首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Four potato varieties were subjected to water stress under controlled conditions. Leaf relative water content, leaf diffusive resistance, and photosynthesis were measured on stressed and unstressed plants during a stress period and during the recovery period following stress relief. Subsequent to the stress, plants were grown to maturity with optimal water supply. Mature plants were harvested and tuber yield and haulm production measured. Stressed plants of all varieties exhibited an increase in leaf diffusive resistance and a decrease in relative water content, transpiration, and photosynthesis as soil moisture decreased. Significant varietal differences in leaf diffusive resistance of stressed plants are apparent and offer promise for development of a screening technique for varietal sensitivity to drought based on stomatal response to water deficits.  相似文献   

2.
在大田环境下,以辽粳294、开粳1号为材料,在灌浆期设置5个水分梯度处理,研究了水稻冠层温度日变化特征及其与土壤水分状况、产量生理特性、稻米品质之间的关系。结果表明:1)冠层温度低于气温,但与其显著正相关。梯度水分处理导致冠层温度和冠气温度差逐级升高,即土壤水势降低,冠层温度升高,冠气温度差绝对值增大;2)相同环境条件下,抗旱性弱的品种辽粳294的冠层温度低于抗旱性强的品种开粳1号;3)水分胁迫下水稻冠气温度差与每穗实粒数、千粒重、结实率、产量、整精米率、蛋白质含量、直链淀粉、脂肪酸和食味值呈显著负相关,与秕粒数、垩白度、垩白粒、碎米率呈显著正相关;4)光合速率、气孔导度及蒸腾速率随土壤水势降低而下降,且抗旱性强的品种开粳1号的光合性能较强。相关性分析表明,两个品种冠气温度差与其光合性能显著或极显著负相关;5)开粳1号的气孔密度显著大于辽粳294,而气孔长度和气孔宽度极显著小于辽粳294。综合分析表明,在灌浆期辽粳294和开粳1号在土壤水势为-0.02~-0.03 MP时,平均冠气温度差分别维持在0.9℃和0.8℃时对产量影响不显著(达到水分临界水平),可作为水稻灌浆期的节水灌溉指标。  相似文献   

3.
盆栽条件下,以御旱型辽豆14和干旱敏感型辽豆21为研究对象,设置干旱、轻度干旱和适宜水分三个处理,探讨不同生长时期控水条件下,御旱型大豆植株光合特性和叶绿素荧光特性变化的特征和规律,以期揭示御旱基因型大豆抗旱的光合调控机理。结果表明:各个时期控水,土壤水分都显著影响大豆植株的净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs);干旱限制了植株的PnTrGs、胞间CO2浓度(Ci),辽豆21的蒸腾速率平均值高于辽豆14。随着土壤含水量的增加,植株Ci浓度逐步提高。土壤干旱条件下的初始荧光(F0 )值最大,结荚期(R3-R5)控水时F0 值最低。干旱胁迫降低了植株的最大光化学效率(Fv/Fm电子传递效率(ETR)和实际光化学效率(ΦPSⅡ )。同一时期控水,御旱基因型辽豆14的最大荧光产量(Fm)和Fv/Fm高于辽豆21的值。干旱胁迫下,御旱基因型辽豆14能够维持较低的蒸腾速率,较高的FmFv/Fm值,这可能是御旱型辽豆14抗旱的重要原因。  相似文献   

4.
为给冬小麦节水高产栽培提供理论依据,采用盆栽试验,研究了不同土壤肥力下返青后干旱及拔节期复水对冬小麦光合特性和水分利用效率的影响。结果表明,同一土壤水分条件下,光合速率、蒸腾速率、气孔导度、胞间CO2浓度均随土壤肥力的降低而降低;同一土壤肥力下,光合速率、蒸腾速率、气孔导度、胞间CO2浓度均随干旱程度的增加而降低。干旱胁迫复水24 h后,光合速率、蒸腾速率、气孔导度、胞间CO2浓度均出现了补偿或超补偿效应,但中度干旱恢复度大于重度干旱。光合速率以HA处理(高肥力、最大田间持水量的85%)最高,单叶水分利用效率在干旱胁迫下和复水24 h后均以HB处理(高肥力、最大田间持水量的55%)最高。以上结果说明,冬小麦返青期中度干旱条件下,高肥力土壤有利于复水后光合系统恢复和单叶水分利用效率提高,而重度干旱下贫瘠土壤应减少基肥的施入量。  相似文献   

5.
梯度干旱胁迫对水稻叶片光合和水分状况的影响   总被引:3,自引:0,他引:3  
采用温室营养液培养方式,通过添加0%、10%、20%、30%PEG6000模拟干旱胁迫,对水稻幼苗叶片的光合作用和水分状况进行比较分析。结果表明:1)在干旱胁迫下,水稻叶片的光合速率、气孔导度、叶肉导度、总导度和叶绿体内CO2浓度等都显著降低;2)在干旱胁迫条件下,限制光合作用的非气孔限制值并没有显著提高,而气孔限制值则大幅提高;与正常水分条件相比,扬稻6号和汕优63在30%PEG干旱胁迫下气孔限制值分别提高了42%和81%;3)光合速率与气孔导度、叶肉导度、总导度及叶绿体内CO2浓度呈正相关;4)在重度干旱胁迫下(20%和30%),叶片水势和含水量都显著下降,并且叶片水势与气孔导度、叶肉导度和总导度呈正相关。因此,气孔关闭导致的叶绿体内CO2浓度降低是限制光合作用的最主要因素,同时叶片水势的降低增加了叶片内CO2传输的阻力。  相似文献   

6.
干旱胁迫对不同肥水类型小麦旗叶光合特性及产量的影响   总被引:8,自引:0,他引:8  
为给小麦抗旱育种和节水高产栽培提供理论和技术支持,在防雨旱棚池栽条件下研究了干旱胁迫对6个不同肥水类型小麦品种旗叶光合特性和产量的影响。结果表明,干旱胁迫条件下,小麦开花后旗叶的净光合速率、气孔导度、蒸腾速率、气孔限制值和单叶水分利用效率均呈下降趋势,而胞间CO2浓度有所升高。其中,水浇地品种烟农21、烟农24和济麦22净光合速率、气孔导度、蒸腾速率、气孔限制值和单叶水分利用效率较低且下降幅度大,而旱地品种青麦6号、济旱5034和鲁麦21的净光合速率、气孔导度、蒸腾速率、气孔限制值和单叶水分利用效率较高且下降较为缓慢,而胞间CO2浓度较低。青麦6号具有较高的抗旱指数,在干旱胁迫条件下能够保持较好的叶片结构和功能状况,是其获得高产的重要原因。  相似文献   

7.
The effect of water stress on potato growth,development, and yield   总被引:3,自引:0,他引:3  
The effect of water stress on plant morphology, production rate and marketable yield is discussed based on the literature. Compared to other species the potato is a drought sensitive plant. The reduction of yield as a result of water stress can be caused by reduced leaf area and/or reduced photosynthesis per unit of leaf area. Water shortage during the tuber bulking period decreases yield to a larger extent than drought during other growth stages. The relationship between the stress parameters relative water content (RWC), leaf water potential (LWP) and stomatal diffusion resistance on the one hand and photosynthesis on the other is discussed. Further it is shown how the amount of water needed by the potato crop depends on climate, soil and plant characters. Finally the effect of water stress on marketable yield and varietal differences to shortage of moisture are discussed.  相似文献   

8.
针对大豆旱灾系统敏感性定量评估的复杂性与重要性,依托新马桥农水综合试验站开展大豆防雨棚盆栽受旱胁迫专项试验,分析了大豆不同生育期受旱胁迫对根(冠)干物质积累及根冠比的影响,运用作物生长解析法构建了基于相对生长率(RGR)的大豆旱灾系统敏感性函数,实现对大豆旱灾系统敏感性的定量评估。结果表明:大豆苗期受旱胁迫会出现相对生长率较大幅度的降低,但随着受旱胁迫度的增大对大豆生长和干物质积累的抑制作用增强不明显,且受旱胁迫会激发自身适应受旱胁迫的机制而可能对后期生长发育有利,宜根据时机控制该生育期水分供给,保证苗全即可;大豆分枝期旱灾系统敏感性较强,但该生育期内轻度受旱胁迫对大豆生长发育影响不明显,宜保证该生育期水分供给高于轻度受旱胁迫(土壤含水率田间持水含水率的55%),以保障大豆株壮、枝多;大豆花荚期是水分和养分需求最大的时期,该生育期旱灾系统较敏感,特别是重度受旱胁迫时系统敏感性最大,宜充分保证该生育期的水分供给(土壤含水率田间持水含水率的75%),以保障大豆花多、荚多、粒多;大豆鼓粒成熟期由于营养生长基本停止、干物质积累几乎停滞,导致基于总干物质相对生长率旱灾系统敏感性最小,但该期是产量形成的关键期,宜保证该生育期尤其鼓粒期的水分供给(土壤含水率田间持水含水率的75%),以保障完熟期粒多、粒重。  相似文献   

9.
《Field Crops Research》1999,62(1):35-52
A field study was conducted to investigate the effect of intermittent soil drying on resulting non-hydraulic and hydraulic root signals, leaf gas exchange, leaf growth, day of heading, leaf osmotic adjustment and yield of wheat grown in sand and loam soils in lysimeters. A 40-day-drought treatment was imposed when the flag leaf started to emerge and was terminated close to maturity. Soil water content and soil water potential of various soil layers were measured using the neutron moderation method and tensiometers, respectively. Soil drying in the top soil layers induced increase in both xylem and bulk-leaf abscisic acid (ABA) content and reduced the stomatal conductance and leaf growth even before a measurable change in leaf water potential could be detected in droughted plants when compared with fully watered plants. Further, heading and flowering occurred 4 days earlier in the droughted than in the well-watered plants before any loss in leaf water potential had occurred as compared with the fully watered plants. When more severe drought reduced the leaf water status, further accumulation of leaf ABA occurred and transpiration decreased in addition to gradual osmotic adjustment and senescence of older leaves. The osmotic adjustment sustained leaf turgor pressure during soil drying. At severe drought, the osmotic adjustment at full turgor in the flag leaves was 0.85 MPa. In sand, the kernel dry weight increased and as a result similar grain yield was obtained in both the treatments. In loam which had more water available than sand, no significant reduction in the final yield was induced by the drought. It is concluded that (1) non-hydraulic root signals caused early drought adaptation at mild water stress by reducing leaf growth and stomatal conductance and hastening of heading and flowering; (2) osmotic adjustment sustained turgor maintenance and hence the yield-forming processes during moderate and severe water stress.  相似文献   

10.
干旱条件下冷型小麦叶片气体交换特性研究   总被引:10,自引:4,他引:10  
通过两年试验,对干旱条件下不同温型小麦开花至成熟期间群体冠层温度,光合作用,叶片气体交换等生理特性进行了较为系统的分析。结果表明,不同温型小麦在籽粒灌浆期间的冠层温度,净光合速率,蒸腾速率,气孔导度均有明显差异,冷型小麦具有明显的优势,特别在籽粒灌浆后期,抗旱小麦具有冷型小麦一致的特点。因此,在旱地小麦栽培和育种工作中,重视冷型材料的选择和运用,对提高旱地小麦的产量和品质具有重要意义。  相似文献   

11.
以盆栽大豆为材料,设置不同程度的土壤盐分(NaCl)、干旱及旱盐组合处理,然后测定各处理大豆植株的株高、生物量、光合作用指标以及植株的水分状况和Na~+、K~+含量,探索干旱条件下土壤盐分对大豆生长的影响及可能机制。结果表明:干旱和盐胁迫均可导致大豆叶片的净光合速率降低和生长量的减少,干旱还导致光合机构的严重损伤。但是,干旱和适量土壤盐分(100~150 mmol·L~(-1)NaCl)组合处理的大豆植株,其生长量、净光合速率和PSⅡ最大光化学效率都显著高于单一干旱处理。同时,旱盐组合处理的大豆叶片RWC、Na~+含量也高于单一干旱处理,水势和渗透势低于后者,且叶片Na~+含量与其渗透势降低显著相关。综合分析表明,在干旱条件下,土壤适量NaCl的存在使大豆能够吸收和积累更多Na~+等盐离子作为渗透调节物质,来降低渗透势、提高吸水能力,以改善植株的水分状况和光合性能,保持植株较高的生长速率,即土壤中适量盐分(NaCl)的存在可减轻干旱对大豆的负效应。  相似文献   

12.
《Plant Production Science》2013,16(3):184-189
Abstract

Cassava (Manihot esculenta Crantz) can produce a high crop yield even in an environment with irregular rains. This is mainly attributed to its abilities to maintain leaf area under drought conditions and rapidly regrow after rain. In this study, we investigated the mechanism of leaf maintenance under water deficits through measurement of photosynthetic rate and water potential changes in leaves. The cassava plants were grown in pots and exposed to water deficits, and the diurnal changes in water potentials, rates of photosynthesis and transpiration and stomatal conductance were measured. The relationship between leaf water potential (ψW) and photosynthetic rate with decreasing soil water, and osmotic adjustment were also investigated. With respect to water supply in leaves, the movement of water in plants was measured using stem heat balance. Under water deficits, photosynthesis occurred only in the early morning. The water loss was reduced by stomatal closure in the mid-day. This was attributed to the complete closure of the stornata during the decrease in ψW to a range between –1.0 and –1.4 MPa. Furthermore, the firm stomatal closure is caused by the consistency of osmotic potential under decreases in soil water, i.e., to a lack of osmotic adjustment. Water stored in the pith parenchyma of stem flowed into leaves in the morning. From these results, we conclude that cassava can consistently maintain an adequate water level in leaves via water storage and the sensitivity of stornata to water deficits, thereby avoiding leaf dehydration.  相似文献   

13.
通过研究马铃薯抗旱品种‘克新1号’在干旱胁迫下光响应曲线的变化,在光合作用方面探讨‘克新1号’的抗旱机理。试验以两个抗旱性不同的品种‘克新1号’和‘大西洋’为试验材料,测定了两个品种在正常灌溉和干旱胁迫下各光和参数-光响应曲线。结果显示,干旱胁迫下,两个品种的叶片净光合速率、气孔导度及蒸腾速率均大幅度降低,但‘克新1号’叶片净光合速率高于‘大西洋’,在中强光下,‘克新1号’叶片的气孔导度及蒸腾速率均高于‘大西洋’。  相似文献   

14.
15.
《Plant Production Science》2013,16(3):252-255
Abstract

We investigated the effect of drought stress on biomass productivity of newly established Erianthus ravennae (L.) Beauv. This species has recently drawn great attention as a novel cellulosic energy crop because of its excellent tolerance against various environmental stresses, but the shoot dry weight of the newly established E. ravennae was significantly decreased under drought compared to irrigated condition. A significant correlation between shoot dry weight and stem number suggested that the drought-induced decrease in stem number was ascribable to the reduced shoot dry weight in the drought condition. Decrease in soil water content was coincident with mid-day decrease in stomatal conductance, suggesting that limitation of CO2 diffusion into leaf due to lower stomatal conductance in the drought condition caused decrease in photosynthesis followed by suppression of stem number. The present study suggested that E. ravennae was susceptible to drought, at least, in the first establishment year.  相似文献   

16.
Field plots were established in autumn 1992 in which endophyte [ Neotyphodium coenophialum Glenn. Bacon, Price and Hanlin (formerly Acremonium coenophialum )]-infected (E+) and endophyte-free (E) isolines of three tall fescue [ Festuca arundinacea Schreb.) genotypes were planted. Plants were subjected to three water-withholding periods in 1993 and one in 1994, or were kept well watered throughout the experiment. There were no consistent endophyte effects for leaf elongation, tiller density or dry weight per tiller. There were genotype X endophyte interactions ( P <001) for tiller density and shoot dry weight per area and genotype X water X endophyte interactions ( P <005) for cumulative leaf elongation in 1993. These interactions indicated the highly specific effect of host genotype-endophyte association on the expression of plant growth. Leaf rolling in the stressed treatments was more severe in E than in E+ plants in 1993, but there were no differences in 1994, and stomatal conductance tended to be lower in E than in E+ plants in 1993. Fractional water content of the lower 3 cm of the youngest fully developed leaf sheath was usually greater, and never less, in E+ than in E plants. The leaf rolling and stomatal conductance results suggest that E plants were more severely stressed in the summer after planting. Thus, the endophyte may induce greater water retention in the leaf sheath and therefore better protect the internal growing zone from lethal desiccation.  相似文献   

17.
《Field Crops Research》1999,62(1):23-34
The behavior of eight cultivated barley (Hordeum vulgare L.) genotypes consisting of three breeding lines and five cultivars varieties was studied in a rain shelter to determine the influence of osmotic adjustment and stomatal conductance on drought tolerance and yield under terminal water stress. When the crop reached the flag leaf stage, half of the experimental plots were submitted to a water-stress treatment and the remainder maintained in optimal water conditions. Variation was observed in osmotic adjustment (OA) and stomatal conductance among the genotypes under stress. Two of the breeding lines exhibited the highest OA capacity. These lines also showed the least differences in stomatal conductance and maintained the highest stomatal conductance as water stress increased. Correlations between yield and OA and conductance in the water-stress treatment were positive and significant. In the irrigated control the correlation coefficients were smaller. Osmotic adjustment and stomatal conductance were linearly related, indicating that OA favors higher conductance when there is water stress. Under conditions of terminal drought yield was negatively correlated with time to ear emergence and maturity. Earliness to flower and OA contributed to greater yields under terminal water stress.  相似文献   

18.
为明确腐植酸在干旱胁迫下对燕麦叶片光合性能的调控效应,以燕麦品种燕科二号为试验材料,采用盆栽方式,分别在正常供水(75%田间持水量)、中度干旱胁迫(60%田间持水量)和重度干旱胁迫(45%田间持水量)3个水分条件喷施腐植酸和等量清水(CK),分析了干旱胁迫下喷施腐植酸后燕麦叶片光合色素含量、光合特性、干物质积累及产量的变化。结果表明,随着土壤水分的减少,燕麦叶片的叶绿素a含量、叶绿素b含量、类胡萝卜素含量、光合速率、气孔导度、蒸腾速率、胞间CO_2浓度、干物质积累量、产量及其构成因素均呈下降趋势。在正常供水条件下,喷施HA处理的各指标值与CK差异不显著;干旱胁迫下,与CK相比,喷施腐殖酸后各指标值均不同程度提高,其中在重度干旱胁迫下提高幅度较大,且差异均达到显著水平。由此说明,干旱胁迫条件下喷施腐植酸可改善燕麦叶片的光合性能,促进干物质积累和增加产量,且在重度干旱胁迫条件下效果最明显。  相似文献   

19.
Summary Reduction of leaf photosynthesis due to water stress has been analyzed into various components and genetic variation in these components has been evaluated. Five potato cultivars were grown on nutrient solution in a conditioned glasshouse. Water stress was imposed by adding polyethylene glycol to the nutrient solution. Photosynthesis, transpiration and chlorophyll fluorescence were measured on intact leaves during the stress period and after recovery from the stress. Water stress reduced photosynthesis, initially as a consequence of stomatal closure, but after 3 days increasingly by inhibiting directly the photosynthetic capacity (mesophyll limitation). Stomatal closure correlated with the reduction in photosynthesis, but it was not the sole cause of this reduction because the internal CO2 concentration in the leaves was not affected by water stress, indicative of inhibitory factors other than stomatal ones. Chlorophyll fluorescence emission suggested that the Calvin cycle was inhibited, while quantum efficiency was not affected at 17°C. Increasing the temperature to 27°C reduced quantum efficiency but only in the stress environment. The recovery of young leaves after relief of the stress was associated with a lower stomatal conductance but a higher mesophyll conductance compared with the control, which caused a low internal CO2 concentration and probably invoked photo-inhibition and leaf damage. Cultivar differences in photosynthetic rate were highly significant under both optimal and stress conditions, and corresponded with differences in mesophyll conductance.  相似文献   

20.
为了解外源pH缓冲液对冬小麦幼苗抗旱性的影响,在温室条件下,采用负水头供水控水盆栽装置,测定和分析了不同供水(正常水分、轻度干旱和中度干旱)和叶片喷施不同pH磷酸缓冲液(以喷施清水为对照)条件下小麦叶片的相对电导率、活性氧代谢能力及抗氧化酶活性。结果表明,干旱胁迫使膜系统受到伤害,导致叶片相对电导率增加。在干旱胁迫下喷施pH缓冲液降低了叶片相对电导率、O2-产生速率及H2O2含量,其中pH 6.0和pH 7.5缓冲液处理效果最明显。说明在干旱条件下喷施适宜的pH缓冲液能增强小麦的抗氧化能力,减轻干旱引起活性氧增多对细胞膜的伤害,提高植株抗旱能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号