 and E1 C4008 S-4 in different organs were significantly different both in descending order of leaf stem root, and ranged from 300.58 to 1410.69 μg/g at the tillering stage. The glyphosate tolerable concentration(dosage) of E1 C4008 S-3 and E1 C4008 S-4 reached at least 16 g/L(54.42 kg/hm2), and the seeds of E1 C4008 S-4 can germinate normally on the medium containing 1 g/L glyphosate. The CRY1 C protein contents of E1 C4008 S-3 and E1 C4008 S-4 in different organs were significantly different both in descending order of leaf stem root, and ranged from 0.62 to 2.43 μg/g at the tillering stage. The larvae mortalities of rice leaf rollers fed on leaves of E1 C4008 S-3 and E1 C4008 S-4 for 5 d were 95.35% and 97.77%, respectively, while the average mortalities of silkworms fed with protein extracts from leaves of E1 C4008 S-3 and E1 C4008 S-4 reached 94.55% and 83.64%, respectively. The results suggested that wide compatibility and evaluated agronomic traits of E1 C4008 S-4 were not significantly changed by insertion of the exogenous genes. Overall, a novel male sterile germplasm with glyphosate resistance, lepidopteran resistance and wide compatibility was verified to be developed in rice.  相似文献   

17.
《Field Crops Research》2002,76(1):25-43
Root morphological characteristics are known to be important in the drought resistance of some rice (Oryza sativa L.) varieties. The identification of quantitative trait loci (QTLs) associated with root morphology and other drought resistance-related traits should help breeders produce more drought resistant varieties. Stability in the expression of root growth QTL across rooting environments is critical for their use in breeding programs. A greenhouse experiment in which a mapping population of 140 recombinant inbred lines and the parental varieties Bala and Azucena were grown in glass-sided soil chambers and evaluated for root growth and water uptake was conducted. In each of 2 years, two treatments were used; an early water-deficit (WD0) in which seeds were sown into wet soil but received no more water, and a late water-deficit (WD49) in which the plants were watered for 49 days and then received no water for a week. The major differences between treatments and years in dry matter partitioning and root growth traits are reported elsewhere. Here, the identification of QTLs for root growth traits by composite interval mapping is described. At LOD>3.2, there were six QTLs for the weight of roots below 90 cm and maximum root length, 11 for root to shoot ratio, 12 for the number of roots past 100 cm, and 14 for root thickness. A total of 24 regions were identified as containing QTLs (these regions often contained several QTLs identified for different root traits). Some were revealed only in individual experiments and/or for individual traits, while others were common to different traits or experiments. Seven QTLs, on chromosomes 1, 2, 4, 7, 9 (two QTLs) and 11, where considered particularly noteworthy. The complex results are discussed in the context of previously reported QTLs for root growth in other populations, the interaction between QTL with the environment and the value of QTLs for breeding.  相似文献   

18.
Cuphea (Cuphea viscosissima Jacq. × C. lanceolata f. silenoides W.T. Aiton, line PSR23) is a new crop being developed in the North Central United States, as an industrial oilseed crop. Cuphea PSR23 seed oil is rich in medium-chain-length fatty acids such as capric acid used to manufacture soaps and detergents. The objective of this research was to determine the time when physiological maturity of cuphea seed is reached and how seed development affects seed moisture, weight, oil content, fatty acid content, germination, and seedling vigor. To evaluate seed development, 2000 cuphea flowers were tagged at anthesis in the field at Prosper, North Dakota in 2004 and 2005. Each flower was tagged when open and the position on the main stem or branch was recorded. Two hundred capsules from the tagged flowers were harvested at 3- to 4-d intervals from 5- to 48-d post anthesis (DPA). Seed weight increased as a function of growing degree days (GDD) and the days from anthesis. Physiological maturity occurred when maximum dry seed weight was attained. Seed weight increases followed the Gompertz function with a R2 = 0.90 (2004) and R2 = 0.95 (2005). All capsules, regardless of their position on the stem, followed the same growth function for seed weight. The maximum dry seed weight estimated by the Gompertz function was 3.61 for 2004 and 3.58 mg seed−1 for 2005. Physiological maturity estimated with a quadratic function occurred at 38 DPA or 270 GDD in 2004. In 2005, physiological maturity occurred at 26 DPA or 265 GDD. As a visual indicator when the capsules split-open seeds inside that capsule are physiologically mature. Seed moisture decreased from 900 g kg−1 at 37 GDD post anthesis to 450 g kg−1 at 319 GDD post anthesis in 2004; however, in 2005 seed moisture decreased from 850 to 81 g kg−1 at 293 GDD post anthesis. Seed germination increased as seed developed and it was 83% when harvested 234 GDD post anthesis. Oil content increased from 98 g kg−1 at 37 GDD post anthesis to 279 g kg−1 319 GDD post anthesis. Fatty acid composition varied throughout seed development. Seed development for 111 GDD and greater had more than 66% of capric acid (10:0). Cuphea should be harvested after 265 GDD post anthesis when most capsules on the main stem are split-open, have attained maximum seed weight, germination, seedling vigor, and oil content.  相似文献   

19.
To explore how rice(Oryza sativa L.) can be safely produced in Cd-polluted soil, OsLCT1 and OsNramp5 mutant lines were generated by CRISPR/Cas9-mediated mutagenesis. One of OsLCT1 mutant(lct1×1) and two of OsNramp5 mutants(nramp5×7 and nramp5×9) were evaluated for grain Cd accumulation and agronomic performances. In paddy field soil containing approximately 0.9 mg/kg Cd, lct1×1 grains contained approximately 40%(0.17 mg/kg) of the Cd concentration of the wild type parental line, less than the China National Food Safety Standard(0.20 mg/kg). Both OsNramp5 mutants showed low grain Cd accumulation(< 0.06 mg/kg) in the paddy(approximately 0.9 mg/kg Cd) or in pots in soil spiked with 2 mg/kg Cd. However, only nramp5×7 showed normal growth and yield, whereas the growth of nramp5×9 was severely impaired. The study showed that lct1×1 could be used to produce rice grains safe for human consumption in lightly contaminated paddy soils and nramp5×7 used in soils contaminated by much higher levels of Cd.  相似文献   

20.
《Field Crops Research》2003,82(1):59-73
Stalk water content is an important variable for a sugarcane simulation model as sugar industries in many countries use cane yield and sucrose content on a wet mass basis for payment and yield reports. The prime objective was to develop a stalk water content module (SWCM) that can be incorporated into a sugarcane simulation model. SWCM starts from consideration of the dynamics of water concentration (ρ, g water g−1 dry matter) along stalks and through seasons. The quantities of stalk water were modelled separately for the top and basal sections of the millable stalks. Field observations showed that the stalk water concentration (ρ) declined from 7.8 to 11.8 in the top internodes to 1.6–2.9 g water g−1 dry matter in bottom internodes. In the basal section, ρ ranged from 1.98 in winter to 2.83 g water g−1 stalk dry matter in summer. A two-parameter equation was used to model ρ and resulted in a range of coefficients of determination from 0.8 to 0.97 for six varieties. The SWCM was developed to simulate both the effects of seasonal variation and the age of internodes on the quantity of stalk water. The module was incorporated into a process oriented model of sugarcane growth for validation against field observations in tropical and subtropical areas of Australia and Hawaii, USA. Comparison of observed yields with cane yield simulated by the model that included the SWCM, gave an average of R2 of 0.95, compared with the average of R2 of 0.97 for simulation of stalk dry matter. The average relative root mean squared error (RMSE) was 15.2% in simulation of cane yield and 15.1% for simulation of cane dry weight. The module can be readily incorporated into a model that simulates sugarcane dry matter so that commercial crop yield can be estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号