首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
为实现经济绿肥高效、低能耗以及高掩埋率翻压作业需求。设计了一款GFY-200型经济绿肥粉碎翻压复式作业机,确定了粉碎翻压组件、罩壳拖板组件、动力镇压辊组件等关键部件的结构和技术参数,并利用该机对黑豆、印度豇豆、决明子、紫云英等4种夏、冬经济绿肥开展翻压试验。田间试验表明:在机具作业速度为2.5~3.0 km/h,刀辊转速为387 r/min条件下,经济绿肥平均翻压深度为16.9 cm,经济绿肥茎秆平均粉碎长度合格率为82.35%,经济绿肥平均掩埋率为93.28%,工作效率可达0.67~1.0 hm 2/h。经济绿肥粉碎翻压复式机试验指标均符合国家和行业标准要求,翻压质量和功耗消耗上也明显优于畜力犁、铧式犁、旋耕机等现有绿肥翻压方式,增加土壤保墒效果的同时,提高了绿肥翻压的肥效,具有很好的推广应用价值。  相似文献   

2.
湖北省农机研究所将工农-7拖拉机改为兼用型,为之设计了双铧栅条犁、耖、碎土轮、星形耙、铁制耥板和收割机等农具,以满足水田作业的需要。 双铧栅条犁 该犁有螺杆式的耕深调节机构,和螺杆式、卡齿式的碎土、翻土性能调节机构,犁架高515毫米。它翻垡、断垡、植被覆盖和平整地表等性能均较好,拉力较轻,耗油0.5~0.7公斤/亩。犁重36公斤,耕宽360~430毫米,耕深最大可达200毫米,常用120~160毫米。  相似文献   

3.
1GMC-70型船式旋耕埋草机的设计   总被引:5,自引:0,他引:5  
针对我国南方多熟制稻作区秸秆难以用人畜力及常规机械埋覆还田的生产实际,研制了1GMC-70型船式旋耕埋草机.该机由船式拖拉机(机耕船)和悬挂于船尾的左、右旋螺旋埋草刀辊组成.机组前进时,机耕船船底板将秸秆压伏于地表;船尾刀辊回转,将稻秆、麦秆、油菜秆、绿肥、杂草等秸秆及植被埋覆还田.经试验表明,该机平均耕深可达117 mm;秸秆覆盖率95.6%,生产率0.133~0.167 hm2/h,适用于泥脚深度350 mm以下、秸秆高度700 mm以下的水田耕整作业要求.  相似文献   

4.
目前紫云英为绿肥中的一种,尤其是作为水稻试验绿肥材料,具有肥效好,无污染,能够很好的改善土壤环境,提高土壤的持水能力和透水性能,促进微生物的活动,从而达到水稻产量提高等优点,绿肥-紫云英能够最大限度的减少化肥的施用。水稻移栽前,将紫云英翻压进行翻压处理,翻压时间的不同会影响紫云英的释放,从而影响水稻对氮钾等养分的利用。本试验通过对紫云英不同的翻压时间对水稻产量的测定。试验采用5个处理,化肥+早稻移栽前15天翻压紫云英(以早稻为例);化肥+早稻移栽前10天翻压紫云英;化肥+早稻移栽前5天翻压紫云英;施100%化肥;当地常规施肥(CK)。每个处理4次重复,共计20个小区,小区面积为20m2。结果表明:施用化肥+早稻翻压紫云英水稻产量高于100%施化肥、当地常规施肥(CK),其中施用化肥+早稻移栽前15天翻压紫云英水稻产量最高。紫云英的不同翻压时间对产量有一定的影响,因此合理的翻压时间能提高紫云英促使水稻对氮磷钾的吸收,从而达到水稻增产。  相似文献   

5.
随着大功率拖拉机在新疆地区的推广使用,与其相配套农机具的研制相对滞后,使得大功率拖拉机的优势难以充分发挥。研制开发与大功率拖拉机相配套使用的栅条式液压翻转犁,对该犁的主犁体、悬挂装置、调幅装置等关键部件进行设计,通过该型犁的田间实地测试,对试验结果和机具工作状况进行记录分析。田间试验结果表明,栅条犁作业速度9.1 km/h,耕深350 mm,耕宽2 700 mm,运行平稳、翻垡均匀,各项指标均达到或者超过国外同类机具水平,为大功率拖拉机在新疆地区的应用起到积极的推进作用。  相似文献   

6.
为了解决目前稻麦秸秆还田作业机具作业效果不理想、秸秆埋覆深度浅及保墒蓄水能力差等问题,将秸秆犁翻旋耕技术与保护性耕作要求相结合,设计了一种能够发挥犁翻旋耕等多种耕作方式优势的可调深复式耕整作业机,可一次性地完成犁翻、旋耕及深松等多项作业。为此,重点介绍整机结构及其工作原理,确定了机具关键部件的结构形式和主要参数。试验结果表明:该机具在工作时性能稳定、秸秆埋覆粉碎效果好、作业效率高、通用性强,能够满足多种条件下的稻麦秸秆还田复式作业要求。  相似文献   

7.
针对当前农业生产需求及147kW以上拖拉机配套液压翻转犁依赖进口的现状,研制了1LFT-555型液压翻转栅条犁。该机翻转可靠性高,操作简单,主犁体采用栅条式结构,翻垡覆盖效果好,耕作阻力小。田间试验结果表明:该机和不同功率及多种轮距的拖拉机配套使用,作业速度可达10.8km/h,犁耕作业效果好,在棉花地和水稻地的耕深稳定性系数及耕宽稳定性系数均达到了95%以上,在棉花地的碎土率也达到了90%以上。该机各项性能指标达到国家有关标准的要求,为147kW以上拖拉机提供了配套犁耕机具。  相似文献   

8.
针对东北地区整地作业中,结块多、土壤残茬严重、犁底层加厚等问题,根据我国现有的东方红-75/802型拖拉机的动力条件,设计了一种适用于马铃薯田的驱动式碎土整地联合作业机。该机是根据国外先进的土壤保护耕作法,结合东北地区土壤情况和马铃薯田整地要求设计的一种机具。本文阐述了机器整体结构及工作原理,设计了碎土辊,分析了碎土辊运动过程、碎土辊工作过程中楔形齿所受的阻力及碎土辊作业时所需功率,基于EDEM离散元仿真技术,建立了部件-土壤仿真模型,以土壤破碎率为试验指标,以碎土直齿末端倾角、碎土直齿边长和机组速度为试验因素进行仿真试验,在仿真基础上进行田间试验,试验结果表明,所设计的碎土整地联合作业机碎土率为98.45%、平均耕深为14.5 cm、机组速度为5.7 m/s、碎土辊消耗功率为19.24 kW,具有良好的作业效果,满足马铃薯田整地作业要求。  相似文献   

9.
为解决化学药剂控制水田杂草所带来的环境污染及杂草抗药性增强等危害,设计了一种栅条式水田行间除草装置。同时,对其工作原理进行了阐述,通过运动学分析,推导了栅条的运动轨迹方程,并在试验台上进行试验研究。试验结果表明,该装置可一次性完成对杂草的压、翻、埋等作业,且在栅条个数为10个、栅条宽度为30mm、除草深度为50mm时,除草效果最佳,除草率可达81%,满足水田作业除草性能的要求。  相似文献   

10.
人字型水旱两用旋埋刀辊设计与试验   总被引:3,自引:0,他引:3  
为适应长江中下游水旱轮作多熟制稻作区的秸秆还田与土壤耕作,降低现有组合刀辊的作业功耗和轴向负载,开展了螺旋横刀排列方式及结构参数的相关研究。根据对刀辊轴向受力的理论分析,提出平衡刀辊轴向力的初步方案,采用离散元软件模拟不同排列形式的螺旋横刀对土壤的切削过程,仿真结果表明,人字型排列方式的轴向受载稳定性与切削阻力优于锯齿型和交错型。基于人字型排列原则,重新规划旋耕刀的布局并设计配套刀盘,形成一种人字型水旱两用旋埋刀辊。为了进一步降低刀辊功耗,建立螺旋横刀切削土壤的数学模型,分析安装角与刀宽对切削阻力及秸秆埋覆效果的影响,并进行优化。为验证刀辊优化后的区域适用性及减阻效果,进行了田间试验。试验结果表明:人字型水旱两用旋埋刀辊适用于大多数水稻田的秸秆埋覆与土壤耕作,其中耕深均值为18. 10 cm、耕深稳定性系数均值为92. 75%、耕后单幅平整度均值为2. 00 cm、秸秆埋覆率均值为92. 60%,均满足设计要求。同时,在不降低秸秆埋覆率的前提下,人字型刀辊较交错型刀辊降低功耗0. 34%~17. 01%; 50°安装角的螺旋横刀的刀辊较35°安装角螺旋横刀的刀辊降低功耗6. 81%~16. 46%,达到了优化目的。  相似文献   

11.
为解决现有绿肥播种方式作业时存在的排种器适用性不强、撒播作业质量不高、生产效率低等问题,设计了一种槽穴组合式多品种绿肥定量电动匀播装置,设计了棱锥型种箱、槽穴组合式排种器、定量电动匀播组件等关键部件。试验测量了8种主要绿肥品种滑动摩擦角,设计棱锥型种箱最小倾面角为35.5°;根据所播绿肥种子大小、千粒质量和单位面积用种量等因素选择槽穴组合式排种器的排种通道并设定了通道有效开度;应用EDEM软件构建匀播机构排种仿真模型,验证了匀种圆柱直径在3.2~6.8mm时,种子经匀种圆柱碰撞落地后的概率分布规律较好。以青弋江1号为试验材料,通过多因素试验和回归分析,得出影响出苗率和撒播均匀性变异系数的主次因素均为:排种轮转速、匀种圆柱直径、机具前进速度;影响各行排量一致性变异系数的主次因素依次为:匀种圆柱直径、机具前进速度、排种轮转速;最终确定影响槽穴组合式多品种绿肥定量电动匀播装置播种质量最佳因素参数组合为:机具前进速度3.36km/h,排种轮转速44r/min,匀种圆柱直径6.14mm。通过田间试验验证,最优参数组合条件下紫云英绿肥出苗率为96.49%,各行排量一致性变异系数11.73%,播种均匀性变异系数8.67%,与模型预测优化结果的相对误差均小于6%,验证了所建模型与优化参数的合理性,与已有的绿肥播种方式相比,槽穴组合式多品种绿肥定量电动匀播装置作业效率为0.8~1.0hm2/h,优于人工撒播作业效率0.1~0.125hm2/h、手摇撒播作业效率0.2~0.3hm2/h和电动喷播作业效率0.5~0.8hm2/h,低于无人机飞播作业效率3~4hm2/h。  相似文献   

12.
开沟旋耕机渐变螺旋升角轴向匀土刀辊设计与试验   总被引:4,自引:0,他引:4  
针对长江中下游农业区开厢沟后旋耕作业地表平整度差、土壤轴向分布不均匀等问题,设计了一种渐变螺旋升角轴向匀土刀辊。分析了旋耕刀轴向运土力学条件,建立了匀土刀辊旋耕刀扰土体积参数方程和旋耕刀渐变螺旋升角排列螺旋线方程,并分析确定了影响匀土刀辊轴向匀土性能的关键因素为刀辊转速、旋耕切土节距、初始螺旋升角。运用离散元法模拟匀土刀辊作业过程,以耕后地表平整度为试验指标,以刀辊转速、旋耕切土节距、初始螺旋升角为试验因素,进行了正交试验,建立地表平整度回归方程。利用Design-Expert分析软件得到最优参数组合为:刀辊转速260r/min、旋耕切土节距8.3cm、初始螺旋升角71°,此时仿真地表平整度为17.35mm。在最优参数组合下进行了田间试验,结果表明,匀土刀辊作业后,地表平整度、土壤轴向分布均匀度、耕深稳定性系数、碎土率的均值分别为14.5mm、8.82%、92.34%、81.66%,整体耕整效果优于常用旋耕刀辊。  相似文献   

13.
针对翻转犁能耗高、易粘附、易遭冲击破坏等问题,研制了一种高速智能液压翻转犁,优化了整机结构与配置参数。以穿山甲体表的鳞片三角圆弧状结构和蜣螂体表的凸包结构相结合作为仿生原型设计了一种仿生犁体,并设计了一种双向犁耕装备的过载保护自动避障机构,得到平衡状态下对应所需的弹簧预紧力为9.75KN,取安全系数为1.3,设置初始状态预紧力为12.67KN。建立了犁体耕作过程离散元仿真模型。仿生减粘犁体相对传统犁体土壤减粘性能提升44.15%,减阻7.8%。耕深稳定性变异系数2.86%,土垡破碎率97.1%。研究结果可为高速智能液压翻转犁设计及改进提供参考。  相似文献   

14.
针对长江中下游稻油轮作区油菜直播作业时,因土壤黏重板结,地表前茬水稻留茬高、留存秸秆量大,导致旋耕部件易缠绕,秸秆埋覆率低,致使深施肥铲易挂草壅堵,作业厢面拖堆不平,难以实现深施肥作业。本文设计一种适应高茬黏重稻茬田的油菜直播埋茬防堵深施肥复合作业装置,确定埋茬防堵部件深旋弯刀、浅旋弯刀、防堵直刀和深施肥铲的结构参数及刀片和深施肥铲排列安装方式。利用EDEM仿真分析了机具作业后的秸秆埋覆、空间分布及颗粒肥料深施后的分布深度,结果表明:作业速度为2.5 km/h、耕作深度为150 mm、埋茬防堵部件刀辊转速为345 r/min时,秸秆埋覆率为86.53%、施肥深度为83~106 mm。开展了油菜直播机4种田间作业工况验证试验,结果表明:埋茬防堵深施肥复合作业装置田间作业性能良好,实现了肥料深施,秸秆埋覆率为86.69%~90.35%、厢面平整度为16.48~22.65 mm、施肥深度为87.4~109.5 mm、碎土率为81.24%~92.13%。  相似文献   

15.
水稻秸秆反旋深埋滑切还田刀优化设计与试验   总被引:1,自引:0,他引:1  
针对水稻秸秆深埋还田时,还田刀作业功耗过高和缠草的问题,结合还田机作业过程,分析还田刀功耗过高和缠草的原因,设计了一种反旋深埋滑切还田刀。使用阿基米德螺旋线设计还田刀侧切刃,提高还田刀的滑切性能,计算并验证侧切刃曲线的动态滑切角满足土壤-秸秆滑出还田刀的条件,使用圆弧曲线设计还田刀正切面,以耕宽和正切面安装角为依据确定圆弧半径为60mm。运用离散元仿真软件EDEM进行了反旋深埋滑切还田刀与传统还田刀的仿真对照试验,结果表明反旋深埋滑切还田刀的秸秆还田率、抛土性能与传统还田刀基本一致,作业功耗降低18.19%,选取留茬高度、刀辊转速和机具前进速度为影响因素,选取作业功耗为评价指标进行正交试验设计,确定影响还田机作业功耗的因素从大到小依次为:刀辊转速、机具前进速度、留茬高度。田间试验结果表明:在土壤含水率为20%~30%,地表秸秆覆盖量为336~353g/m2,拖拉机作业速度为低速一挡(1.5km/h),刀辊转速为250r/min时,秸秆深埋滑切还田刀作业后,平均耕深为18cm左右,秸秆还田率为87.9%~89.7%,地表平整度为2.1~3.7cm,作业指标均满足秸秆还田的农艺要求。  相似文献   

16.
多功能固体有机肥撒施机拨料辊的设计及试验研究   总被引:1,自引:0,他引:1  
拨爪式拨料辊是有机肥(包括厩肥)撒施机关键部件。为此,根据有机肥撒施机整机设计目标,对拨料辊进行了设计,并计算优化了拨爪式拨料辊拨爪的折弯角、排列间距及排列方式,得到最佳设计参数。通过ANSYS Workbench对拨料辊进行模态分析,结果表明:在正常工作下拨料辊不会发生共振,符合设计要求。对整机进行试验验证,有机肥抛撒幅宽为5m,抛撒均匀性横向变异系数为15.4%,纵向变异系数为8.9%,均满足设计的要求。  相似文献   

17.
不同耕层结构对海南香蕉地砖红壤物理特性的影响   总被引:1,自引:0,他引:1  
短周期的香蕉种植方式结合传统的香蕉地翻耕、旋耕模式导致香蕉田土壤耕作层以下不断压实并形成犁底层,而深松可打破坚硬的犁底层,提高水分利用效率,有利于作物根系的生长发育.为探明不同深松模式耕层构造对海南香蕉地砖红壤物理特性的影响,在海南大学香蕉试验田设置了全虚耕层构造(Q1)、全实耕层构造(Q2)、虚实并存耕层构造(Q3)...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号