首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Increases in the proportion of amylose in the starch of wheat grains result in higher levels of resistant starch, a fermentable dietary fiber associated with human health benefits. The objective of this study was to assess the effect of combined mutations in five STARCH BRANCHING ENZYME II (SBEII) genes on starch composition, grain yield and bread-making quality in two hexaploid wheat varieties. Significantly higher amylose (∼60%) and resistant starch content (10-fold) was detected in the SBEII mutants than in the wild-type controls. Mutant lines showed a significant decrease in total starch (6%), kernel weight (3%) and total grain yield (6%). Effects of the mutations in bread-making quality included increases in grain hardness, starch damage, water absorption and flour protein content; and reductions in flour extraction, farinograph development and stability times, starch viscosity, and loaf volume. Several traits showed significant interactions between genotypes, varieties, and environments, suggesting that some of the negative impacts of the combined SBEII mutations can be ameliorated by adequate selection of genetic background and growing location. The deployment of wheat varieties with increased resistant starch will likely require economic incentives to compensate growers and millers for the significant reductions detected in grain and flour yields.  相似文献   

2.
Glutamine synthetase (GS) plays a central role in plant nitrogen (N) metabolism, which improves crops grain protein content. A pot experiment in field condition was carried out to evaluate GS expression and activity, and grain protein content in high (Wanmai16) and low grain protein (Loumai24) wheat cultivars under two N levels (0.05 and 0.15 g N kg−1 soil). High nitrogen (HN) resulted in significant increases in GS1 and GS2 expression at 10 days after anthesis (DAA), and higher GS activity during the entire grain filling stage. HN also significantly increased yield, grain protein content and protein fraction (except for glutenin of Luomai24) in two wheat cultivars, which indicated that it increased grain yield and protein content by improving nitrogen metabolism. Wanmai16 showed higher grain protein content, gliadin and glutenin content, and had higher expression level of GS2 both in flag leaves and grains at early grain filling stage. However, Luomai24 had greater yield and higher expression level of GS1. The difference expression of GS2 and GS1 genes indicates they had various contributions to the accumulation of protein and starch in wheat grains, respectively. The results suggest that GS2 would be serving as a potential breeding target for improving wheat quality.  相似文献   

3.
Septoria tritici blotch (STB), caused by Zymoseptoria tritici is a relevant foliar wheat disease worldwide. Several reports show the importance of STB on grain yield, their components and grain protein while little is known about its effect on the rheological properties of the wheat flour. The scarce literature found, only mentions the effect of the complex of foliar diseases on wheat quality, without individualizing the effect of the different pathogens separately. This study analyze the influence of increasing doses of inoculum of Zymoseptoria tritici, on the bread making quality of ten Argentinean wheat cultivars and its possible variation according to their quality group. The increase of inoculum concentration augmented the area under disease progress curve, decreased green flag leaf area duration and green leaf area duration. Cultivars K. Flecha and B.75 Aniversario had the lowest green flag leaf area duration causing higher reduction in grain filling period and higher reductions in P, indicating a lower gliadin/glutenin ratio. STB decreased P/L and E while L, W, D, SV and bread volume increased. Cultivars differed in rheological parameters according to their quality group. Gluten/protein relationship was significant in quality group 1 and non-significant in cultivars belonging to quality group 2 and 3.  相似文献   

4.
A rising global population necessitates continued genetic improvement of wheat (Triticum spp.), but not without monitoring of unintended consequences to processors and consumers. Our objectives were to re-establish trends of genetic progress in agronomic and milling traits using a generational meter stick as the timeline rather than cultivar release date, and to measure correlated responses in flour quality and human wheat-sensitivity indicators. Grain yield and kernel size showed stepwise increases over cycles, whereas wheat protein content decreased by 1.1 g/100 g. Reduced protein content, however, did not result in lower dough strength pertinent to bread baking. A novel method of directly testing gluten elasticity via the compression-recovery test indicated a general increase in gluten strength, whereas the ratio of total polymeric to total monomeric proteins remained stable. Also showing no change with genetic progress in yield were flour levels of gluten epitopes within the key immunotoxic 33-mer peptide. The oligosaccharide fructan, present in milled and wholemeal flours, increased with increasing grain yield potential. While yield improvement in U.S. bread wheat was not accompanied by a decline in gluten strength or systematic shift in a key wheat sensitivity parameter, the unanticipated rise in total fructans does implicate potentially new dietary concerns.  相似文献   

5.
Starch is a crucial component in wheat endosperm and plays an important role in processing quality. Endosperm of matured wheat grains contains two distinct starch granules (SG), referred to as larger A- and smaller B-granules. In the present study, 166 Chinese bread wheat cultivars planted in four environments were characterized for variation in SG size. A genome-wide association study (GWAS) using the 90 K SNP assay identified 23 loci for percentage volumes of A- and B-granules, and 25 loci for the ratio of A-/B-granules volumes, distributing on 15 chromosomes. Fifteen MTAs were associated with both the percentage volumes of A-, B-granules and the ratio of A-/B-granules volumes. MTAs IWB34623 and IWA3693 on chromosome 7A and IWB22624 and IWA4574 on chromosome 7B associated with the percentage volumes of A- and B-granules consistently identified in multiple environments were considered to be stable. Linear regression analysis showed a significantly negative correlation of the number of favorable alleles with the percentage volumes of A-granules and a significantly positive correlation between the number of favorable alleles and the percentage volumes of B-granules, respectively. The loci identified in this study and associated markers could provide basis for manipulating SG size to obtain superior noodle quality in wheat.  相似文献   

6.
The aims of this study were to assess the linear relationships between agronomic and nutritional traits and identify promising traits for indirect selection in transgenic genotypes of maize. Eighteen transgenic maize genotypes were assessed in randomized blocks with three replications. The agronomic (number of days from sowing until male flowering, number of days from sowing until female flowering, plant height, ear insertion height and grain yield) and nutritional (crude protein, ether extract, crude fiber, starch and amylose) traits were measured. Analysis of variance was run for each of the 10 traits and phenotypic and genotypic correlation coefficient matrices estimated. Ridge path analysis were performed the nutritional traits were treated as main variable (dependent) and agronomic traits as explanatory variables (independents). The number of days from sowing until female flowering has a positive linear relationship to crude protein, ether extract and starch. Plant height has a positive linear relationship to crude fiber. Ear height has a positive linear relationship to amylose. Grain yield has a positive linear relationship to starch. The number of days from sowing until male flowering, plant height, ear height and grain yield can be used indirect selection in maize.  相似文献   

7.
Durum wheat is an important food crop used primarily for pasta production. High-molecular-weight glutenin subunits (HMW-GS) encoded by the closely linked genes Glu-B1x and Glu-B1y are known for their combined effects on pasta quality, but their individual contributions and interactions remain poorly understood. In this study, we show that individual loss-of-function mutants of Glu-B1x (ΔBx6) and Glu-B1y (ΔBy8) were associated with significant reductions in gluten strength compared to the wildtype, with stronger effects in the ΔBxy double mutant. Reductions in gluten strength were reflected in reduced mixograph and alveograph parameters, gluten index, faster extrusion flow rates and increased cooking loss. Interestingly, the Glu-B1x mutation was also associated with significant increases in grain and semolina protein content, increased pasta firmness, reduced starch viscosity and increased amylose in ΔBx6 and ΔBxy. In general, the ΔBx6 mutation had stronger effects than the ΔBy8 mutation, and significant interactions between the two genes were frequent. In addition to the basic knowledge gained on the individual effects of the Bx6 and By8 subunits and their interactions, the genetic stocks developed in this study provide useful tools to study the effects of natural or synthetic HMW-GS on pasta quality parameters in a background lacking endogenous HMW-GS.  相似文献   

8.
Arabinoxylans (AX) are part of dietary fiber. They are currently under study due to their potential prebiotic effect. Wheat whole grain flours contain all the grain layers and, therefore, present a higher arabinoxylan content than white flour. It is known that the chemical structure of these compounds varies with the type of wheat cultivar and the tissue from which they are extracted. In this work, water soluble extractable arabinoxylans (WE-AX) from two types of wheat whole flours (hard and soft) were extracted. We characterized the molecular size distribution and the potential prebiotic effect of those extracts. The prebiotic effect was evaluated in vitro and confirmed in vivo. Bacterial group abundance (Lactobacillus, Bifidobacterium, Clostridium, Enterococcus, Bacteriodes and total bacteria) was determined by quantitative RT-PCR. The molecular size of AX from hard wheats was significantly higher than AX from soft wheats. Both extracts showed potential prebiotic activity by increasing the growth of beneficial bacteria in vitro and in vivo, decreasing the pathogens in the profile of intestinal microorganisms and increasing the amount of short chain fatty acids in the intestine. WE-AX from hard wheat showed a higher prebiotic activity. Prebiotic effect assessed in vitro and in vivo assays showed a significant correlation between both types of analysis. This finding suggests that the in vitro indices performed allow predicting the potential prebiotic effect in vivo.  相似文献   

9.
Selected Lactobacillus plantarum DSM 32248 and Lactobacillus rossiae DSM 32249, isolated and identified from wheat germ, were used to ferment a milling by-products mixture. Lactic acid bacteria metabolisms improved the functional properties of wheat bran and germ, which are considered important sources of functional compounds. Wheat breads were manufactured using 15% (w/w) of fermented (and unfermented) milling by-products, and compared to baker’s yeast wheat bread manufactured without the addition of milling by-products. The use of the fermented ingredient improved the biochemical, functional, nutritional, textural, and sensory features of wheat bread, showing better performances compared to the solely use of wheat flour. Protein digestibility, nutritional indexes, and the rate of starch hydrolysis markedly improved using fermented milling by-products as ingredient. Enriched bread was also characterized by high content of dietary fibre and low glycaemic index determined in vivo.This study exploited the potential of fermented milling by products as functional ingredient. According to the Regulations the bread made under this study conditions can be defined as “high fibre content” and “low glycaemic index”. A number of advantages encouraged the manufacture of novel and healthy and functional leavened baked goods.  相似文献   

10.
11.
The health-promoting properties of the grains of common wheat (Triticum aestivum L.) are associated with the presence of unique phytochemicals. This study determines the profile of alkylresorcinols (ARs) and benzoxazinoids (BXs) in T. aestivum spring and winter cultivars grown in Poland under the two different production systems: conventional and organic. Wheat grain extracts were subjected to qualitative and quantitative UPLC-UV-MS/MS analyses. The ARs profile consisted of five 5-n-alkylresorcinol derivatives, among which 5-n-heneicosylresorcinol (C21:0) and 5-n-nonadecanylresorcinol (C19:0) predominated; while six different BXs were determined in hydrothermally treated grains. Our research shows significant differences in the contents of ARs and BXs among wheat cultivars, as well as the two production systems used. Organically grown varieties had their total contents of ARs and BXs significantly higher than those grown conventionally. Another aim of the study was to determine the antioxidant capacity of alkylresorcinol extracts from tested wheat cultivars. The quantitative TLC-DPPH• method for determining the antiradical capacity of wheat ARs extracts was developed. We observed a positive relationship between the free radical scavenging activity of extracts and the total amount of ARs. The biological activity research is important for developing value-added wheat cultivars, having an improved profile and composition of nutritional substances.  相似文献   

12.
Zinc (Zn) is an essential micronutrient for human health. Breeding zinc-rich crop genotypes is considered as potential solution to Zn deficiency. In this study, variation of Zn uptake, accumulation, distribution and the estimated bioaccessibility among 30 wheat genotypes across two locations were investigated with field experiments. A significant difference in grain Zn concentrations occurred across the two locations, with the corresponding values of 55.24 and 57.14 mg kg−1. Grain Zn concentration was significantly and positively correlated with grain Mn concentration (0.698**, 0.617** for two locations). The estimated grain Zn bioaccessibility also showed a significant difference, a trend similar to grain Zn concentrations but with lower values (13.87 and 13.49 mg Zn d−1 for two locations). These results indicate that the interaction of locations * genotypes may play an important role in grain Zn concentrations and Zn bioaccessibility.  相似文献   

13.
Traditional sweet corn is poor in provitamin-A, lysine and tryptophan, deficiency of which causes serious health problems. Here, parental lines of two shrunken2 (sh2) -based sweet corn hybrids viz., ASKH-1 and ASKH-2 were targeted for introgression of crtRB1 and opaque2 (o2) genes through marker-assisted backcross breeding. Gene-based markers; umc1066 (SSR) and 3′TE-InDel were utilized for foreground selection of o2 and crtRB1, respectively in BC1F1, BC2F1 and BC2F2 generations. Background selection employing 102–113 polymorphic SSRs led to >90% recovery of recurrent parent genome. Reconstituted hybrids recorded high mean provitamin-A (18.98 μg/g) with a maximum of 7.7-fold increase over original hybrids (3.12 μg/g). High mean lysine (0.39%) and tryptophan (0.10%) with an average enhancement of 1.71- and 1.79-fold, respectively was recorded among reconstituted hybrids over original versions (lysine: 0.23%, tryptophan: 0.06%). Improved hybrids exhibited high phenotypic resemblance with their original hybrids. The average cob yield (11.82 t/ha) and brix (17.66%) of improved hybrids was at par with their original versions (cob yield: 11.27 t/ha, brix: 17.04%). These biofortified sweet corn hybrids rich in provitamin-A, lysine and tryptophan hold immense significance as multinutrient-rich balanced food. This is the first report to stack sh2, crtRB1 and o2 genes to improve nutritional quality in sweet corn.  相似文献   

14.
The breadmaking quality of wheat is affected by the composition of gluten proteins and the polymerisation of subunits that are synthesised and accumulated in developing wheat grain. The biological mechanisms and time course of these events during grain development are documented, but not widely confirmed. Therefore, the aim of this study was to monitor the accumulation of gluten protein subunits and the size distribution of protein aggregates during grain development. The effect of desiccation on the polymerisation of gluten proteins and the functional properties of gluten were also studied. The results showed that the size of glutenin polymers remained consistently low until yellow ripeness (YR), while it increased during grain desiccation after YR. Hence, this polymerisation process was presumed to be initiated by desiccation. A similar polymerisation event was also observed when premature grains were dried artificially. The composition of gluten proteins, the ratios of glutenin to gliadin and high molecular weight-glutenin subunits to low molecular weight-glutenin subunits, in premature grain after artificial desiccation showed close association with the size of glutenin polymers in artificially dried grain. Functional properties of gluten in these samples were also associated with polymer size after artificial desiccation.  相似文献   

15.
16.
Non-starch polysaccharides (NSP) in cereals, after starch and gluten proteins, determine the technological and nutritional properties of flour, dough and end product. From NSPs, the arabinoxylans are the most important components studied in wheat nowadays. The novelty of our study is the investigation of the variability and clustering ability of the wheat lines based on different quantitative and qualitative traits of arabinoxylans. The quantitative properties, the total and the water-extractable arabinoxylan content of wheat flours were measured separately by gas chromatography. The qualitative property referring to the structure of the molecule was the molecular weight distribution measured by size exclusion liquid chromatography. According to the results the variability of arabinoxylan properties in the breeding lines varied between wider ranges then the values measured for the parental varieties. The correlation between the quantitative parameters, and a trend between quantitative and qualitative parameters were described. During the cluster analysis, the parents were well separated into different groups. The parameters that played an important role in the clustering were the ratio of the probability of occurrence of molecular size ranges along with the quantitative traits of AX. The selected samples can be used for further targeted breeding while the methodology was used in this work can be suitable for selecting lines/varieties for special food or other industrial applications.  相似文献   

17.
Consumption of whole-wheat based products is encouraged due to their important nutritional elements that benefit human health. However, the use of whole-wheat flour is limited because of the poor processing and end-product quality. Bran was postulated as the major problem in whole wheat breadmaking. In this study, four major bran components including lipids, extractable phenolics (EP), hydrolysable phenolics (HP), and fiber were evaluated for their specific functionality in flour, dough and bread baking. The experiment was done by reconstitution approach using the 24 factorial experimental layout. Fiber was identified as a main component to have highly significant (P < 0.05) and negative influence on most breadmaking characteristics. Although HP had positive effect on farinograph stability, it was identified as another main factor that negatively impacted the oven spring and bread loaf volume. Bran oil and EP seemed to be detrimental to most breadmaking characteristics. Overall, statistical analysis indicates that influence of the four bran components are highly complex. The bran components demonstrate multi-way interactions in regards to their influence on dough and bread-making characteristics. Particularly, Fiber appeared to have a high degree of interaction with other bran components and notably influenced the functionality of those components in whole wheat bread-making.  相似文献   

18.
The GlutoPeak®-Test (GPT) as a rapid small-scale technique was optimized to evaluate the gluten aggregation properties and to predict the loaf volume, on the basis of a multiyear and multilocation analysis of wheat samples, using different solvents. 5 % lactic acid and 1 % sodium chloride displayed significant GPT responses. Relationships between protein content, sedimentation value, GPT parameters and loaf volume were investigated. With 1 % sodium chloride, the torque 15 s before maximum torque (AM) presented the highest correlation with loaf volume of samples from 2013 to 2014 (r = 0.77, r = 0.63, p < 0.001, respectively). A multiple regression analysis indicated that the best prediction of loaf volume was a linear function of protein content and AM, explaining the variation in loaf volume by 63 % and providing an uncertainty of ±39 ml. The accuracy of the validation of the linear function leads to 64 % correct and to 36 % incorrect predictions of the loaf volume. This emphasizes that the application of the linear function of protein content and AM cannot replace the actual measurement of loaf volume, but it could be a useful rapid screening test in breeding for improved baking quality in bread wheat.  相似文献   

19.
Celiac disease (CD) is an immune-mediated disease triggered by wheat gluten and related prolamins. A lifelong gluten-free (GF) diet is mandatory to normalize the intestinal mucosa. We previously found that transamidation by microbial transglutaminase of gluten was effective in suppressing the gliadin-specific inflammatory response in CD patients without influencing the main technological properties of wheat flour or semolina. In this study, we produced on a pilot scale a soluble form of transamidated gluten (soluble protein fraction, spf), characterised by a high protein content (88 mg/ml), while native gluten was dramatically reduced (32 ± 2 ppm; R5-ELISA). Using HLA-DQ8 transgenic mice as a CD model, we found suppression of interferon-γ secretion in gliadin-specific CD4+ T cells challenged with spf-primed dendritic cells. In terms of functional properties, spf showed both solubility and emulsifying activity values within the range of commercial soluble glutens. Notably, dough prepared by mixing rice flour with spf could leaven. After baking, blended rice bread had a higher specific volume (2.9 ± 0.1) than control rice bread (2.0 ± 0.1) and acquired wheat-like sensory features. Taken together, our results highlighted the technological value of transamidated soluble gluten to improve both nutritional and sensory parameters of GF food.  相似文献   

20.
Two locally grown wheat species named Triticum aestivum L. and Triticum vulgare L. were studied for their phytochemical contents and their biological activities. T. vulgare presented the highest amounts of total phenolic compounds and ascorbic acids while T. aestivum was found to be rich in flavonoids, flavonols, proanthocynidins and ortho-diphenols. Eleven carotenoids were identified in T. vulgare where the most dominant compounds belongs to α-carotene and its derivatives while T. aestivum presented seven carotenoids. This later presented the highest DPPH radical scavenging activity and exhibited a strong reducing power in FRAP, phosphomolybdenum, hydrogen peroxide and reducing power assays. T. vulgare extract was found to be effective in metal chelating power and in scavenging nitric oxide radical. No significant differences in scavenging ABTS and hydroxyl radicals were noted between the two wheat species. T. aestivum inhibited xanthine oxidase and ROS production and showed the best cytotoxic effect while T. vulgare extract exhibited anti-calpain activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号