首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
【目的】探究巴歇尔槽上游进口连接段最优形式。【方法】采用SolidWorks建模软件对不同进口连接段形式(内接圆弧过渡段、外接圆弧过渡段、直面过渡段、无过渡段)建立物理模型,利用ANSYS18.0软件对模型进行网格划分与数值模拟,运用Tecplot后处理软件,在自由出流情况下,分析不同进口连接段形式对水头损失、水面线、测流误差、流速及压强的变化情况,得出输水效率最高的连接段形式。【结果】采取进口连接段过渡的巴歇尔槽相比无连接段过渡的水流流线更平缓;无连接段过渡的巴歇尔槽局部水头损失最大、内接圆弧过渡段形式巴歇尔槽局部水头损失最小。巴歇尔槽测流精度相对误差随着来流流量的增大而减小;当来流流量为0.01 m3/s时,4种设计方案测流误差分别为:16.3、15.9、15.4、17.7;当来流流量为0.2 m3/s时,4种设计方案测流误差分别为:6、5.9、5.2、5.5。4种设计方案中,直面过渡段形式巴歇尔槽测流精度最高;巴歇尔槽纵剖面速度、压强云图变化梯度明显,流速最大处位于喉道段、静水压强最大处位于上游雍水段。湍动能云图数值最大处位于气相所分布的区域,气相相较于液相具有更强的流动性,分子间的能量交换更加剧烈,内能消耗更大。【结论】测流工作应该在来流流量较大时完成、进口连接段加以衬砌,防止因静水压强导致巴歇尔槽形变而产生测流误差。  相似文献   

2.
巴歇尔量水槽水力特性试验研究   总被引:7,自引:1,他引:6  
巴歇尔量水槽是一种通过明渠收缩段来量水的量水槽.试验在底宽0.3 m、深0.5 m、边坡系数为1的梯形渠道中设计了喉道宽0.25m的标准巴歇尔量水槽进行.试验完成了14组不同流量下的水位、水面线和量水槽上下游16个断面的流速量测.拟合出自由流和淹没流条件下水深-流量公式及上游水深与巴歇尔槽水头损失关系,对不同流量下佛汝德数沿渠身各控制断面的变化情况做了分析,从而可确定出临界水深断面位置,最后对大、中、小三个流量下的冲沙情况做了介绍.  相似文献   

3.
量水设施作为灌区灌溉管理工作的基础性设施,其水力特性的研究是灌区量水的基础工作。基于FLUENT 6.3软件,采用VOF方法和RNG k-ε湍流模型对弧角梯形渠道无喉道量水槽过槽水流进行三维数值模拟,对不同工况下的流速分布、水面线、水头损失等水力特性进行研究并建立相关的流量计算公式,与渠道流量进行对比分析。结果表明,当收缩比为0.57~0.74时,该数值方法能够在4.985 3~33.597 6 m3/s较大流量范围内测流,准确度较高,可为灌区渠系编制用水计划和调整供配水方案提供依据。  相似文献   

4.
为了研究不同因素对弧底梯形渠道无喉道量水槽水力性能的影响,基于Fluent6.3大型流体计算软件,采用RNGk-ε湍流模型和VOF方法相耦合,对弧底梯形渠道无喉道量水槽进行了三维数值模拟,并将模拟流量与渠道流量进行对比分析,结果表明二者吻合度较好,该数值模拟方法有效可靠。在确定模拟准确性的前提下,分析了该量水设施在不同喉口收缩比和底坡下的水位流量关系,上游断面弗劳德数,壅水高度,水头损失等水力特性,为量水槽的进一步研究及其优化推广提供了新思路。  相似文献   

5.
为进一步研究弧底梯形短喉道量水槽的水力性能及测流精度,基于RNG k-ε三维湍流模型和VOF(volume of fluid)方法,利用Fluent6.3大型流体计算软件,对不同喉道长度的短喉道量水槽进行了三维流场数值模拟。分析了该量水槽在不同喉道长度及流量下的水面线变化情况,进一步研究了弗劳德数、水头损失等水力性能,并针对同一渠道不同喉道长度的弧底梯形短喉道量水槽建立了平均误差小于5%的统一流量公式,精度较高,简单可用,该研究为后续量水槽测流公式的推导及弧底梯形短喉道量水槽在灌区的进一步应用提供参考。  相似文献   

6.
为探究U形渠道三角剖面堰量水的可靠性及其水力特性,以更好地进行灌区科学化管理,合理分配水量。基于堰流原理,通过Fluent 6.3软件,采用VOF方法和RNG k-ε湍流模型对U形渠道三角剖面堰进行三维数值模拟,并对模拟结果进行分析。对不同流量工况下沿程水面线,流速分布,佛劳德数以及水头损失进行探究分析,得到水面线在量水堰处急剧下降,同时流速增大。水流流态从缓流到急流再恢复成缓流,临界流出现在堰顶处,且最大水头损失不超过上游总水头的13%,理论分析发现各项水力特性均符合经典水力学基本原理。建立流量公式并比较分析计算流量,模拟流量和渠道流量,最大误差为13.86%,最小误差为0.03%,基本符合灌区量水堰测流的精度。  相似文献   

7.
<正> 一、引言 明渠量水是用水管理的基本要素。世界各地对改进用水管理技术的要求日益增加,十分需要准确、低成本的量水设备。自巴歇尔量水槽(巴歇尔,1926)创立以来,简化明渠量水建筑物及改进量水精度的试验一直在进行,导致了无喉道量水槽(鲁宾逊和张伯伦,1960;斯考盖伯等,1967)和瑞普罗格尔、鲍斯、克勒门斯简易量水槽(RBC)的开发。  相似文献   

8.
为了探索多孔板式测流装置在标准U形渠道中的测流精度及影响因素,利用Fluent数值模拟软件对不同流量下的水流流场进行模拟,可得到各个时段水面线的云图。多孔板式测流装置的每对流道相当于一个毕托管,利用动静压管中水的高差即为流速水头,从而得出流速■。通过观察水面线的变化以及对流速数据的分析,结果发现,数值模拟得到的流速与实际实验得到的流速平均相对误差在5%以内,吻合度很好,符合明渠测流装置测量精度的要求,进一步证明了数值模拟的准确性及可行性。  相似文献   

9.
为提高灌区精准量水技术,设计了一种基于弹簧形变量与渠道过水断面瞬时流量之间关系的明渠测流装置.该装置的模型试验在矩形渠道中,选定流量范围为20~85 m3/h,共在14个流量工况下进行.结合理论分析及数值模拟对该装置的流量公式、测流精度、水头损失等量测特性进行分析.研究结果表明:渠道过水断面瞬时流量Q同形变量d与参数C1之和呈5/6次方关系,在量测板板宽为30,40,50,60 mm时Q与d+C1的5/6次方的线性相关性良好;拟合得到弹簧板式测流装置的流量公式,公式计算流量和试验时的实测流量相吻合,最大相对误差为4.56%,其中板宽40 mm时的最大相对误差为1.43%;量测板上游水位的模拟值和实测值最大相对误差为4.54%,模拟结果与实测结果吻合;量测板产生的水头损失随着板宽的增加而增加,在板宽小于40 mm时,水头损失占比总水头均小于10%.研究成果为弹簧板式测流装置在灌区的应用提供了理论依据.  相似文献   

10.
过渡段形式对无喉道量水槽水力特性的影响   总被引:1,自引:1,他引:0  
为了对比不同过渡段形式对无喉道量水槽水力特性的影响,在传统矩形无喉道量水槽结构的基础上,设计了过渡段为圆形和椭圆形的无喉道量水槽,在宽0.6 m,深0.3 m的矩形渠道上进行了一系列试验。试验测量了无喉道量水槽在不同流量下的水位,对水位流量关系进行拟合,对不同流量下的佛汝德数和水头损失进行了分析。结果表明,过渡段形式对无喉道量水槽的测流精度、佛汝德数及水头损失均有一定影响。3种无喉道量水槽的槽前水流均满足测流要求,直线形过渡段无喉道量水槽的测流精度最高,但水头损失最大;圆形过渡段无喉道量水槽的测流精度虽较直线形过渡段的低,但水头损失最小。  相似文献   

11.
提出了一种针对小流量的、制作安装简易的量水设备--便携式三角形喉道量水槽.该量水槽的原型过流试验在9种流量(0.90,1.44,1.88,2.36,2.84,3.36,3.92,4.57,4.90 L/s)的自由出流和淹没出流工况下进行,设置于断面形式与田间灌水沟相近的U型渠道内,通过测量量水槽内13个控制断面水位,对水面线、傅汝德数、临界淹没度、测流精度等水力性能进行试验分析.三角形喉道量水槽的过槽流量与上游水深具有良好的乘幂关系,复相关系数达到0.999 5;拟合得出自由出流和淹没出流状态下的水深流量公式,计算流量与实际流量比较,平均误差和最大误差均在5%以内.分析了不同流量工况下傅汝德数变化规律,进而确定了临界水深断面产生的具体位置在喉道段后半段,距离量水槽进口为334~355 mm;该三角形喉道量水槽的临界淹没度稳定,范围为0.80~0.86;单个量水槽的流量适用范围为0.90~5.00 L/s.  相似文献   

12.
【目的】量水平板具有构造简单、不易淤积等优点,虽已建立流量与平板偏转角、上下游水深及板型等因素的关系式,但底坡对量水平板水力特性的影响还缺乏系统研究,有必要深入分析,以提高量水平板测流公式的适用范围。【方法】以北方灌区常见U形渠道为试验水槽,选择断面最佳收缩比0.439的U形渠道量水平板为试验对象。通过设置3种水槽底坡(0.000 2~0.001)和4~7种流量(10~44 L/s)共18种试验工况,分析了各工况下水面线和平板偏转角的变化规律,研究了底坡对水面线、相对水头损失、能量转化系数、平板偏转角度和综合流量系数的影响。基于闸孔淹没出流公式,拟合出含底坡变量i的半经验流量公式。【结果】在相同流量情况下,板后水跃长度、能量转化系数以及综合流量系数随底坡增大而增大;水面线、相对水头损失和平板偏转角度均随底坡增大而减小;在试验流量范围内,拟合流量公式的平均相对误差为2.6%,最大相对误差为6.5%,满足灌区量水要求。【结论】底坡对U形渠道量水平板测流影响显著,建立了包含渠道底坡的U形量水平板测流公式,提高了其适用性。  相似文献   

13.
侧堰作为一种量水设施,安装在渠道侧边,直接与小型渠道或田间入水口连通,无需改变原有渠道断面结构,具有体型简单、安装拆卸方便、精度较高等优点,有很好的应用价值,但目前对其堰型以及水力特性影响因素的研究还不深入,在前人研究的基础上,对矩形渠道4种不同堰角(θ=0°,3°,6°,9°)的梯形侧堰在7种不同流量下进行了49组试验,获得了侧堰附近水面线,并基于无量纲原理研究了流量系数与其影响因素之间的关系,推导了操作简单且精度较高的流量公式,侧堰正向放置时其最大相对误差为9.95%,平均相对误差为1.57%,逆向放置时其最大相对误差为9.93%,平均相对误差为0.28%,均满足灌区精度要求;研究了水头损失与流量及堰角之间的关系,堰角越大,水头损失越小,其变化范围为40%~70%之间。  相似文献   

14.
侧槽溢洪道被广泛运行于水利工程,但由于受场地、投资等限制,部分工程采用正堰与侧堰相结合的L型布置,导致槽内水流结构更加复杂。以景宁某工程溢洪道为例,采用Flow3D三维仿真软件模拟了L型侧槽溢洪道进口段的水流结构,并结合水工模型试验,对槽内的水流流态、流速分布、水面线、压强和消能率等水力特性参数进行了对比分析。结果显示L型溢洪道侧槽内正、侧堰两股水流相互作用后,可有效提高过流能力,降低侧槽内水位,增加消能率;其次,数值模拟计算结果与水工模型试验基本吻合,进一步表明三维数值模拟在研究复杂水流结构时的可行性,成果可为类似工程的研究提供参考。  相似文献   

15.
翼柱型量水槽在3种常用渠道上的应用性能对比试验研究   总被引:1,自引:0,他引:1  
翼柱型量水槽是一种新型量水槽,其应用在灌区具有成本低、便于修建、量水精度高的特点。【目的】探讨翼柱型量水槽在矩形渠道、梯形渠道、U形渠道上的适用范围。【方法】试验在矩形渠道、梯形渠道、U形渠道上分别设计3种收缩比的量水槽,在不同流量工况下进行试验,并对测流精度、佛汝德数、水头损失、壅水高度等进行比较分析。【结果】拟合出矩形渠道、梯形渠道、U形渠道不同收缩比量水槽的流量公式,平均误差分别为0.42%、1.34%、1.65%,均满足规范误差小于5%的要求;翼柱型量水槽在3种渠道上游佛汝德数Fr均小于0.4,在U形渠道上游Fr最小;翼柱型量水槽在3种渠道上最大临界淹没度均大于0.85,应用于U形渠道的最大临界淹没度最高;矩形渠道修筑翼柱型量水槽产生的水头损失占上游总水头比例最小。【结论】翼柱型量水槽可用于灌区节水续建配套,同一比降条件下,矩形渠道与U形渠道衔接位置应用翼柱型量水槽效果最佳。  相似文献   

16.
由武汉大学承担的“九五”国家科技攻关计划项目“节水农业技术研究与示范”“明渠测流长喉槽结构优化及设计理论研究”成果 ,通过由水利部国际合作与科技司组织的鉴定专家委员会鉴定。该研究成果的创造性、先进性体现在以下方面 :(1)分析对比了国内外现有的明渠量水设施和存在的问题 ,选取量水精度高、水头损失小的长喉槽作为研究对象。(2 )采用边界层理论分析计算长喉槽水力特性 ,除了考虑垂直收缩影响外 ,还增加侧向收缩影响 ,提高了计算精度 ,量水公式误差小于 1.5 %。(3)通过一系列的模型实验 ,寻找沿程水头损失和局部水头损失均较小的…  相似文献   

17.
精准的灌区量测水方法与技术是减少灌区无效弃水,保障灌区用水安全的重要手段。针对灌区明渠量测水方法与技术,系统阐述了水工建筑物量水、特设量水设备量水、流速—面积法量水和水位—流量法量水4种方法的研究进展,归纳分析了4种量测水方法的适用条件及量测精度,阐述了不同场景下明渠量测水方法应用情况。结果表明:配备水位传感器等设备的量水建筑物为数据获取与传输提供了便利;优化建筑物结构特征可提升建筑物适用范围和测量精度,推动了特设量水设备技术发展。流速—面积法因量测精度高常用于校准其他量测水方法,但其操作复杂、耗时长导致测流效率较低,随着超声波等技术日趋成熟,可用以复杂流态流量的测量工作;流速分布规律作为流速—面积法量水的基础,利用流速分布规律可建立点流速与断面平均流速的关系,进而通过点流速获取断面流量。水位—流量法受断面参数影响显著,仅对特定工况可用,因此难以推广。利用机器学习方法处理大量水位与流量关系的历史数据对水位预测流量提供了数据处理手段。最后,探讨了非接触式量测水技术以及模型算法对流量预测的发展前景,结合目前研究基础和实际需求对未来的研究方向进行了讨论,以期为进一步提高量测水精度、降低量测水...  相似文献   

18.
针对底坡大于1/200的U形渠道的量水设施匮乏,设计了一种斜坎量水堰,通过在U形渠道上对9种不同体型斜坎量水堰在8种流量下的72组过堰水力性能原型试验,分析了水面线变化趋势、堰高及量水堰坡度对上游壅水高度的影响,研究了各断面水深与流量的关系。结果表明:量水堰上游坡度和堰高对水面线、上游壅水高度影响较大,且堰高的影响大于量水堰坡度对其的影响;建立的斜坎量水堰测流公式精度较高,在量水堰堰高大于5 cm时误差基本分布在±8%以内。量水堰建议堰高P小于10 cm,堰长L为堰高P的10~12倍。  相似文献   

19.
长喉槽是一种经济、稳定、水头损失较小的量水设施,为优化其体型设计,并为其应用于含沙水流渠道量水提供参考,采用三维流体力学计算软件对不同收缩形式长喉槽内部的水流与泥沙特性进行了模拟计算。在验证数值模型可靠性的前提下,由弗汝德数、渠道超高分析确定了收缩率取值区间:仅有侧收缩形式0.36~0.40、仅有底收缩形式0.40~0.72、既有侧收缩又有底收缩形式0.36~0.73;水流含沙时,模拟结果表明泥沙主要淤积在长喉槽上游行近渠段,并且泥沙淤积厚度:仅有侧收缩形式<既有侧收缩又有底收缩形式<仅有底收缩形式。研究表明3种收缩形式长喉槽中,既有侧收缩又有底收缩形式结构设计灵活度高,从泥沙淤积角度考虑,仅有侧收缩形式最优,结论可为我国多沙河流灌区的长喉槽量水设计提供技术依据。  相似文献   

20.
梯形渠道翼柱型量水槽试验研究与数值模拟   总被引:1,自引:1,他引:0  
【目的】探究翼柱型量水槽在梯形渠道量水的适用性。【方法】对4种不同收缩比的翼柱型量水槽进行水力性能模型试验,并运用Fluent 17.1软件对其中2种收缩比的量水槽进行了数值模拟。通过对上游水位、流量和收缩比等进行分析,拟合得到了量水槽流量公式,并从测流精度、佛汝德数、临界淹没度以及水头损失等方面对其量水性能进行了分析。【结果】翼柱型量水槽在梯形渠道量水性能优良,水位-流量相关度极好,R2可达0.997 1以上,拟合的流量公式简明易用,测流平均误差为2.41%,上游佛汝德数均小于0.4,临界淹没度达0.85以上,通过数值模拟对量水槽水面线和流量进行误差分析,将实测值与模拟值进行比较,二者平均误差分别为3.80%和3.72%,与试验结果高度吻合,模拟结果准确可靠。【结论】翼柱型量水槽可用于梯形渠道量水,且量水精度满足明渠测流规范相关要求。Fluent软件可用于翼柱型量水槽数值模拟。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号