首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A feeding trial was conducted to determine the optimum dietary protein level of sea cucumber Apostichopus japonicus juvenile focusing on growth performance and non‐specific immune response. Diets with seven crude protein levels (42.0, 108.9, 155.2, 216.7, 258.0, 313.3 and 357.5 g kg?1) were fed to sea cucumber juveniles (1.05 ±0.01 g) once a day for 100 days. More than 70% survival was observed, and there was no significant difference among all treatments. The sea cucumbers fed diets containing 108.9 g kg?1 crude protein showed significantly (< 0.05) higher body weight gain than those of the sea cucumbers fed diets containing 42.0, 216.7, 258.0, 313.3 and 357.5 g kg?1 crude protein. No significantly differences (> 0.05) were observed in moisture, crude protein, crude lipid, ash and carbohydrate content of the body wall among all treatments. The coelomic fluid catalase activity of the sea cucumbers generally increased with increasing dietary protein levels. Therefore, the acid phosphatase, superoxide dismutase and lysozyme activity increased with increasing dietary protein levels at first and decreased subsequently. The relationship between dietary protein levels and body weight gain was analysed by a second‐order polynomial regression analysis model. The result indicates that the optimum dietary protein level for sea cucumber juveniles is 135.4 g kg?1.  相似文献   

2.
To determine the effects of A3α‐peptidoglycan (A3α‐PG) extracted from Bifidobacterium sp. on the growth, immune response and disease resistance of sea cucumber Apostichopus japonicus, a 70‐day feeding trial was conducted in this study. A total of 216 sea cucumbers were fed with four practical diets prepared from a commercial feed with different contents (0, 1.5, 2.5 and 4.0 g kg?1) of A3α‐PG. The specific growth rate (SGR), total coelomocyte count (TCC), phagocytotic activity and activities of four immunological enzymes in both cell‐free coelomic fluid (extracellular, EC) and coelomocyte lysate supernatant (intracellular, IC), including acid phosphatase (ACP), alkaline phosphatase (ALP), peroxidase (POD) and superoxide dismutase (SOD), were measured at the end of the feeding trial. Finally, the animals were administered a 16‐day Vibrio splendidus challenge via intraperitoneal injection to test the potency of A3α‐PG on disease resistance. Compared with the control (0 g kg?1 A3α‐PG), a significant increase (< 0.05) in SGR was observed in the groups fed with 1.5 and 2.5 g kg?1 A3a‐PG. The TCC, ranging from 7.25 × 106 to 1.05 × 107 cells mL?1, was not significantly affected (> 0.05) by A3α‐PG,. Coelomocyte phagocytotic activities in all of the A3α‐PG‐supplemented groups were significantly activated (< 0.05), but no significant difference (> 0.05) was observed. Sea cucumbers fed with 1.5 and 2.5 g kg?1 A3α‐PG exhibited significant activation (< 0.05) of EC/IC‐ACP, EC/IC‐ALP, and EC/IC‐POD activities. A significant increase in EC‐SOD activities (< 0.05) was exhibited by all groups with A3α‐PG supplementation. The challenge test showed that animals fed with diets containing 2.5 and 4.0 g kg?1 A3α‐PG had significantly lower cumulative mortalities compared with the control 16 days after exposure. All of the results presented here show that A3α‐PG can positively enhance the growth, immune response and disease resistance of sea cucumber, suggesting that dietary supplementation of A3α‐PG has potential applications in the health management of economic species of sea cucumber.  相似文献   

3.
A feeding trial aimed to determine the effects of dietary lipid level on growth performance, body composition and digestive enzymes activity of juvenile sea cucumber, Apostichopus japonicus. Diets with six crude lipid levels (1.9, 13.8, 29.1, 43.6, 59.6 and 71.6 g kg?1) were fed to sea cucumbers (initial weights 0.65 ± 0.01 g) at a density of 30 juveniles, once a day. After 60 days, body weight gain (BWG), specific growth rate (SGR), feed intake (FI) and protein efficiency ratio (PER) decreased with increasing dietary lipid levels. The sea cucumbers fed 1.9 g kg?1 crude lipid showed significantly higher (P < 0.05) BWG than those of the sea cucumbers fed 59.6 and 71.6 g kg?1 crude lipid. Intestinal protease and lipase activities generally increased with increasing dietary lipid levels. Eicosapentaenoic acid (EPA) content of body walls generally increased with increasing dietary lipid levels. Docosahexaenoic acid (DHA) content of body walls reached the maximum value at a dietary lipid level of 13.8 g kg?1. N‐3 highly unsaturated fatty acid content followed the same pattern of DHA. According to the growth performance and body composition of sea cucumbers, it can be indicated that the optimum dietary lipid level for juvenile sea cucumbers is between 1.9 and 13.8 g kg?1.  相似文献   

4.
The aim of this experiment was to determine the effects of dietary inclusion with mannan oligosaccharide (Bio‐Mos, Alltech, Nicholasville, KY, USA) on growth, survival, physiological and immunological conditions and gut morphology of the black tiger prawn (Penaeus monodon). Five diets supplemented with MOS at 0 g kg?1 (control diet), 1, 2, 4 and 8 g kg?1 were fed to the prawn juveniles (0.4 ± 0.06 g, total weight) for the duration of 63 days. Growth was the highest (< 0.05) when the prawns were fed the 1 g kg?1 MOS included diet. Wet tail muscle index (Tw/B), dry tail muscle index (Td/B) and tail muscle protein (Tmp) were higher (< 0.05) in the prawns fed MOS included diets MOS compared with the prawns fed the control diet. Total haemocyte counts (THCs) of the prawns fed MOS included diets were higher (< 0.05) than THCs of the prawns fed the control diet. Epithelium layer and epidermal cell density of the gut of the prawns fed 1 g kg?1 and 2 g kg?1 MOS diets were better than the prawns fed the control and other MOS diets. The results imply a positive effect of dietary supplementation of 1–2 g kg?1 MOS in the culture of black tiger prawns.  相似文献   

5.
A feeding trial was conducted to determine the adequate dietary ascorbic acid (AsA) levels and the effects on growth, meat quality and antioxidant status of sea cucumber (10.04 ± 0.06 g), Apostichopus japonicus. l ‐ascorbyl‐2‐polyphosphate (35% AsA equivalent) was supplemented separately to the basal diet to obtain five AsA levels, 0, 598, 1473, 4676 and 14340 mg kg?1 diet respectively. After 60‐day feeding trial, the sea cucumbers fed diets containing 598 and 1473 mg AsA kg?1 showed significantly higher (< 0.05) body weight gain and specific growth rate values than the sea cucumbers fed control diets. The sea cucumbers fed diets containing 1473 and 4676 mg AsA kg?1 showed significantly higher (< 0.05) hydroxyproline contents than those of the sea cucumbers fed diets containing 0 and 598 mg AsA kg?1. Antioxidant enzymes such as total antioxidant capacity, superoxide dismutase and glutathione peroxidase showed increasing trends with the increasing dietary AsA levels, but no significant differences (> 0.05) were observed when the sea cucumbers fed diets with high dietary AsA levels. The content of malondialdehyde had the opposite trend of antioxidant enzymes. In conclusion, the adequate dietary AsA level focusing on growth performance of sea cucumber is between 598 and 1473 mg kg?1 diet. Furthermore, high level of dietary AsA (between 598 and 4676 mg kg?1 diet) improved meat quality and antioxidant status.  相似文献   

6.
The aim of this study was to examine the effects of the immunostimulant combination (IC) containing β‐glucan, A3α‐peptidoglycan, vitamin C and vitamin E on the growth performance, non‐specific immunity and protection against Vibrio harveyi infection in cobia (Rachycentron canadum). Fish were fed diets containing six graded levels of IC (0, 1, 2, 3, 4 and 5 g kg?1 diet) for 8 weeks. The results showed that the survival rate ranged from 81.1 to 84.4% with no significant difference among all the groups (P > 0.05) after the feeding experiment. Dietary IC significantly increased the specific growth rate (SGR), serum lysozyme, alternative complement pathway (ACH50) activity, phagocytosis percentage (PP) and respiratory burst activity of head kidney macrophages of cobia. Moreover, feeding of supplemented diets containing 3.0 g kg?1 IC resulted in significantly lower mortality against the pathogens, V. harveyi compared with the control group. To elevate the growth and immune resistance ability of cobia, the optimal dose of dietary IC administration, determined by second‐order polynomial regression analysis was 3.43 and 2.71 g kg?1 diet, respectively, on the basis of the SGR and mortality after challenge with V. harveyi.  相似文献   

7.
The effect of dietary β‐glucan on the bacterial community in the gut of common carp (Cyprinus carpio) was examined after oral application of Aeromonas hydrophila. Carp received either feed supplemented with 1% MacroGard®, a β‐1,3/1,6‐glucan, or a β‐glucan‐free diet. Fourteen days after feeding, half of the carp from each group were intubated with 109 colony‐forming units (CFU) of a pathogenic strain of A. hydrophila. Gut samples were taken 12 hr to 7 days after application and analysed using microbiological and molecular biological techniques (NGS, RT‐PCR‐DGGE). The reaction of the mucosa and the microbiota to an A. hydrophila intubation differed in carp fed with β‐glucan compared to carp from the control group. In β‐glucan fed carp, the total bacterial amount was lower but the number of bacterial species was higher. Bacterial composition was different for carp from both treatment groups. The number of mucin filled goblet cells was reduced in carp fed the β‐glucan diet. Mucus was obviously released from the goblet cells and was probably washed out of the gut together with high numbers of bacteria. This might be protective against pathogenic bacteria and, therefore, feeding with β‐glucan may provide protection against infections of the gut in carp.  相似文献   

8.
The goal of this study was to investigate the effects of dietary supplementation with β‐glucan and microencapsulated probiotics (Bacillus subtilis or Pediococcus acidilactici) on growth performance, body composition, haemolymph constituents, and intestinal morphology and microbiota of the Pacific white shrimp Litopenaeus vannamei. Four treatment diets [basal diet (C), β‐glucan‐containing diet (β‐glu), β‐glucan plus B. subtilis‐containing diet (β‐glu+Bs), and β‐glucan plus P. acidilactici‐containing diet (β‐glu+Pa)] were fed to L. vannamei for 90 days. Shrimp fed the β‐glu and β‐glu+Pa diets exhibited similar growth performance and body protein content, which were significantly higher than those of shrimp fed the control diet (P < 0.05). No significant differences in haemolymph triglyceride, cholesterol, protein, haemolymph urea nitrogen or chloride were detected among the experimental diets. However, dietary β‐glucan alone increased the haemolymph glucose level and osmolarity (P < 0.05). Synbiotic supplementation had greater effects on intestinal microbiota and morphology than dietary β‐glucan alone. For example, β‐glu+Bs increased the number of intestinal lactic acid bacteria and decreased the number of Vibrio spp. (P < 0.05), and β‐glu+Pa increased the height of intestinal villi.  相似文献   

9.
The white shrimp Litopenaeus vannamei, fed immunostimulant‐free, 0.2%β‐glucan and 0.06% glycyrrhizin diets for 18 days, respectively, were challenged with Vibrio alginolyticus at 6.4 × 104 CFU shrimp?1. The total haemocyte count (THC), phenoloxidase (PO) activity, respiratory burst (RB) and superoxide dismutase (SOD) activity changes for a 120‐h period were investigated, and shrimp mortality was also recorded. The results showed that PO activity, RB and SOD activity were significantly higher in shrimp fed the two immunostimulant diets after 18 days than those in shrimp fed immunostimulant‐free diets. The THC and SOD activity decreased significantly from 0 to 24 h post challenge, and then reverted to normal levels at 96 and 72 h respectively. The values for PO activity and RB increased from 0 to 48 h post challenge. Compared with those fed the control diets, shrimp fed immunostimulants had significantly higher PO activity and RB values at 120 h post challenge. Mortalities after challenge with V. alginolyticus were significantly lower in shrimp fed with β‐glucan or glycyrrhizin than in those fed with a diet without immunostimulants. It was concluded that dietary β‐glucan and glycyrrhizin increased the shrimp immunity. Furthermore, β‐glucan caused an increase in some immune parameters 12 h earlier than glycyrrhizin after V. alginolyticus challenge.  相似文献   

10.
Juvenile mirror carp were fed with five different diets containing 303, 322, 341, 361 and 379 g kg?1 protein and reared at three different water temperatures (18, 23 and 28 °C) for 60 days. We investigated the insulin‐like growth factor I (IGF‐I) mRNA expression, growth performance and the relationship between IGF‐I mRNA expression and the growth performance. The results indicated that the IGF‐I mRNA expression, final body weight, specific growth rate (SGR) and feed efficiency (FE) were enhanced significantly with increasing dietary protein levels (< 0.05), whereas the protein efficiency ratio, hepatosomatic index (HSI) and viscerosomatic index (VSI) were decreased. Moreover, the IGF‐I mRNA expression, final body weight and SGR were increased significantly with temperature, whereas the HSI and VSI indices were decreased significantly with temperature. Correlation analysis showed that the IGF‐I mRNA expression levels in the brain and liver were positively related to the SGR and FE growth indices (< 0.01). Finally, the optimal protein requirements for fish growth in different seasons were determined based on the values of SGR and FE, that is 343–348 g kg?1 protein at 18 °C, 354–352 g kg?1 at 23 °C and 371–362 g kg?1 at 28 °C. In this way, we can adjust the dietary protein levels according to culture temperature to reduce any negative impacts on dietary costs and environmental pollution.  相似文献   

11.
The effect of a commercially available compound probiotics product containing Bacillus subtilis YB‐1 (50%) and Bacillus cereus YB‐2 (50%) fed to sea cucumbers, Apostichopus japonicus (Selenka) on challenge infections and non‐specific immune responses was assessed. Sea cucumbers (were randomly allocated into nine aquariums at a density of 30 sea cucumbers per tank and triplicate groups) were fed diets containing 0 (control), 107 and 1010 cfu (g diet)?1 of the probiotics mixture for 32 days. The growth factors and immunological parameters were measured. In addition, the effects on resistance against Vibrio alginolyticus infection were also evaluated. The results indicate that all the immunological parameters (phagocytic activity, superoxide anion production, lysozyme activity, catalase activity and phenoloxidase activity) measured and the growth rate of sea cucumbers fed 1010 cfu of the probiotics mixture were significantly (P < 0.05) improved than control groups at 16 and 32 days. After challenging, the cumulative mortality for the control was 100%, whereas the cumulative mortality for sea cucumbers fed 1010 cfu of the probiotics mixture was 47% (P < 0.05). Although the total autochthonous intestinal heterotrophic bacterial counts were not affected by dietary treatment (P > 0.05), Bacillus sp. levels were significantly elevated in sea cucumbers fed the probiotics mixture (P < 0.05). These results confirmed that administration of the probiotics mixture in the diet stimulated non‐specific immune responses and enhanced the growth performance of sea cucumbers, and was effective in controlling infections caused by V. alginolyticus.  相似文献   

12.
This study was conducted to investigate the effects of fructooligosaccharide (FOS) and Bacillus licheniformis (B. licheniformis) on growth performance, body composition, intestinal enzymes activities and gut histology of Megalobrama terminalis. Nine experimental diets were formulated to contain three FOS levels (0, 3 and 6 g kg?1) and three B. licheniformis levels (0, 1 and 5 × 107 CFU g?1) following a 3 × 3 factorial design. Accordingly, diets were named as 0/0, 0/3, 0/6, 1/0, 1/3, 1/6, 5/0, 5/3 and 5/6 (B. licheniformis/FOS). At the end of the 8‐week feeding trial, weight gain (WG) and specific growth rate (SGR) of fish fed 6 g kg?1 FOS were both significantly (< 0.01 and < 0.05) higher than that of the other groups in terms of dietary FOS levels. Besides, WG and SGR of fish fed 1 × 107 CFU g?1 B. licheniformis were significantly (< 0.05) higher than that of the control group in terms of dietary B. licheniformis levels. In addition, a significant interaction (< 0.05) between dietary FOS and B. licheniformis was observed in finial weight, WG, SGR as well as the survival rate with the highest values all observed in fish fed diet 1/3. Hepatosomatic index, carcass lipid content, lipase activities as well as microvilli length increased significantly (< 0.05) from 0 to 1 × 107 CFU g?1, but no significant difference (> 0.05) was observed in terms of dietary FOS levels. In addition, a significant (< 0.05) interaction of FOS and B. licheniformis was observed in both protease and Na+, K+‐ATPase activities with the highest value obtained in fish fed diet 1/3. The results indicated that the dietary applications of dietary FOS and B. licheniformis alone or in combination can significantly improve the growth performance, survival rate, intestinal enzymes activities as well as microvilli length of triangular bream. In addition, there is a significant interaction between dietary FOS and B. licheniformis. The best combination for this species is 3 g kg?1 FOS with 1 × 107 CFU g?1 B. licheniformis.  相似文献   

13.
An 8‐week feeding trial was conducted to investigate the optimum dietary protein and lipid levels for growth, feed utilization and body composition of Pseudobagrus ussuriensis fingerlings (initial weight: 3.40 ± 0.01 g). Twelve diets containing four protein levels (350, 400, 450 and 500 g kg?1 crude protein) and three lipid levels (50, 100 and 150 g kg?1 crude lipid) were formulated. Fish were randomly allotted to 36 aquaria (1.0 × 0.5 × 0.8 m) with 25 fish to each glass aquarium. Fish were fed twice daily (08:00 and 16:00) to apparent satiation. The results showed that weight gain and specific growth rate (SGR) decreased with increasing dietary lipid level from 50 to 150 g kg?1 at the same dietary protein level. Fish fed the diets containing 150 g kg?1 lipid exhibited higher feed conversion ratio (< 0.05), lower protein efficiency ratio (PER) and nitrogen retention efficiency (NRE) relative to fish fed the diet containing 50 and 100 g kg?1 lipid. Weight gain and SGR significantly increased with increasing dietary protein from 350 to 450 g kg?1 at the same dietary lipid level, and even a little decline in growth with the further increase in dietary protein to 500 g kg?1. Daily feed intake, NRE and PER were significantly affected by both dietary protein and lipid levels (P < 0.05) and tended to decrease with increasing dietary protein and lipid levels. Whole‐body protein content increased as protein levels increased and lipid levels decreased. Whole‐body lipid and muscle lipid content increased with increasing dietary lipid level, and decreased with increasing dietary protein at each lipid level. There was no significant difference in condition factor and viscerosomatic index among fish fed the diets. Hepatosomatic index was affected by dietary lipid level (P < 0.05), and increased with increasing dietary lipid level at the same protein level. These results suggest that the diet containing 450 g kg?1 protein and 50 g kg?1 lipid with a P/E ratio of 29.1 mg protein kJ?1 is optimal for growth and feed utilization of P. ussuriensis fingerlings under the experimental conditions used in the study.  相似文献   

14.
Early weaning of marine fish larvae with dry diets delays gut maturation and reduces growth rates. In juvenile and adult forms of several marine fish species, inclusion of dietary mannan oligosaccharides (MOS) improves gut integrity and functionality, but the effects of MOS inclusion in gilthead sea bream (Sparus aurata, L.) larval diets have not been addressed yet. Thus, this study assesses the effects of dietary MOS inclusion on survival, growth performance, gut morphology, feed acceptance and quality of gilthead sea bream larvae. For that purpose, 16 days post‐hatched gilthead sea bream larvae were fed four graded levels of MOS (Biomos®, Alltech, Nicholasville, KY, USA) in weaning diets as follows: 0 g kg?1 MOS, 0.5 g kg?1 MOS, 1.5 g kg?1 MOS and 2 g kg?1MOS. Dietary MOS did not affect feed acceptance in gilthead sea bream larvae (P > 0.05). MOS supplementation was correlated in a dose‐dependent way with higher larval survival (P = 0.026). After 15 days of feeding, dietary MOS increased whole larvae (P < 0.01) arachidonic acid, eicosapentaenoic acid and docosahexaenoic acid. Gilthead sea bream larvae fed 2 g kg?1 MOS presented higher gut occupation with goblet cells after feeding compared with larvae fed the other dietary treatments. Overall, the results suggest that inclusion of MOS in early weaning diets for gilthead sea bream improves essential fatty acid utilization and may promote growth and final survival.  相似文献   

15.
A feeding trial was conducted to evaluate the efficacy of dietary heat‐killed Lactobacillus plantarum L‐137 (HK L‐137) on growth performance, digestive, non‐specific immune and phagocytosis of sea cucumber, Apostichopus japonicus. Sea cucumbers (initial body weight 1.35 ± 0.04 g) were fed diets supplemented with five levels of HK L‐137 (0, 0.005, 0.025, 0.05 and 0.25 g HK L‐137 kg?1 diets) for 60 days. Results indicated sea cucumbers fed with diets containing 0.05 and 0.25 g HK L‐137 kg?1 diets showed significantly (P < 0.05) higher body weight gain and specific growth rate than other groups. Sea cucumbers fed with diets containing 0.05 and 0.25 g HK L‐137 kg?1 diets showed significantly (P < 0.05) higher protease activity than control group. Higher amylase, lysozyme and phagocytic activities were found in 0.25 g HK L‐137 kg?1 diet group. Higher superoxide dismutase enzyme and alkaline phosphatase activity was found in 0.05 g HK L‐137 kg?1. While no significant differences (P > 0.05) were found in acid phosphatase activity. These results suggested that dietary supplementation of 0.05 g HK L‐137 kg?1 diets would have benefit on growth, digestive enzymes and several non‐specific immune parameters of sea cucumber.  相似文献   

16.
Ethoxyquin (EQ) is the most common synthetic antioxidant used for preventing rancidity in fish foodstuffs. However, literature related to the effects of dietary EQ on performance of fish was limited. The present study was conducted to investigate the effects of EQ on performance and EQ residue in muscle of juvenile Japanese seabass Lateolabrax japonicus and to estimate the optimal EQ concentration in the diet. Graded levels [0 (control), 50, 150, 450 and 1350 mg EQ kg?1 diet] of EQ were added to the basal diet, resulting in five dietary treatments in the experiment. Each diet was fed to triplicate groups of seabass (initial body weight 8.01 ± 0.76 g) for 12 weeks in floating sea cages (1.5 × 1.5 × 2.0 m, 30 fish per cage). Survival ranged from 78.9 to 86.7%, and was irrespective of dietary EQ levels. The specific growth rate (SGR) of fish fed diets supplemented with ≤50 mg kg?1 EQ had significantly (< 0.05) higher SGR than fish fed diets supplemented with ≥150 mg kg?1 EQ, the highest SGR was observed in fish fed diet with 50 mg kg?1 EQ supplementation. Feed intake (FI) and feed efficiency (FE) were not significantly (> 0.05) different among dietary treatments. Fish fed diets with 50 and 1350 mg kg?1 EQ had a significant (< 0.05) lower body lipid content than fish in the control group. Muscle EQ level significantly increased when dietary EQ increased. Optimal EQ concentration estimated by polynomial regression based on maximum growth of juvenile Japanese seabass was 13.78 mg kg?1 diet.  相似文献   

17.
The effects of dietary phosphorus (P) on growth, body composition and immunity of young taimen (Hucho taimen) were studied. Six purified diets contained graded levels (2.3‐control, 4.0, 5.6, 7.5, 9.1 and 10.8 g kg?1 diet) of available P. Each diet was fed to triplicate groups of 30 fish with an initial average weight (55.31 ± 0.38) g for 84 days. The weight gain, specific growth rate and feed conversion ratio were improved by dietary available P up to 4.35 g kg?1 (< 0.05) and then levelled off. Hepatosomatic index and body crude lipid content decreased significantly with increasing P levels, while ash contents and P concentrations in the whole body and vertebrae increased by dietary available P up to 4.36 and 4.44 g kg?1 and then levelled off respectively (< 0.05). Liver superoxide dismutase and glutathione peroxidase and plasma alkaline phosphatase activities in the treatment groups were significantly higher compared with the control group (< 0.05). Plasma IgM contents increased linearly with increasing dietary P from 4.0 to 9.1 g kg?1 group and then decreased. Dietary P supplementation reduced plasma triglyceride, malondialdehyde and liver malondialdehyde contents. There were no significant effects on plasma total protein, albumin, globulin, glucose, aspartate aminotransferase and alanine aminotransferase, catalase, lysozyme and liver catalase compared with the control group (> 0.05). Broken line regression analysis indicated that dietary available P requirement was 4.34 and 4.35 g kg?1, based on weight gain and P concentration in the whole body respectively.  相似文献   

18.
Two 8‐week growth trials were conducted in indoor recirculation system to evaluate the protein requirements for juvenile (3.70 ± 0.20 g) and pre‐adult (85.2 ± 0.70 g) gibel carp, Carassius auratus gibelio var. CAS III. Six isoenergetic diets were formulated for each trial using fish meal and casein as protein sources, and protein level was 250–450 g kg?1 in Trial 1 and 200–450 g kg?1 in Trial 2. With the increasing dietary protein, feeding rate (FR) and feed conversion ratio (FCR) significantly decreased (< 0.05). Weight gain (WG) increased first and then reached a plateau in 330–450 g kg?1 in Trial 1 (> 0.05), while decreased after the maximum value in 350 g kg?1 in Trial 2 (< 0.05). Productive protein values (PPVs) were lower in 370–450 g kg?1 in Trial 1 and 400–450 g kg?1 in Trial 2 (< 0.05). Increasing dietary protein level increased protein content and decreased lipid content in whole fish body and white muscle (< 0.05). Apparent digestibility coefficient of dry matters (ADCd) decreased, while apparent digestibility coefficient of protein (ADCp) increased in 370–450 g kg?1 in Trial 1 and 250–450 g kg?1 in Trial 2 (< 0.05). Trypsin activity significantly increased in 370–450 g kg?1 in Trial 1 (< 0.05) and was not affected in Trial 2 (> 0.05). Hepatic alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities in both trials increased when dietary protein was above 400 g kg?1 (< 0.05). Based on quadratic regression of WG, it was estimated that dietary protein requirement for maximum growth was 414 g kg?1 (digestible protein of 376 g kg?1) and 365 g kg?1 (digestible protein of 324 g kg?1) for juvenile (3.70 g) and pre‐adult gibel carp (85.2 g).  相似文献   

19.
A total of 630 juvenile Chinese sucker, with an average initial weight of 1.72 ± 0.05 g, were fed seven diets for 56 days to study the effect of dietary methionine levels on growth, feed utilization, body composition and haematological parameters on juvenile Chinese sucker. Diet 1 using fish meal as the sole protein source and diets 2–7 using fish meal and fermented soybean meal as intact protein sources supplemented with crystalline amino acids contained six levels of l ‐methionine ranging from 6.4 to 18.9 g kg?1 of dry diet at a constant dietary cystine level of 3.7 g kg?1. Each diet was randomly assigned to three aquaria. Results indicated that the highest weight gain, specific growth rate (SGR), feed efficiency ratio, protein efficiency ratio and protein productive value occurred at 13.9 g methionine kg?1 diet among the methionine supplemented dietary groups, beyond which they showed declining tendency. The whole body and muscle protein contents of juvenile Chinese sucker were positively correlated with dietary methionine level, while muscle lipid content was negatively correlated with it. The total essential amino acids content of muscle was increased significantly with increasing dietary methionine level from 6.4 to 13.9 g kg?1 (< 0.05). Apparent digestibility coefficients of dietary protein were significantly affected by dietary treatments. Serum protein, cholesterol and triacylglycerol increased with increasing dietary methionine levels, but showed a relatively lower value for fish fed the 18.9 g methionine kg?1 diet. Quadratic regression analysis of SGR against dietary methionine level indicated that optimal dietary methionine requirement for juvenile Chinese sucker was 14.1 g kg?1 of the diet in the presence of 3.7 g kg?1 cystine (corresponding to 32.0 g kg?1 of dietary protein on a dry‐weight basis).  相似文献   

20.
A combination of probiotics and prebiotics as synbiotics allows assessing their synergistic effects. This study evaluated the effects of a synbiotic supplement on growth performance, haematological parameters and resistance to Saprolegnia parasitica in rainbow trout, Oncorhynchus mykiss (Walbaum) fingerlings. Fish fed a dietary synbiotic in three levels of 0.5, 1.0 and 1.5 g kg?1 thrice a day. The fingerlings were challenged with Saprolegnia parasitica after 60 days post feeding and their mortalities recorded up to 15 days. The fingerlings at all three experimental treatments showed significant (P < 0.05) increases in final mean weights and specific growth rates (SGR). The best feed conversion ratio (FCR), feed conversion efficiency (FCE) and maximum survival rate were also obtained by the fish fed 1.0 g synbiotic kg?1 diet. Furthermore, supplementation with synbiotic significantly increased blood factors at all treatments. After challenges with Saprolegnia parasitica, the synbiotic‐fed groups showed significantly higher survival rates compared with the control group. These results reveal that a dietary synbiotic of 1.0 g kg?1 fed for 60 days leads to increased growth performance and survival rate as well as improved feeding efficiency in rainbow trout fingerling, rendering them more resistant against infection by Saprolegnia parasitica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号