首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
穗茎兼收型玉米收获机茎秆切碎与输送装置设计与试验   总被引:3,自引:0,他引:3  
针对玉米收获时秸秆回收困难、利用率低的问题,设计了一种穗茎兼收型玉米收获机,对茎秆切碎和输送装置进行了详细设计。通过比较,采用转子铣刀切割器作为茎秆切断装置,运用ANSYS/LS-DYNA对转子铣刀刀片厚度、转速、刃角进行了三因素三水平的正交试验, 试验表明铣刀转速为1400r/min、刀片厚度为7mm、刃角为20°时功耗最小;设计了具有不同齿形和转速的单层多辊式输送器,并通过理论分析建立了4输送辊线速度之间的关系;对茎秆切碎装置进行了设计,确定动定刀位置和理论切碎长度。最后对样机进行了田间试验,结果表明:实际茎秆切碎长度与理论切碎长度无显著差异(P≤0.05),样机各项指标满足设计和行业相关标准要求。  相似文献   

2.
4QX-12型玉米青贮收获机的切碎性能分析与试验   总被引:2,自引:0,他引:2  
针对目前玉米青贮收获机普遍存在的秸秆切碎性能差和切碎长度不均匀等问题,对4QX-12型玉米青贮收获机的切碎性能展开研究。通过对收获机拨禾过程和切碎过程的理论分析表明:拨禾圆筒安装多层拨禾轮可实现倾斜拨禾,使秸秆以倾斜接近水平状态喂入至切碎装置,提升收获机切碎长度的均匀性;根据饲喂不同牲畜的需要,通过改变动刀转速,调节秸秆切碎段长度,该调节方法简单可靠。同时,进行了收获机性能试验,结果表明:该收获机合格切碎长度属于20~30mm区间的切碎长度合格率为96.7%,损失率为4.0%,割茬高度为1 1 6.1 mm;合格切碎长度属于3 0~5 0 mm区间的切碎长度合格率为9 8.1%,损失率为4.6%,割茬高度为113.7mm;各项作业指标均优于国家标准的相关规定,该收获机能满足青贮玉米收获作业要求。  相似文献   

3.
设计了一种摘穗与秸秆粉碎复式作业机构.该机构主要由摘穗板、一对拉茎辊和一个切割刀辊组成.拉茎辊带有凸棱,凸棱上按一定间隔设有开口,切割刀辊上装有缺口圆盘刀片,刀片与拉茎辊凸棱的开口配合,茎秆下拉时,切割刀辊将茎秆切碎,一套机构实现摘穗和秸秆切碎2个功能.建立了茎秆下拉运动方程,分析了茎秆在机构间的运动规律,理论上证明了茎秆下拉的运动轨迹具有较好的直线度.初步试验表明,该机构的摘穗效果良好,籽粒损伤率和果穗损失率低、茎秆折断减少,功耗是摘穗机构与秸秆切碎机构分置时的35%,节能效果显著.  相似文献   

4.
甩刀是卧式香蕉秸秆粉碎还田机的重要工作部件,合理的结构和参数设计可改善整机的工作性能,减少机具振动,提高香蕉秸秆粉碎质量。通过应用Adams、Solidworks Simulation软件对刀辊进行模态仿真,对刀片的运动及受力进行理论分析,以确定刀片的最优的基本参数和排列方式。结果表明:刀片厚度为8mm、弯折角为1 3 0°时,刀片的变形量小,粉碎效果好;V字形排列方式能有效避免刀辊的共振,延长使用寿命。  相似文献   

5.
青贮玉米饲料籽粒破碎试验台设计与试验   总被引:1,自引:1,他引:0  
为研究青贮玉米籽粒破碎机理,采用理论计算、三维建模和性能试验相结合的方法,设计喂入速度、破碎辊转速和对辊间隙等参数可调的青贮玉米饲料籽粒破碎试验台,主要工作部件包括喂入碾压机构、切碎滚筒装置和对辊式籽粒破碎装置,可对全株青贮玉米一次性完成秸秆传送、喂入压平、切碎抛送和籽粒破碎等工作流程。试验结果表明:当喂入速度为2 m/s、上破碎辊主轴转速为2 600 r/min时,秸秆切碎长度为21.79 mm,切碎长度合格率为95.9%,籽粒破碎率为96.3%,各项指标均符合国家标准和行业标准要求,可为籽粒破碎装置的设计提供理论依据和技术参考。  相似文献   

6.
针对现有马铃薯茎叶切碎机作业茎秆打碎长度合格率低、带薯率高、工作效率低等问题,设计了一种全垄仿形式茎叶切碎刀辊,对刀具工作过程进行分析,建立刀具运动、刀具-茎秆碰撞和茎秆捡拾数学模型,明确影响装置工作性能主要参数,完成全垄仿形式茎叶切碎刀辊总体结构与茎叶切碎刀具设计。采用三因素五水平二次回归正交旋转中心组合试验方法,以作业速度、刀辊转速、刀辊离地距离为试验因素,打碎长度合格率、带薯率为评价指标,应用Design-Expert 8.0.6.1软件进行试验数据处理与参数组合优化,结果表明,各因素对打碎长度合格率均具有显著性影响,影响由大到小依次为刀辊转速、作业速度、刀辊离地距离;各因素对带薯率均具有显著性影响,影响由大到小依次为刀辊离地距离、刀辊转速、作业速度。在刀辊转速为1 450 r/min、作业速度为3.5~6.7 km/h、刀辊离地距离为285~317 mm时,打碎长度合格率大于90%,带薯率小于等于0.3%。本研究结果为马铃薯茎叶切碎机具作业质量和效率提升提供了设计理论与技术支持。  相似文献   

7.
针对现有马铃薯茎叶切碎机作业茎秆打碎长度合格率低、带薯率高、工作效率低等问题,设计了一种全垄仿形式茎叶切碎刀辊,对刀具工作过程进行分析,建立刀具运动、刀具-茎秆碰撞和茎秆捡拾数学模型,明确影响装置工作性能主要参数,完成全垄仿形式茎叶切碎刀辊总体结构与茎叶切碎刀具设计。采用三因素五水平二次回归正交旋转中心组合试验方法,以作业速度、刀辊转速、刀辊离地距离为试验因素,打碎长度合格率、带薯率为评价指标,应用Design-Expert 8.0.6.1软件进行试验数据处理与参数组合优化,结果表明,各因素对打碎长度合格率均具有显著性影响,影响由大到小依次为刀辊转速、作业速度、刀辊离地距离;各因素对带薯率均具有显著性影响,影响由大到小依次为刀辊离地距离、刀辊转速、作业速度。在刀辊转速为1450r/min、作业速度为3.5~6.7km/h、刀辊离地距离为285~317mm时,打碎长度合格率大于90%,带薯率小于等于0.3%。本研究结果为马铃薯茎叶切碎机具作业质量和效率提升提供了设计理论与技术支持。  相似文献   

8.
为提高玉米秸秆皮瓤分离效率,达到皮瓤分类利用,以秸秆群为研究对象,设计辊齿式碾压揭皮辊,实现秸秆皮瓤有效分离。采用密度理论法(SIMP)设计了辊齿式碾压揭皮辊,并进行了有限元模拟仿真分析,确定了碾压揭皮辊半径为33 mm,齿型刀片齿刃高2 mm、厚度2 mm、刃角30°。为寻找最佳参数组合,以皮瓤分离率为试验指标,碾压揭皮辊转速、辊齿间隙、切段长度为试验因素,进行二次回归正交旋转组合设计试验。运用Design-Expert进行试验数据处理与分析,建立评价指标与试验因素之间的数学模型,并对参数进行优化,确定玉米秸秆皮瓤分离碾压揭皮辊的最佳参数组合为:碾压揭皮辊转速为295 r/min,辊齿间隙为5 mm,切段长度为22 mm时,皮瓤分离率为85%。经试验验证,试验结果与分析结果基本一致。  相似文献   

9.
动定刀支撑滑切式秸秆粉碎装置设计与试验   总被引:6,自引:0,他引:6  
设计了适用于卧式玉米秸秆粉碎还田机的动定刀支撑滑切式秸秆粉碎装置,该装置利用等滑切角式粉碎定刀和随粉碎刀辊高速旋转的粉碎动刀形成的支撑滑切作用对秸秆进行粉碎。其中等滑切角式粉碎定刀刃口曲线采用对数螺线方程,粉碎动刀设计为并联直刀和L改进型弯刀组合结构。结合玉米秸秆的特性,明确了各关键部件的参数,并运用ANSYS-Workbench软件对粉碎定刀进行了静强度校核和对粉碎刀辊进行了模态分析,得出了粉碎定刀的应力分布图和粉碎刀辊的前6阶固有频率和振型;粉碎定刀最大应力发生在刀片上端部后侧,最大应力为13841MPa,刀片材料满足要求;〖JP3〗粉碎刀辊最低阶数的固有频率为102.62Hz,高于其工作激励频率23.3~30.Hz,不会形成共振。田间试验表明,当动定刀支撑滑切式秸秆粉碎装置刀辊转速为1600r/min时,其秸秆粉碎长度合格率可达91.5%,相对无支撑切割(1800r/min)可降低作业功耗17.4%。  相似文献   

10.
通过对4QG-2型青贮割台全齿轮式传动系统的设计,有效解决了其他机型传动系统采用皮带传动所存在的问题。该传动系统可对喂入辊转速进行调节,从而实现对物料切断长度的控制;还可控制喂入辊进行反转,在不停机的状况下解决物料堵塞问题。田间试验结果表明:该传动系统工作可靠、稳定性高,整机作业效率约为0.7hm~2/h,平均割茬高度为1 2 0 mm,损失率≤4.1%。喂入辊在不同转速下,切碎动刀数量分别为2、3、4、6、1 2把时,青贮玉米切段长度与理论计算值吻合较好,切碎合格率≥9 5%,符合相关作业标准。  相似文献   

11.
高留茬玉米秸秆复式割台粉碎还田装置设计与试验   总被引:2,自引:0,他引:2  
为了在玉米摘穗的同时,将秸秆上半部分回收作饲料,下半部分实现高质量粉碎还田,在4YZQ-2B1型穗茎兼收玉米收获机割台的下方增加了锯盘式玉米秸秆粉碎装置,通过对圆锯片运动及切割机理等的分析,利用ADAMS对此复式割台进行了参数优化和运动分析,并在Pro/Mechanica中,对锯盘刀轴进行了有限元模态分析,得到其固有频率。确定采用平面锯身整体式横截圆锯片,直径为180~380mm,厚度分为1.2、1.5、2mm 3种,锯片间距为50mm,齿形为等腰三角斜磨齿,齿高为7.5mm,两刀辊中心距为760mm。高留茬玉米复式割台田间试验结果显示,当机组的作业速度为2m/s,刀辊转速为850r/min时,秸秆粉碎长度合格率为92.14%,留茬高度平均值为52.18mm,均满足秸秆还田机作业标准,能够对玉米秸秆离地粉碎,减轻了刀具的磨损、提高了玉米秸秆还田质量。  相似文献   

12.
可调节式秸秆粉碎抛撒还田机设计与试验   总被引:6,自引:0,他引:6  
针对秸秆粉碎还田机粉碎后的秸秆抛撒均匀度差和幅宽不可调节等问题,设计了一种可调节式秸秆粉碎抛撒还田机。该机主要由曲面机壳、粉碎装置、抛撒装置和传动装置等组成,可以实现玉米、小麦秸秆的粉碎和粉碎后秸秆的抛撒还田。曲面机壳包括对数螺旋线型前壳体、左侧板、右侧板和后挡板等。Fluent仿真分析结果表明,曲面机壳相比传统折线型机壳有利于提高秸秆在机壳内的流动性。粉碎装置包括粉碎刀轴、组合甩刀、定刀等,其中粉碎刀轴两端装有扇形叶片,提高了曲面机壳内流体流动速度和曲面机壳入口处秸秆喂入性能。在曲面机壳出口处增加了装有导向叶片的导流板,并设计了一种同步调节所有导向叶片的导向叶片同步调节装置,实现了粉碎后秸秆抛撒幅宽、均匀度的可调节。田间试验表明,在拖拉机前进速度为1.8 m/s,秸秆平均含水率为78.4%,拖拉机动力输出轴转速为540 r/min的未收获玉米地里,秸秆粉碎长度合格率达90.01%,平均抛撒幅宽达2 223.3 mm,平均留茬高度为62.0 mm,抛撒不均匀度为22.95%,各项性能指标均满足要求。  相似文献   

13.
针对玉米秸秆粉碎过程中秸秆力学和能耗变化规律不明确,限制秸秆粉碎还田质量提升,不利于秸秆还田技术在东北黑土区推广应用的问题,本文基于异速圆盘动态支撑式玉米秸秆粉碎装置和秸秆受力状态,将玉米秸秆粉碎全过程分为秸秆捡拾阶段、秸秆升举输送阶段和入侵粉碎阶段,建立秸秆各阶段受力数学模型,确定其关键影响参数及范围。以捡拾粉碎刀转速、对数螺线支撑圆盘刀滑切角和捡拾粉碎刀与对数螺线支撑圆盘刀间的传动比为试验因素,选取秸秆最大破碎力、滑切切割功耗和滑切冲量为试验指标,应用有限元分析方法研究试验因素对试验指标的影响规律。结果表明,捡拾粉碎刀转速为1950 r/min、对数螺线支撑圆盘刀滑切角为40°和捡拾粉碎刀与对数螺线支撑圆盘刀间的传动比为0.5时,秸秆最大破碎力、滑切切割功耗和滑切冲量分别为101.71 N、1049.42W和0.032N·s。田间验证试验结果表明,滑切切割功耗为1150.43W,与模型预测值误差为9.63%,秸秆粉碎长度合格率为93.34%,满足行业标准要求。  相似文献   

14.
水稻秸秆反旋深埋滑切还田刀优化设计与试验   总被引:1,自引:0,他引:1  
针对水稻秸秆深埋还田时,还田刀作业功耗过高和缠草的问题,结合还田机作业过程,分析还田刀功耗过高和缠草的原因,设计了一种反旋深埋滑切还田刀。使用阿基米德螺旋线设计还田刀侧切刃,提高还田刀的滑切性能,计算并验证侧切刃曲线的动态滑切角满足土壤-秸秆滑出还田刀的条件,使用圆弧曲线设计还田刀正切面,以耕宽和正切面安装角为依据确定圆弧半径为60mm。运用离散元仿真软件EDEM进行了反旋深埋滑切还田刀与传统还田刀的仿真对照试验,结果表明反旋深埋滑切还田刀的秸秆还田率、抛土性能与传统还田刀基本一致,作业功耗降低18.19%,选取留茬高度、刀辊转速和机具前进速度为影响因素,选取作业功耗为评价指标进行正交试验设计,确定影响还田机作业功耗的因素从大到小依次为:刀辊转速、机具前进速度、留茬高度。田间试验结果表明:在土壤含水率为20%~30%,地表秸秆覆盖量为336~353g/m2,拖拉机作业速度为低速一挡(1.5km/h),刀辊转速为250r/min时,秸秆深埋滑切还田刀作业后,平均耕深为18cm左右,秸秆还田率为87.9%~89.7%,地表平整度为2.1~3.7cm,作业指标均满足秸秆还田的农艺要求。  相似文献   

15.
秸秆还田机是将农作物秸秆切碎抛撒还田的常用机械,其作业性能好坏直接影响秸秆还田效果,针对目前还田机抛撒装置普遍存在的调节功能单一、可调角度小及操作繁琐等问题,本文设计了一种还田机抛撒装置。在简述其结构与原理基础上,对抛撒装置零件进行了结构与参数设计,其中导向叶片宽×厚设计为30 mm×2 mm,其后端内、外弧半径为300 mm×330 mm,推杆长×宽设计为863 mm×30 mm,其上相邻孔距为194.5 mm,凸轮长、短半轴长度为145 mm、45 mm,调节轴、套相对可调长度为46.3 mm。应用Solidworks建立了抛撒装置零件模型,根据零件间对应关系进行了虚拟装配,得到了抛撒装置仿真模型,应用ANSYS对导向叶片进行了应力分析,结果表明导向叶片所受最大应力远小于其材料的屈服强度。通过对步进电机输出轴添加虚拟马达、对调节套施加旋转力,实现了抛撒装置左右与上下调节机构的运动仿真。仿真结果表明,建立的抛撒装置零件间无运动干涉,导向叶片左右摆动周期为10.2 s、摆角为+30°~-30°,导流板上下摆动周期为9.9 s、摆角为-15°~+15°,与设计值比较一致,经田间试验可得,秸秆抛撒幅宽、距离的可调范围分别为0~0.69 m、0~0.18 m,所有2因素3水平下的秸秆抛撒不均匀度均小于等于20.26%,符合国标中不高于30%的规定要求,这表明设计的秸秆抛撒装置能够根据作业需要适时调整秸秆抛撒幅宽与距离,进而为类似装置设计与试验提供了参考。  相似文献   

16.
针对现有深松灭茬机深松灭茬作业效果差、阻力大、功耗大及作业效率低等问题,设计了一种五行垄上深松灭茬起垄机。设计深松铲的结构参数为:长度55mm,宽度22mm,高度600mm,圆弧部分入土竖直距离250mm,纵向距离300mm,入土角22°,切削刃角60°,楔刃高度19mm。设计灭茬刀的结构参数为:正切刃滑切角16°、弯折角112°、切削宽度41 mm、刀端点回转半径350mm、弯曲半径35mm、刀刃口厚度5mm,并安装在刀辊上。同时,设计了前端部下边长560mm、上边长390mm、后端部下边长360mm,上边长260mm、罩体长度650mm的起垄部件,与深松铲、灭茬刀辊组成深松灭茬起垄机。田间性能试验结果表明:相比于行业内标准,所有工况下深松灭茬起垄机深松深度稳定性系数平均提高3.15%、灭茬深度稳定性系数平均提高3.69%、灭茬率平均提高10.58%、碎土率平均提高8.26%,其作业后犁底层土壤容重明显降低,成垄高度和宽度满足农艺要求,作业性能与效果优良。  相似文献   

17.
快速发展的畜牧业急需新鲜的秸秆来作为牲畜的饲料,而将玉米秸秆切碎收获,不仅能解决牲畜饲料的来源问题,还能增加农民的收入。饲料收获机在作业过程中,用于切碎饲料的动刀片会磨损,磨损之后,会发生切不断情况,需要停机磨刀。磨刀后,刀刃短了,定动刀之间的间隙变大,直接影响到饲料的切碎质量和效率。为了解决这一问题,设计了一种饲料收获机定动刀间隙自动调整装置,可以一键启动,自动调节定动刀之间的间隙,有效降低人工操作的强度,还能保证定动刀左右两边间隙的一致性。该自动调整系统,操作方便,智能化程度高,节约了农时,提高了饲料的切碎质量和作业效率。  相似文献   

18.
针对传统旋耕式耕整机在稻-油或稻-稻-油水旱轮作的油菜种植模式下进行耕整地作业易存在整机通过性、适应性差,旋耕装置作业碎土率低、刀辊易缠草、秸秆埋覆性能差等问题,设计了一种驱动圆盘犁与双刃型旋耕刀组合式耕整机。提出先主动犁耕后双刃旋耕、两侧开畦沟的工作方式,分析确定了驱动圆盘犁组主要结构参数以及驱动圆盘犁组-开畦沟前犁布局方式;分析确定了一种应用于驱动圆盘犁与双刃型旋耕刀组合式耕整机的双刃型旋耕装置关键结构参数。依据滑切原理确定了具有长刃部和短刃部的双刃型旋耕刀片关键结构参数;根据驱动圆盘犁组结构布局确定了双刃型旋耕装置为双头螺旋线排列方式。利用离散元仿真方法分析了整机的秸秆埋覆性能以及对土壤耕层交换的影响,结果表明整机作业平均秸秆埋覆率为94.69%,且整机作业后土壤耕层混合均匀。在秸秆留茬量不同的两种工况下进行田间性能试验,田间性能试验表明,驱动圆盘犁与双刃型旋耕刀组合式耕整机作业后平均秸秆埋覆率为96.45%,平均碎土率为95.30%,犁组不堵塞,刀辊不易缠草,机组通过性好;田间播种试验表明,整机播种后油菜出苗均匀,整机作业各项指标均满足稻茬地油菜直播种床整备要求。  相似文献   

19.
为提高水田筑埂机筑埂质量和工作效率,探究旋耕弯刀的结构参数和工作参数对筑埂机旋耕切削性能的影响,构建了旋耕弯刀—土壤的离散元模型,同时对旋耕弯刀工作时复杂的受力情况进行分析。以IT245旋耕刀为基础,设计了几种不同的旋耕刀片,分别以旋耕弯刀结构参数和工作参数为试验因素,单位幅宽扭矩和扭矩为试验指标,进行两组正交试验。通过极差分析,得到影响旋耕弯刀功耗的3种主要工作参数,并探究其对旋耕弯刀碎土效果的影响规律。综合分析得到旋耕弯刀参数最优组合为:正切面端面刀高60mm,侧切刃包角27°,弯折角120°,幅宽60 mm,工作转速300 r/min,前进速度0. 3 m/s,工作深度100 mm。该研究为探讨刀具与土壤相互作用机理、降低水田筑埂机作业能耗及提高碎土效率提供了参考。  相似文献   

20.
针对长江中下游稻油轮作区油菜直播作业时,因土壤黏重板结,地表前茬水稻留茬高、留存秸秆量大,导致旋耕部件易缠绕,秸秆埋覆率低,致使深施肥铲易挂草壅堵,作业厢面拖堆不平,难以实现深施肥作业。本文设计一种适应高茬黏重稻茬田的油菜直播埋茬防堵深施肥复合作业装置,确定埋茬防堵部件深旋弯刀、浅旋弯刀、防堵直刀和深施肥铲的结构参数及刀片和深施肥铲排列安装方式。利用EDEM仿真分析了机具作业后的秸秆埋覆、空间分布及颗粒肥料深施后的分布深度,结果表明:作业速度为2.5 km/h、耕作深度为150 mm、埋茬防堵部件刀辊转速为345 r/min时,秸秆埋覆率为86.53%、施肥深度为83~106 mm。开展了油菜直播机4种田间作业工况验证试验,结果表明:埋茬防堵深施肥复合作业装置田间作业性能良好,实现了肥料深施,秸秆埋覆率为86.69%~90.35%、厢面平整度为16.48~22.65 mm、施肥深度为87.4~109.5 mm、碎土率为81.24%~92.13%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号