首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
针对小流量工况采用计算流体动力学(CFD)对离心泵的性能进行数值模拟的精度问题,以一低比转数离心泵为例对其进行整体结构化网格划分,采用ANSYS CFX 14.5软件对模型离心泵的进口管路流道、叶轮流道以及蜗壳流道组成的流场进行定常数值计算.从改变整体网络数量与叶轮网格数量的角度分别进行网格无关性验证对0.6及1.0倍设计流量下的模拟精度进行比较研究.准确性评价指标采用外部特性扬程值及PIV得到的叶轮和蜗壳内部分区域的绝对速度,具有较强的说服性.分析表明:对总体网格数增加的方法进行的无关性分析即可满足要求;网格数量的增加对叶轮内绝对速度影响较大,而对蜗壳内绝对速度影响很小;在设计工况下蜗壳和叶轮内部绝对速度的预测精度都比0.6Qd工况下的高些,因而在进一步小流量流动特性分析时,需要更精密的网格.通过对外特性和内流场速度的对比,最终选择网格模型为网格IGD.  相似文献   

2.
为了研究中比转速离心泵性能及内部流场特性,以比转数102离心泵为研究对象,采用fluent,在双参考坐标系下,选用RNGk-ε模型,应用有限体积法对雷诺时均N-S方程离散计算,压力和耦合采用SIMPLEC算法求解。同时,为了提高预测精度,采用5套不同网格方案对模型泵的效率进行网格无关性检验。并且从小流量工况下计算结果分析对比,得到离心泵外特性及内部流场变化规律。研究表明:数值计算与实验结果相比,设计工况下,扬程的预测误差为2.02%,效率的预测误差为1.99%;随着流量的降低,计算效率的误差逐渐增大。在设计点,离心泵的内部速度流线比较光顺;而在小流量工况下,离心泵进口和叶轮均出现漩涡现象;随着流量的降低,漩涡面积增大,数量也在增加。  相似文献   

3.
低比转数冲压焊接离心泵三维湍流数值模拟   总被引:2,自引:1,他引:1  
对一低比转数冲压焊接离心泵在带分流叶片以及不带分流叶片情况下的叶轮及蜗壳耦合场进行了数值模拟.计算采用雷诺时均方程和RNGk-ε湍流模型,速度与压力耦合采用SIMPLEC算法.计算了设计工况、小流量工况及大流量工况下离心泵内部流场分布.增加分流叶片后.离心泵叶轮流道内的回流和二次流现象得到了有效控制.对比分析性能预测与试验结果的差异,在设计工况时离心泵性能预测的最大偏差为3%;非设计工况时性能预测的最大偏差为10%.  相似文献   

4.
为研究设计工况下蜗壳式离心泵内部瞬态流动的状态和规律,基于高质量结构化网格和快速成型技术,利用商业计算软件CFX对某型号蜗壳式离心泵进行了全流场非定常数值模拟。通过与定常数值模拟结果及试验结果比较,表明非定常数值模拟能够更为准确地预测蜗壳式离心泵的性能参数,其中扬程最大偏差在4%以内,效率最大偏差在3%以内。受叶轮-蜗壳耦合作用影响,蜗壳式离心泵内部压力脉动周期性明显,监测点压力脉动主频均为叶片通过频率。非定常下的压力场表明,各叶轮流道进口及中间位置的压力分布相近,靠近叶轮出口的压力分布差异明显;蜗壳内部存在明显的二次流动现象,并且随主流运动向前发展。  相似文献   

5.
基于Fluent泵内流场数值模拟及性能预测,针对低比转数离心泵在小流量范围内叶轮内部流动的不稳定性,对低比转数离心泵进行了叶片改型尝试,分析了在改型前后叶轮内部流场流动情况及离心泵性能的变化规律,发现在叶片单开槽后离心泵的扬程在小流量范围内较未开槽前有所上升,效率有所提高;但在大流量范围内离心泵的扬程较未开槽前呈下降趋势,并且效率也随之降低,因此,低比转速离心泵在小流量情况下表现出来的流动不稳定性可以通过叶片单开槽的方法来进行抑制.为了研究叶片开槽数目对其影响,将开槽数目增加至2个,研究其内部流场流动情况和性能变化规律,发现叶片双开槽在抑制叶轮流道流动不稳定性及效率的提高上不及叶片单开槽情况.研究结果表明:在小流量工况下,叶片开槽对离心泵内部流动紊流情况会有一定的改善作用,而开槽数目是否合理也将影响离心泵的性能.  相似文献   

6.
叶片数对离心泵小流量工况空化特性的影响   总被引:1,自引:0,他引:1  
为研究小流量下离心泵的空化特性,采用ANSYS CFX 14.5,基于k-ε湍流模型和Rayleigh-Plesset空化模型,以3种叶片数叶轮的IS50-65-160型离心泵为研究对象,对其内部空化流动分别进行了数值模拟。为了提高数值计算准确性,进行了网格无关性分析,且从泵空化性能、叶轮所受扭矩及轴向力分析了叶片数对泵小流量下空化特性的影响规律。研究结果表明:当叶片数从4增加至8时,离心泵扬程增加,但其效率变化较复杂。小流量工况下,随着空化系数降低,各叶片数叶轮扭矩与泵扬程均不同步地发生陡降,且出现相似地匍匐下降规律;当扬程下降3%后,各叶轮所受轴向力的大小几乎恒定;单个叶片流道的空泡体积出现突增,明显较其他叶片流道大,各叶片流道空泡分布极不对称。研究发现,离心泵扬程及扭矩匍匐下降特性很可能与不对称叶片空化相关。  相似文献   

7.
为了揭示驼峰的产生机理,采用CFD数值预报对低比转数离心泵驼峰工况附近内部流动特性进行了深入分析,建立了扬程与内部流动特性之间的关系.在0.1~1.6倍设计流量下扬程的模拟值与试验值的相对误差在3.62%以内,且预报驼峰所在工况与实测结果基本一致.对驼峰附近工况0.2,0.3,0.4倍设计流量下的内部流动进行了分析,预报结果表明:泵进口管道存在大量回流,造成叶轮进口预旋,诱发驼峰;各叶轮流道内均存在不同程度大小的旋涡,在0.2和0.3倍工况甚至堵塞了整个流道;存在旋涡的叶轮流道出口相对速度值较大,而绝对速度值较小.结合泵基本方程进一步分析,发现出口相对流速的增大使得扬程降低,引发驼峰.对比叶轮出口R/R2=0.9处绝对速度,小流量下波动更加严重,且其圆周分量下降非常明显,直接降低了这些工况下的扬程值;叶轮进口的预旋及出口回流是诱发驼峰的原因,消除或者减小这些非稳态现象可作为抑制驼峰的出发点.  相似文献   

8.
多级离心泵多工况内部压力脉动数值计算   总被引:1,自引:0,他引:1  
为研究多级离心泵内部压力脉动特点和瞬态流动特征,以三级卧式离心泵模型为研究对象,采用DES方法进行了4种不同流量工况下的全流场非定常数值模拟.为保证划分的网格准确反映多级离心泵内流动特性,进行网格无关性分析.通过定常计算的扬程效率和外特性试验值进行对比,证明数值模拟的可靠性.在每级叶轮、正导叶、反导叶上共设置36个监测点,通过分析模拟数据得出压力标准差值图、系数图和频域图.结果表明:导叶喉部是低压区频繁出现的区域,不同流量下,压力脉动呈现周期性变化规律,脉动强度以正导叶最为剧烈,偏离设计流量工况,压力标准差幅值增大.不同流量下,多级离心泵正导叶流道内压力脉动主频为叶频(327 Hz),倍频处峰值衰减迅速.研究成果为揭示多级离心泵内部压力脉动规律提供一定的理论参考.  相似文献   

9.
对在小流量工况下,利用数值计算的方法预测泵的性能时误差偏大的原因进行了分析,提出了在小流量工况下对扬程和效率的修正方法.通过对MD40-6.3多级泵一级的叶轮与导叶内部流场的数值计算,根据小流量工况下的修正公式预测了该多级清水离心泵一级的能量特性曲线,并与实验数据进行了比较.结果表明:在设计工况附近,预测值与实验值吻合...  相似文献   

10.
为研究叶轮几何参数对离心泵进口回流特性的影响规律,以IS65-50-160型低比转数离心泵为研究对象,基于Standard k-ε湍流模型,对模型泵进行三维定常数值模拟,得到模型泵的性能曲线,并与试验结果进行对比,分析了叶片数、叶片进口冲角和叶片进口边位置3个叶轮几何参数对模型泵进口回流特性的影响,研究回流发生时不同工况下的速度、流线分布.研究结果表明:叶轮进口回流首先发生在管壁附近,随着叶片数增加,叶轮进口回流速度不断减小,当叶片数Z=7时,模拟的扬程在各个工况下均较高,回流强度较小;当叶片进口冲角Δβ=10°时,流体从叶轮进口向进水管的反向流动速度较小,叶轮流道流线分布较好,回流强度较弱;当叶片进口边向前延伸时,离心泵性能得到改善,叶轮进口回流强度有减小的趋势.  相似文献   

11.
为了研究低比转数离心泵在小流量下的压力脉动特性,以IS50-32-160型离心泵为研究对象,在对模型泵进行网格无关性分析的基础上,采用分离涡模拟对不同小流量工况下的内部非定常流动进行数值计算.计算结果表明:隔舌对叶轮内部流动的影响较大,靠近隔舌的3个流道内均存在不同程度的进、出口旋涡,进口旋涡从叶片吸力面处产生,方向与叶轮旋转方向相同,而出口旋涡在叶片压力面产生,方向与叶轮旋转方向相同;随着流量的减小,旋涡不断发展,尤其是隔舌所在流道,进、出口旋涡会堵塞整个流道,且蜗壳出口会出现流动分离,导致出流不均匀;对叶轮和蜗壳内各监测点进行快速傅里叶变换,发现叶轮内的主要脉动频率为轴频及其倍频,且脉动从吸力面到压力面、进口到出口均逐渐增大;蜗壳内主要脉动频率为叶频及其倍频,且越靠近隔舌脉动越大,在隔舌处达到极大值;各监测点的脉动强度随流量的减小而增强.  相似文献   

12.
混流泵叶轮内流动性能直接影响整台泵的外部性能.为了探讨混流泵叶轮内部的流动机理,设计了透明蜗壳,加工了1套半开式混流叶轮,建立了混流泵试验系统并利用PIV对其在不同流量工况下叶轮内部的流动性能进行了试验测试.通过对叶轮流道内的时均相对速度分析后发现,在设计流量工况下压力面附近相对速度从进口到出口先减小后增大,吸力面附近的相对速度先增大后逐渐减小.在叶轮出口处沿叶片高度方向的相对速度靠近压力面附近变化不大,靠近吸力面附近从叶根到叶顶逐渐降低,相对流速最小值出现在吸力面叶顶附近.在小流量工况下,流道中部叶高截面至叶顶的区域内会出现回流现象.同时还研究了不对称形状的蜗壳对叶轮内部流动的影响,对叶轮相对蜗壳不同位置流道内的流动进行了测试,发现相对蜗壳不同位置流道内的相对流速的分布趋势基本相同.  相似文献   

13.
为了研究小流量工况下混流泵内存在的不稳定流动特性,基于大涡模拟亚格子尺度模型与滑移网格技术, 对包括进口管和出口弯管的混流泵全流场进行三维非定常湍流计算.外特性试验结果表明,在60%~85%最优工况范围内,扬程-流量特性曲线呈正斜率特性.数值模拟结果与试验结果误差控制在4%内,表明大涡模拟可以准确预估混流泵存在的扬程-流量正斜率不稳定特性.在此基础上,分析了混流泵产生正斜率不稳定特性的内流机理.分析结果表明,在小流量工况下叶轮入口切向速度呈明显的非对称性,叶轮与导叶流道内液流的失速效应使叶轮叶片表面和导叶叶片入口轮毂侧存在大尺度的旋涡结构.导叶流道内旋涡尺度较大,压力脉动沿导叶轴向呈明显的周期性波动,使旋涡区域从吸力面侧逐渐扩展到导叶流道,旋涡结构的涡核附着在压力脉动最小值的导叶吸力面中间叶高区,且涡核旋向与叶轮旋向相同.  相似文献   

14.
为研究离心泵在气液两相条件下叶轮内部流态及受力情况,选取一比转数ns=129的离心泵为研究对象,基于CFX软件提供的Eulerian-Eulerian非均相流模型对泵内部流场进行三维瞬态数值模拟,得到不同初始气相体积分数下叶轮流道内气相体积分数分布及叶片载荷等物理量变化规律,并将数值模拟结果与试验结果进行对比验证.结果表明:叶轮内气体主要集中分布在叶片吸力面区域,出口处则集中分布在流道中间区域,叶轮前盖板区域气相体积分数大于后盖板区域;当初始气相体积分数逐渐增大时,叶轮流道内流动紊乱,气液两相流动的不均匀性加剧,旋涡区域增大;随着初始气相体积分数的增大,叶片进口到靠近出口位置,叶片压力面所受压力载荷相对于吸力面减小的更快,而在出口位置附近叶片吸力面压力载荷减小的更快,叶轮径向力的不平衡性加剧,叶轮所受转矩减小.数值计算结果与试验结果在趋势上趋于一致.  相似文献   

15.
为了提高离心泵性能预测的精确度,降低水泵研发成本,对2种影响泵性能较大的隔舌模型进行了对比研究.通过Ansys ICEM CFD软件对离心泵3个结构部分进口、叶轮、蜗壳进行网格划分,利用商业软件 CFX 进行数值模拟.进口边界设定为均匀来流,出口边界设定为压力出口,进口段与叶轮壁面粗糙度0.02 mm,蜗壳壁面粗糙度0.05 mm,采用k-ε湍流模型并计算机械损失11%,容积损失4%,将模拟结果与试验数据进行对比发现:在各流量工况下,圆角隔舌模拟结果与试验数据误差较小且保持稳定;矩形隔舌模拟结果在小流量工况下接近试验数据,在大流量下则误差较大.通过压力分布和流线图发现随着流量的增大,圆角隔舌的高压区和流线分布都较为稳定,矩形隔舌在额定流量和大流量下高压区扩散,并且有旋涡产生,旋涡随流量增大而增强,影响了蜗壳内部流动,使得模拟误差变大.研究对比了2种隔舌模型外特性的差异,并通过流场分析找到了产生差异的原因,表明对隔舌进行圆角处理能明显地改善内部流场,从而提高泵的性能.  相似文献   

16.
为研究射流式离心泵内流动机理,以JET750G1型射流式离心泵为研究对象,搭建试验测试系统,分别对不同安装高度下射流式离心泵的空化及能量特性进行试验研究;基于k-ω湍流模型和Zwart-Gerber-Belamri空化模型,对0 mm安装高度下泵各工况点内部流动进行数值模拟.试验结果表明:当流量增大到一定程度之后,扬程-流量、功率-流量、效率-流量曲线均急剧下降;随着安装高度的增大,陡降起始点向小流量工况偏移.数值计算结果表明:扬程、功率、效率的数值模拟结果与试验值基本吻合,数值模拟性能陡降起始流量点比试验值大0.5 m3/h;射流式离心泵由于其面积比值较小,射流剪切层被迅速排挤到喉管壁面,泵内最低压力点出现在喉管内喷嘴稍后处,空化最早发生在该处;随着流量的增大,空化区域急剧向叶轮进口扩展,性能陡降起始点正好是泵内初生空化流量点,射流式离心泵的空化性能取决于其射流器的空化性能;射流器能提升离心泵扬程和自吸性能,但射流器内高速回流及强剪切流动,导致其效率及空化性能大幅下降.  相似文献   

17.
离心泵非定常流动计算及性能预测   总被引:6,自引:0,他引:6  
采用以SSTk-ω模型封闭的雷诺平均方程和滑移网格技术计算了离心泵内的非定常流场.基于非定常流动计算结果,考虑容积损失、圆盘摩擦损失和机械损失,对离心泵的性能进行了预测,并与实测性能曲线进行了比较.结果表明,在给定进口速度的条件下,由于叶轮与蜗壳隔舌的相对位置不同,泵的扬程和轴功率有比较大的脉动,且其脉动幅值随流量的增大而增大.定常流动计算和非定常流动计算所预测的性能曲线在大流量与设计工况时相差不大,在小流量时有明显的差别.与试验曲线相比,预测的扬程曲线偏低,轴功率曲线也偏低,效率曲线比较接近.由于在设计工况时定常计算和非定常计算差别不明显,在设计过程中采用定常计算是可行的.  相似文献   

18.
为了研究双吸离心泵在正转和反转时不同的流动特性,基于CFX软件采用标准k-ε模型对双吸离心泵内部流场进行了数值模拟和性能预测.计算了双吸泵在正转和反转时各自最佳工况点的水力性能,并对比了双吸泵最佳工况点在正转和反转时流场特性的差异.最后将性能预测的计算值与试验值进行对比分析,表明该计算方法能够较准确地预测泵的性能.在双吸泵反转用作液力透平时,发现泵在反转工况下的高效区向大流量偏移,效率在大小流量区的变化差别很大,流量太小将使得泵的转矩方向发生改变,导致流体不再对叶轮做功,并且泵反转的最大损失发生在蜗壳到叶轮的过渡区,即叶片的出口处.通过内部流场的分析,得到了详细的压力和速度矢量分布规律,对进一步研究泵反转作液力透平进行水力设计提供了一定依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号