首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
水稻抗纹枯病QTL qSB-11的育种价值及其进一步定位   总被引:6,自引:1,他引:6  
 在相对感纹枯病品种Lemont的第11染色体上存在1个抗性QTL qSB 11(抗性等位基因为qSB 11Le)。对qSB 11Le的育种效应即挽回产量损失率进行了研究。在纹枯病较轻发生(4级左右)情况下,qSB 11Le基本未表现出明显的育种效应,相反在重发生(8级左右)条件下,qSB 11Le能挽回的产量损失率达到10.71%。利用发展的多态性分子标记及BC4F2代分离群体,qSB 11Le的存在区间被缩小到分子标记Z405与Z286之间,物理距离在1000 kb左右。可以认为,在水稻抗纹枯病分子育种中,qSB 11Le具有较大的育种价值,利用研究发展的多态性标记可以提高qSB 11Le的选择效率。  相似文献   

2.
纹枯病菌对不同水稻品种叶片中抗病性相关酶活性的影响   总被引:3,自引:0,他引:3  
对优质抗纹枯病水稻品种ZH5、较抗纹枯病品种特青、感纹枯病品种Lemont及恢复系泸恢17、多系1号和GB8等水稻材料进行纹枯病菌接种,测定了水稻叶片中与抗病性相关的超氧化物歧化酶 (SOD)、过氧化物酶 (POD) 的活性和丙二醛 (MDA) 的含量。不论纹枯病菌接种与否,ZH5和特青叶片中SOD活性均明显高于Lemont;纹枯病菌接种后,抗性品种ZH5和特青叶片中POD活性升高,感病品种Lemont 叶片中POD活性降低;不论是抗病还是感病的水稻材料,纹枯病菌接种后叶片中MDA含量均有所增加,但ZH5叶片中MDA含量明显低于其他参试材料。  相似文献   

3.
水稻灌浆期耐热害的数量性状基因位点分析   总被引:14,自引:1,他引:14  
 利用由98个家系组成的Nipponbare / Kasalath // Nipponbare回交重组自交系群体及其分子连锁图谱,以粒重感热指数\[(适温粒重-高温粒重)/适温粒重×100\]为评价指标,采用混合线性模型的QTL定位方法,对水稻灌浆期耐热性的主效、上位性数量性状基因位点及其与环境的互作进行分析。共检测到3个灌浆期耐热性主效QTL,分别位于第1、4和7染色体上,LOD值为8.16、11.08和12.86,贡献率8.94%、17.25%和13.50%。其中位于第4染色体标记C1100-R1783之间的QTL,没有显著的上位性和环境互作效应,表明在不同环境和遗传背景中的表达较为稳定,在水稻耐热性育种中可能具有较大的利用价值,其耐热性等位基因来自亲本Kasalath,高温热害时可减少粒重损失3.31%。位于第1染色体标记R1613-C970之间的QTL和第7染色体标记C1226-R1440之间的QTL,耐热性等位基因来自亲本Nipponbare,分别可减少粒重损失2.38%和2.92%。这两个QTL均具有与环境的互作效应,其中第7染色体上的QTL还和其他基因位点有互作。检测到8对加性×加性上位性互作QTL,分布于第1、2、3、5、7、8、10和12染色体上。没有检测到上位性QTL与环境的互作效应。  相似文献   

4.
应用候选基因定位水稻抗稻瘟病QTL   总被引:3,自引:2,他引:3  
 应用经克隆了的已知功能或有潜在功能的DNA序列,即候选基因,作为分子标记,在中156/谷梅2号F8重组自交系群体中进行水稻抗稻瘟病QTL的分析。大部分候选基因在水稻染色体上成簇分布,并且位于已知抗病基因簇区域。应用复合区间法检测到1个调控病斑大小和1个调控病斑数量的QTL,前者位于第1染色体CG36a~RM212区间,贡献率为4.17%,抗性等位基因来自父本谷梅2号;后者定位于第2染色体CG18a~RM263区间,贡献率为6.25%,抗性等位基因来自母本中156。同时检测到2对控制病叶面积和1对控制病斑大小的基因互作。这些QTL和互作基因涉及抗性基因同源序列、离子通道调控子以及编码致病相关蛋白和几丁质酶的基因,表明候选基因的应用有助于揭示QTL的功能。玉米锈病抗性基因Rp1与稻瘟病抗性有关,提示了利用水稻这个模式作物来克隆较大基因组中有利基因的可能性。  相似文献   

5.
水稻纹枯病抗性基因定位及抗性资源发掘的研究进展   总被引:3,自引:0,他引:3  
纹枯病是水稻三大主要病害之一。抗纹枯病品种的选育与推广对防治纹枯病具有决定性意义,而纹枯病抗性资源的发掘、抗性遗传、抗性基因定位及外源基因的利用是抗性品种选育的基础。综述了水稻纹枯病抗性基因的定位、纹枯病抗性QTL的潜在应用价值以及纹枯病抗性资源挖掘的最新进展,以期对纹枯病抗性育种提供帮助。  相似文献   

6.
水稻抗白叶枯病微效QTL的定位分析   总被引:4,自引:1,他引:3  
以不携有抗白叶枯病主效基因的中感籼粳双亲(窄叶青8号和京系17)及其花培DH群体为材料,接种白叶枯病菌浙9612后,考察了该DH群体的白叶枯病抗性,并进行了数量性状座位(QTL)分析。共检测到控制白叶枯病的4个QTL,分别位于第3、4、5和6染色体上,其中第3和第4染色体上的qBBR-3和qBBR-4,其加性效应为正值;而位于第5和第6染色体上的为负值,4个QTL的总效应是38.6%。方差分析和差异显著性比较表明,具有4个QTL抗性等位基因水稻株系的白叶枯病抗性与不含QTL抗性等位基因的株系相比,差异达极显著水平(P<0.01)。说明通过微效基因的聚合可以获得对白叶枯病的一定抗性。  相似文献   

7.
水稻顶部三叶与穗重的关系及其QTL分析   总被引:17,自引:2,他引:17  
 摘要: 对水稻汕优63重组自交系群体顶部3张叶片的长、宽、重和单穗重等10个性状进行了相关分析和QTL定位。穗重与9个叶片性状存在极显著的正相关,其中与倒2叶重的相关系数最大,剑叶重次之。所有性状在重组自交系群体中均存在双向超亲分离,接近正态分布。共检测到44个主效QTL和43对双位点互作影响上述10个性状。主效QTL分布于水稻的除第8染色体外的其余11条染色体上,贡献率介于3.19%~26.23%;互作分布于水稻的12条染色体上,贡献率变幅为2.03%~8.93%。第2染色体的R2510-RM211标记区间同时检测到控制单穗重和倒2叶重的QTL,该QTL对超级稻株型育种具有应用价值。  相似文献   

8.
5个水稻品种对水稻纹枯病菌鉴别能力的比较   总被引:1,自引:1,他引:0  
采用苗期接种法和大田成株期接种法,对5个具有不同纹枯病抗性的水稻品种Lemont、武育粳3号、Jasmine85、C418和YSBR1进行纹枯病抗性评价。苗期接种结果表明,30个来源不同的纹枯病菌接种5个品种后,5个品种苗期表现出明显的抗感差异,30个菌株之间致病力差异亦明显,且品种与菌株之间互作显著。根据聚类分析结果,从30个菌株中筛选出5个致病力不同的菌株(分别为GD118、C30、E67、YN7和YN3)进行水稻品种成株期抗性鉴定,发现水稻品种成株期的抗感差异亦显著。  相似文献   

9.
水稻种子低氧发芽力的QTL定位和上位性分析   总被引:12,自引:2,他引:10  
利用35份水稻品种资源,评价了在不同水深、温度等低氧条件下的种子萌发情况,表明水温30℃、水深0.2 m下黑暗萌发5 d为最佳鉴定方法,并以此条件下水稻种子萌发的芽长为鉴定指标,评价了359份水稻品种低氧发芽力地区间、籼粳间的差异。进一步利用81个Kinmaze/DV85 重组自交系群体进行了水稻低氧发芽力数量性状位点分析, 在第1、2、5、7染色体上检测到5 个低氧发芽力QTL,其中第5染色体上存在2个QTL,各QTL的贡献率为10.5%~19.6%。同时进行上位性分析,检测到3对互作位点,分别位于第2、3、5、11染色体上,其中位于第3染色体上标记C563-X182之间的位点与第5染色体上标记R830-X208之间的位点的互作贡献率高达48.78%。  相似文献   

10.
水稻对纹枯病的抗性属于典型的数量性状,多数栽培品种的抗病水平较低,并且抗性差异较小。水稻纹枯病接种和抗性评价体系是培育抗病品种的重要基础。利用植物生长箱的控温、控光和控湿条件以及生长势相对一致的水稻秧苗,对苗期纹枯病微室接种技术进行了改进。试验品种苗期的纹枯病抗性从高到低依次为YSBR1、特青、泰粳394、日本晴和Lemont,并且与大田成株期接种鉴定的结果一致。RT-PCR分析显示,苗期和成株期接种纹枯病菌均诱导4个水稻抗病相关基因的表达。通过"叶枕高"和"苗挺高"计算的各品种苗期病级变幅分别为2.82~8.54级和1.20~3.39级。前者与大田成株期的病级变幅一致,因而"叶枕高"病级计算方法更适用于微室接种鉴定体系。  相似文献   

11.
水稻主茎总叶数及其相关性状的QTL分析   总被引:9,自引:1,他引:9  
 用一张具有182个RFLP标记的分子连锁图谱和一套重组自交系(RIL)群体,对水稻植株主茎总叶片数、叶片生长速率、抽穗期和株高等数量性状进行QTL区间作图研究,定位了影响水稻出叶速率的8个QTL,主茎总叶片数的2个QTL、抽穗期的3个QTL和株高的4个QTL。对这些QTL的遗传效应分析并结合先前用同组合材料研究结果,为进一步明确一些QTL的基因功能提供了有用的信息。如控制水稻主茎总叶片数的一个主效QTL,即QLn3,它同时影响分蘖期出叶速率、抽穗期及株高等数量性状。该位点来自特青的等位基因,其加性效应可使水稻在温室冬季短日条件下主茎总叶片数增加1.5叶左右,抽穗期延迟9 d,同时具有使分蘖期出叶速率降低0.2叶/10 d的效应。由于该QTL位点的基因不受光照长度的影响,说明它们有可能是由一个影响水稻基本营养生长期的基因控制或者这些基因紧密连锁;而另一个QTL(QHd8)位点的基因对主茎总叶数、抽穗期和株高的效应似乎受光照长度的影响较大。  相似文献   

12.
水稻抗纹枯病育种成效的初步评价   总被引:18,自引:3,他引:15  
以广东省和江苏省里下河农科所新近育成的部分籼稻品种(系)、扬州大学农学院的研究组以不同抗源杂交后代向抗感两个极端选育的9份籼稻品系以及另一组合向抗病方向选育的5份籼稻品系为材料,设置抗感病对照,进行田间纹枯病菌接种试验。结果表明品种间对纹枯病的抗性存在极显著差异;聚类分析将参试材料按抗性水平高低聚为6类:高度感病、感病、中等感病、中等抗病、抗病和更高水平抗病。广东品种在6种类型中均有分布,但属于抗和更抗类型的品种只有3个。扬州大学农学院对抗×抗杂交向抗感两个极端选育的品系在病级的中间类型中几乎没有分布;而向抗病方向选育的品系则仅分布于中抗至抗病的范围内,且属于抗的品种数占此类品种的60%。江苏省里下河农科所近些年育成的几个品种则只分布于后4类之中,且最高水平抗性的3个品种中,其品种占2/3。表明水稻对纹枯病的抗性是可遗传的性状,对抗性的选择有效。  相似文献   

13.
应用DNA标记分析稻飞虱的抗性基因   总被引:3,自引:0,他引:3  
简要地回顾了水稻抗飞虱的遗传位点定位和作图的新进展.来自具有不同基因组的野生稻渗入系的4个抗褐飞虱基因Bph 1、 bph 2、 bph 4和Bph 9,以及4个暂定名抗褐飞虱基因Bph 10(t)、bph 11(t)、bph 12(t)和Bph 13(t),目前已被定位于水稻12条染色体中的5条.其中,Bph 1、 bph 2、 Bph 9和Bph 10(t)在水稻第12染色体的长臂上形成1个连锁区段,位于bph 2位点附近约25 cM.检测出几个对田间抗性和杀卵作用有影响的QTL.抗白背飞虱基因Wbph 1、 Wbph 2和Wbph 6(t)已经或暂时定位了.粳稻中对白背飞虱具有杀卵抗性的QTL已进行了详细的分析,在第6染色体的短臂上检测到有效的QTL,在同一位点鉴定出1个显性的杀卵基因Ovc.在杀卵基因Ovc存在时,第1染色体上的1个QTL和第5染色体上的2个QTL增加白背飞虱的卵死亡率.用DNA标记进行QTL作图可以加深人们对作物抗虫性中复杂的生理和遗传机理的理解.标记辅助选择可以加速培育具多基因抗虫性的作物,还可以将野生种中的有利抗虫特性转入改良品种中,增加作物抗虫性的持久性和遗传多样性.  相似文献   

14.
《Field Crops Research》2005,91(2-3):161-170
Seedling-vigor is important for optimum stand establishment and increasing weed competitive ability in rice cropping systems. In the current study, three seedling-vigor-related traits, seed germination rate, seedling shoot length and dry matter weight, were investigated by the paper-roll tests with rice recombinant inbred lines derived from a cross between Lemont (japonica) and Teqing (indica). The phenotype data, together with a linkage map consisting of 198 marker loci, was used to conduct composite interval mapping by QTLMapper 1.0 to simultaneously map both main-effect and epistatic QTLs for seedling-vigor in rice. Totally, 13 putative main-effect QTLs and 19 pairs of epistatic loci with R2 ≥ 5% were identified. Almost all of these QTLs or interactions individually explained only around 5–10% of the phenotypic variation. The majority (68%) of these main-effect and epistatic loci were clustered in seven chromosome regions, each spanning 12–28 cM (centi-Morgan) and containing three or more detectable loci. When detectable for the multiple seedling-vigor-related traits, either the main-effect QTLs or the epistatic interactions sharing the same map location had their additive or epistatic effects in the same direction, which agreed well with the positive correlations among the traits. The results demonstrated that seedling-vigor in rice could be controlled by many loci, most of which had small effects, but, relatively, epistasis as a genetic factor was much more important than main-effects of QTLs. Along with the results reported previously, this study revealed the extensive genetic diversity for seedling-vigor in rice. In addition, the QTL qSV-7 on chromosome 7 was found to have the largest main-effects on multiple seedling-vigor-related traits and therefore could be used as a potential target to be genetically manipulated by marker-assisted selection in rice seedling-vigor breeding programs.  相似文献   

15.
【目的】分蘖角度是水稻重要株型性状,合理的分蘖角度是培育理想株型、达到高产育种的一个关键因素。【方法】以控制水稻分蘖角度增大的显性主效数量基因TAC1为研究对象,构建不同品种背景下的TAC1近等基因系,通过单本栽插、多本栽插/高产栽培以及纹枯病菌接种鉴定,分析TAC1对其他农艺性状、纹枯病抗性、产量及品质的影响。【结果】同一背景近等基因系之间比较,TAC1使水稻品系分蘖角度增加,有利于减轻纹枯病危害,对其他农艺性状无不利影响。在高产栽培条件下,不同背景TAC1系有效穗数均多于tac1系;籼稻特青背景下,TAC1系结实率、千粒重及单株产量均高于tac1系;美国稻Lemont背景下,TAC1系结实率、千粒重及单株产量均低于tac1系;粳稻武陵粳1号、镇稻88背景下,TAC1系结实率和千粒重均略低于tac1系,单株产量略高于tac1系,差异不显著。加工及外观品质方面,特青TAC1系优于tac1系,武陵粳1号、镇稻88以及Lemont背景TAC1系较tac1系有劣化趋势,差异均不显著。【结论】叶片较长的籼稻品种,适宜的分蘖角度范围较窄,叶片较小的粳稻品种,适宜的分蘖角度范围较宽。适当增加水稻品种的分蘖角度,有利于减轻纹枯病危害。TAC1可用于株型紧凑型籼稻品种及粳稻品种的株型改良。  相似文献   

16.
Use of Major Quantitative Trait Loci to Improve Grain Yield of Rice   总被引:6,自引:1,他引:5  
Further improvement of rice productivity remains a challenge. Breeding is perceived as an important option to increase rice yield. However, the genetic progress of grain yield in most rice breeding programs was slow in the last decades. Although great progress in rice genomics and molecular biology has been achieved, the effect of such technological innovations on rice breeding is far small. Marker-assisted selection (MAS) for a few target quantitative trait loci (QTLs) has significant effects in improving qualitative traits, such as disease resistance. The success of MAS has therefore motivated breeders to identify and use major QTLs for yield and yield component traits. In this review, we summarized the recent methods in QTL identification, including novel statistical methods for linkage and association mapping, special population types, and whole-genome sequencing. We reviewed the successful application of marker-assisted gene introgression and gene pyramiding to improve grain yield and discussed the design of efficient MAS schemes to further increase the success rate of breeding programs. The use of well-characterized major QTLs through introgression and gene pyramiding is proven effective in improving grain yield, particularly yield under abiotic stress. Major QTLs that are stable across genetic background and growing environments are often found in less adapted germplasms, such as landraces and wild relatives. Advanced backcross QTL analysis and introgression lines, which integrate QTL discovery and utilization, are important methods for exploiting major QTLs contained in such germplasms. Next-generation sequencing substantially increases mapping resolution and accelerates the identification of casual genes underlying major QTLs. Practical guidelines derived from theoretical and empirical studies are given to guide the design of efficient marker-assisted gene introgression and pyramiding schemes.  相似文献   

17.
稻米粒形和垩白度的QTL定位和上位性分析   总被引:11,自引:0,他引:11  
 利用由181个家系组成的Lemont/特青籼粳交重组自交系群体,以及由161个RFLP、SSR标记和3个形态标记构建的全长为1916.5 cM、覆盖水稻基因组12 条染色体的连锁图,采用线性模型的复合区间作图方法(QTLMapper V10),对粒长、粒宽、长宽比和垩白度等4个稻米品质性状的数量性状座位(QTL)进行了分析。在水稻的所有12 条染色体上共定位到7个加性主效QTL和19对上位性QTL,其中控制粒长、粒宽、长宽比的主效QTL各2个,控制垩白度的QTL 1个,分别解释12.8%、40.0%、26.0%和42.1%的表型变异;共检测到6对影响垩白度、6对影响粒长、7对影响长宽比的上位性QTL,分别解释52.2%、31.3%和38.2% 的表型变异。结果表明,上位性QTL和主效QTL一样在稻米粒形和垩白度的遗传中起着重要的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号