首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
为探讨黄海冷水团锋面温度波动对底播虾夷扇贝(Patinopecten yessoensis)的影响,采用室内模拟的方法,研究了温度波动对虾夷扇贝生理和免疫指标的影响。实验温度波动范围为15-10-15℃,升降温幅度为5℃/2 h,共进行了4次温度波动,分别测定了3个规格虾夷扇贝死亡率、耗氧率、排氨率以及血液中超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活力等生理、免疫指标的变化情况。结果显示,温度波动4次后,大、中、小3个规格虾夷扇贝的死亡率均较低,分别为4%、6%、6%,其中,大规格虾夷扇贝的死亡率低于中、小规格,并且大规格虾夷扇贝在前2次温度波动时出现死亡,第3次温度波动后,不再出现死亡。3个规格组在B1(波动1次)时的耗氧率与初始相比,均为降低;随着波动次数的增加,耗氧率逐渐增加而高于初始水平。除小规格组的B1外,排氨率均随温度波动次数的增加而降低;多重比较分析结果显示,大规格组的B3(波动3次)显著低于波动初始(P0.05);中规格组的B4(波动4次)显著低于波动初始(P0.05)。虾夷扇贝的免疫指标对温度波动更为敏感:温度波动1次或者2次时,3个规格组的SOD和CAT活性显著降低(P0.05)。上述结果表明,适宜温度范围内的温度波动,也会对虾夷扇贝的生理、免疫指标产生不同程度的影响。  相似文献   

2.
温度变化对虾夷扇贝耗氧率和排氨率的影响   总被引:9,自引:2,他引:7  
为探索虾夷扇贝(Datinopecten yessoensis)夏季大量死亡的生理原因,模拟虾夷扇贝筏式养殖区夏季水温变化情况,采用室内控温实验,研究了温度剧烈和缓慢变化对虾夷扇贝耗氧率和排氨率的影响及其影响的差异性。实验设置10℃、15℃、20℃、25℃4个温度梯度,设计温度骤变(每小时升温5℃)和温度缓变(每天升温1℃)2种温度处理方式,测定升温前后耗氧率和排氨率。结果显示,温度变化对虾夷扇贝耗氧率和排氨率影响显著(P0.05)。温度缓变组耗氧率变化范围为1.910~2.722mg(/g·h),排氨率变化范围为1.499~5.003μm/(g·h),耗氧率(OR)和排氨率(NR)与温度(T)之间的相关方程为OR=2.303+0.425T-0.133T(2R2=0.941)和NR=-1.536+4.384T-0.893T(2R2=0.435)。温度骤变组耗氧率和排氨率大于温度缓变组,且温度骤变组耗氧率在15℃、20℃和25℃,排氨率在20℃和25℃与温度缓变组差异显著(P0.05)。  相似文献   

3.
夏玉莹  张继红  刘毅 《中国水产科学》2021,28(10):1319-1328
为研究低氧胁迫对虾夷扇贝(Patinopecten yessoensis)行为、生理生化(免疫防疫功能及关键呼吸酶)的影响, 设置了 1 mg/L、2 mg/L、4 mg/L、7 mg/L (对照组) 4 个溶解氧梯度, 测定分析了虾夷扇贝行为特征(外壳的开闭合程度大小)、耗氧率、排氨率、抗氧化酶[超氧化物歧化酶(SOD), 过氧化氢酶(CAT)]和呼吸相关酶[乳酸脱氢酶(LDH) 和丙酮酸激酶(PK)]活性的响应情况。结果发现: (1)虾夷扇贝的存活率随着 DO 浓度的降低而降低, DO=1 mg/L 时的存活率仅为 55%; 在 DO=1 mg/L, 2 mg/L 和 4 mg/L 时, 虾夷扇贝的半致死时间分别为 95.97 h、147.37 h 和 209.58 h。 (2)将扇贝行为特征划分为 5 个等级, 按照 0~4 赋分, 评分越高, 代表扇贝状态越好。从扇贝行为特性的量化指标来看, DO 浓度越低, 评分分数越低, 虾夷扇贝状态越差。(3)低氧胁迫对虾夷扇贝耗氧率、排氨率有显著影响(P<0.05), 在 DO≤2 mg/L 下, 氧氮摩尔比<7, 虾夷扇贝主要由蛋白质供能; DO≥4 mg/L, 虾夷扇贝由蛋白质和脂肪氧化供能为主。(4)低氧胁迫对虾夷扇贝 SOD、CAT 和呼吸酶有显著性影响(P<0.05)。24 h 的低氧胁迫使得肝胰腺及闭壳肌的自由基 ROS浓度升高; 48~96 h的低氧胁迫下, SOD、CAT酶活开始降低。不同的溶解氧浓度下代谢途径不同, DO= 2 mg/L 时, 有氧呼吸代谢转变为葡萄糖-丙酮酸-乳酸的呼吸途径; DO=1 mg/L 时, 呼吸代谢途径可能优先选择葡萄糖-琥珀酸途径。从生理生化层次上来看, 免疫功能下降和呼吸代谢途径改变可能会引起虾夷扇贝行为特征改变。  相似文献   

4.
在实验室条件下,采用静水法测定了温度、体重对虾夷扇贝摄食率的影响。分别对5、10、15、20、25℃5个温度梯度下,A、B、C、D、E5个规格虾夷扇贝的摄食率进行了测定。实验结果表明,软体部干重对虾夷扇贝的摄食率影响显著(P0.05),且相关回归分析表明,体重(X)与摄食率(Y)呈正相关幂指数关系:Y=aXb。扇贝个体吸收率随着体重的增加而减小,但是不同规格扇贝吸收率差异不显著(P0.05);在实验温度5~25℃范围内,温度对虾夷扇贝的摄食率和吸收率影响极显著(P0.01),温度(T)与摄食率之间的相关方程为:FR=b0+b1T+b2T2+b3T3,虾夷扇贝最大摄食率的温度值为15℃,最大吸收率的温度值为10℃。  相似文献   

5.
2012年5月和9月,2013年3月和6月,在自然水温条件下,采用呼吸瓶法比较了不同温度(5.6℃、10.5℃、14.4℃、21.2℃)下普通养殖虾夷扇贝(Patinopecten yessoensis)和虾夷扇贝选育新品种海大金贝(Haida golden scallop)耗氧率和排氨率的影响。结果表明,在实验设置水温范围内(5.6~21.2℃),普通虾夷扇贝和海大金贝的耗氧率表现出相似的变化趋势。在温度达到14.4℃之前,实验贝耗氧率随温度的升高而增大,而在14.4℃后,则随温度的升高而减小。两种贝最大耗氧率分别为1.67 mg/(g·h)和1.27 mg/(g·h),其中在5.6℃和14.4℃海大金贝耗氧率显著小于普通虾夷扇贝(P0.05);10.5℃和21.2℃时,两组贝类的耗氧率差异不显著(P0.05)。普通虾夷扇贝和海大金贝排氨率随温度变化呈现出不同的趋势。前者从5.6℃开始,随温度的升高,排氨率缓慢升高,水温为14.4℃时达到最大值,为0.063 mg/(g·h),然后逐渐降低,14.4℃水温的排氨率显著大于10.5℃和21.2℃(P0.05);而从5.6℃到10.5℃,后者的排氨率逐渐降低,10.5℃时达到最低值,为0.029 mg/(g·h),然后随温度升高缓慢升高,到21.2℃达到最高值。海大金贝组在温度条件为5.6℃和21.2℃时排氨率高于普通虾夷扇贝组(P0.05);而水温为14.4℃时,普通虾夷扇贝组排氨率显著高于海大金贝组(P0.05);10.5℃时两者排氨率差异不显著(P0.05)。两实验组耗氧率Q_10系数均随温度的升高而降低。O/N结果表明,普通虾夷扇贝在本次研究的设定温度区间内以消耗脂肪和碳水化合物为主;海大金贝以消耗蛋白质为主,当温度逐渐升高,转化为以消耗脂肪和碳水化合物为主,当水温达到较高的水平,又转换为以消耗蛋白质为主。  相似文献   

6.
虾夷扇贝动态能量收支模型参数的测定   总被引:1,自引:0,他引:1  
本研究以虾夷扇贝为实验生物,介绍了动态能量收支(dynamic energy budget,DEB)模型5个关键基本参数的测定及计算方法,分析了方法的利弊及注意事项,为贝类DEB模型参数的准确获取提供参考方法。采用壳长与软体部湿重回归法计算虾夷扇贝的形状系数δm;采用静水法测定不同温度条件下虾夷扇贝的呼吸耗氧率,计算阿伦纽斯温度TA参数;采用饥饿法测定、计算单位时间单位体积维持生命所需的能量[]、形成单位体积结构物质所需的能量[EG]和单位体积最大储存能量[EM]3个参数。室内饥饿实验持续60 d,直至呼吸耗氧率及软体部干重基本保持恒定。结果显示,壳长(SL)与软体部湿重(WW)的回归关系式为WW=0.0118SL3.4511(R2=0.9365),根据公式V=(δm L)3,对软体部湿重的立方根和壳长进行线性回归,所得的斜率即为形状系数δm值(δm=0.32);获得不同规格的虾夷扇贝耗氧率与水温(热力学温度,K)倒数的线性回归关系,线性回归方程斜率的绝对值为阿伦纽斯温度TA,平均为(4160±767)K。饥饿实验结束时,软体部干重和呼吸耗氧率分别降低了56%和81%。虾夷扇贝的耗氧率稳定在0.17 mg/(ind·h),经计算获得[]=25.9 J/(cm~3·d);饥饿持续30天之后,虾夷扇贝软体部干重基本维持在(0.25±0.01)g,经计算获得[EG]=3160 J/cm~3,[EM]=2030 J/cm~3。动态DEB理论是基于能量代谢的物理、化学特性而建立的,体现了生物能量代谢的普遍性规律,能够反映摄食获取能量在不同发育生长阶段的能量分配情况。但是,DEB模型参数的测定及计算比较复杂。基本参数的准确获取将影响其他参数以及模型的准确性。本研究为虾夷扇贝DEB模型的构建奠定基础。  相似文献   

7.
高温对虾夷扇贝体腔液免疫酶活力的影响   总被引:7,自引:4,他引:3  
贲月  郝振林  丁君  常亚青 《水产学报》2013,37(6):858-863
在实验室内检测了虾夷扇贝对高温突变的耐受能力及在不同高温水平下的存活与相关免疫酶活力.实验分两个阶段:实验Ⅰ,15℃暂养的虾夷扇贝分别被驯化到20、22、24及26℃,检测虾夷扇贝的存活及相关免疫指标.结果表明,15~22℃处理组虾夷扇贝存活率均大于85.21%,且组间无显著差异(P>0.05),26℃处理组存活率最低,为26.33%.随温度升高,虾夷扇贝体腔液中T-AOC和MDA含量变化显著(P<0.05),SOD活力差异不显著(P>0.05),CAT活力随温度升高呈先下降后上升趋势.实验Ⅱ,15℃暂养的虾夷扇贝分别被放到20、22、24及26℃,并在1、2、4、8、12、24、48和96 h时检测其存活和相关免疫指标.结果显示,经96 h胁迫,15 ~ 24℃处理组间虾夷扇贝的存活率无显著差异(P>0.05),且均大于82.29%,但26℃处理组虾夷扇贝在经12h胁迫后,其存活率降为0.2龄虾夷扇贝在8、12、24、48和96 h半致死温度(LT50)分别为27.52、24.41、24.37、24.24和23.81℃.  相似文献   

8.
选择性育种是获得新品种的有效途径,近年来,随着虾夷扇贝(Patiopecten yesownsis)产业的发展,虾夷扇贝出现种质退化、生长缓慢、出肉率低、规格变小、营养价值降低等一系列问题,选择性育种是解决问题必不可少的手段。本文通过对虾夷扇贝形态性状与质量性状之间的关系以及脂肪酸与生长性状之间的关系进行初步的探索,丰富了选择育种过程中的参考指标,为虾夷扇贝选择性育种提供理论参考。  相似文献   

9.
研究了不同温度(10~17℃、15~17℃和20℃)对不同规格(平均壳高分别为831.7μm、3.2mm和26.7mm)虾夷扇贝干露耐受性的影响。试验结果表明,同种规格虾夷扇贝的干露耐受性随温度升高而降低;不同规格中,以平均壳高为831.7μm的稚贝对干露耐受性最高。在起始温度15℃和10℃干露条件下,20h以前,壳高3.2mm虾夷扇贝的成活率与壳高26.7mm的成活率差异不显著(P0.05),但壳高3.2mm虾夷扇贝成活率略低于壳高26.7mm虾夷扇贝的成活率,20h后,壳高3.2mm虾夷扇贝的干露成活率显著高于壳高26.7mm虾夷扇贝的成活率(P0.05)。本研究结果对不同规格虾夷扇贝苗种运输时的策略制定具有重要指导意义。  相似文献   

10.
大连獐子岛海域虾夷扇贝养殖容量   总被引:15,自引:2,他引:13  
现场测定了獐子岛海域的叶绿素a浓度、初级生产力的季节性变化和养殖虾夷扇贝的种群结构;采用生物沉积法,测定了不同规格的虾夷扇贝的滤水率和虾夷扇贝的基本生物学特性.调查结果显示,叶绿素浓度在1.23~2.85 mg·m-3范围内,均值为(1.78±0.57)mg·m-3;初级生产力的平均值为(76.6±41.9)mg C·m-2·d-1,虾夷扇贝单位个体的滤水率为(0.55±0.25)L·h-1.结合虾夷扇贝的年产量、海域面积和有关的水文状况等数据,计算了食物限制性指标的数值,摄食压力和调节比率在0.05和1.0之间,而滤水效率小于0.05.结果显示,由于该海域的叶绿素浓度和初级生产力水平较低,海水流速大,因此,水交换带来的悬浮颗粒物为主要食物来源.目前的虾夷扇贝的养殖量(32亿粒)接近生态容量,如果开展筏式养殖,利用整个海域的水体,养殖量增大20倍的空间并达到养殖容量,预计年产量将达到256亿粒.  相似文献   

11.
温度与盐度对云龙石斑鱼幼鱼耗氧率和排氨率的影响   总被引:1,自引:0,他引:1  
为了研究饱食和饥饿状态下温度(24、27、30和33℃)、盐度(15、20、25、30和33)对云龙石斑鱼幼鱼(Epinephelus groupers)耗氧率(OCR)和排氨率(AER)的影响,采用密闭流水式呼吸实验方法对OCR和AER进行了测定。结果显示:饱食和饥饿状态下,温度、盐度对云龙石斑鱼幼鱼OCR和AER影响均显著(P0.05);当温度为24℃~33℃时,饱食状态下的OCR和AER分别比饥饿状态的提高30.29%~131.84%和131.82%~316.19%。饱食状态下,氧氮比(O∶N)、蛋白质供能比(PSR)、Q10(呼吸)、Q10(代泄)分别为12.54~20.18、27.74%~48.48%、1.21、1.60;而在饥饿状态下分别为25.77~35.90、19.49%~27.19%、1.87、3.41;当盐度为15~33时,饱食状态下OCR和AER分别比饥饿状态的提高100.41%~128.21%、182.19%~382.83%。饱食状态下,O∶N、PSR分别为13.32~20.72、39.47%~49.42%,而在饥饿状态下分别为29.18~30.98、22.59%~23.98%。研究表明,云龙石斑鱼幼鱼的最适生长温度为24℃~27℃,最适生长盐度为30~33。  相似文献   

12.
测定了虾夷扇贝鲜贝柱,干贝柱等质量参数,并与栉孔扇贝,海湾扇贝的质量和进行了比较,证实虾夷扇贝生长快,个体大,鲜贝柱,干贝柱大而且出率高。  相似文献   

13.
采用RAPD和GISH技术对栉孔扇贝(♀)和虾夷扇贝(♂)杂交子代胚后发育4个重要时期(担轮幼虫期、D形幼虫期、壳顶幼虫期和眼点幼虫期)的遗传构成进行了检测。在RAPD检测中,50条随机引物在亲贝中共扩增出35条栉孔扇贝的特异条带和28条虾夷扇贝特异条带,其中栉孔扇贝特异条带在杂交子代4个时期出现的条数分别为:担轮幼虫期21条、D形幼虫期19条、壳顶幼虫期23条和眼点幼虫期23条;而虾夷扇贝特异条带在杂交子代4个时期出现的条数分别为:17、16、1和1。GISH结果表明,杂交扇贝在担轮幼虫期和D形幼虫期均继承了来自父母本遗传物质,而在壳顶幼虫期和眼点幼虫期未检测到来自父本的遗传物质。结果表明,杂交子代遗传结构在进入壳顶幼虫期时发生重大改变,大部分父本遗传物质从杂交贝基因组中丧失。  相似文献   

14.
本研究以中国明对虾(Fenneropenaeus chinensis)为对象,探讨不同浓度的聚β-羟基丁酸酯(Poly-β-hydroxybutyrate,PHB)对其非特异性免疫相关酶的影响.实验采用单因子浓度梯度法,对健康的中国明对虾投喂添加不同浓度PHB(0、0.5%、1.0%、2.5%、5.0%、10.0%)的饲料,分别对应对照组C和实验组E0.5、E1.0、E2.5、E5.0、E10.0组,饲喂6周,统计每组中国明对虾的死亡率和相对免疫保护率,检测总抗氧化能力(T-AOC)、酸性磷酸酶(ACP)、过氧化物酶(POD)和过氧化氢酶(CAT)、超氧化物歧化酶(SOD)5种酶的活力及丙二醛(MDA)含量与时间、PHB浓度的变化关系.结果显示,实验组的相对免疫保护率随PHB浓度的增加呈现先上升后下降的趋势.E1.0组为最高值,并且与其他各组相比差异显著(P<0.05).随PHB浓度的增加,免疫酶活力整体变化趋势为先上升后下降.在时间分布上,饲喂2-3周时,酶活力呈现高水平表达,其中,T-AOC在血清(E1.0、E2.5组)、肝胰腺(E1.0组);ACP在血清(E1.0、E2.5组)、肝胰腺(E1.0组);CAT在血清(E0.5、E1.0、E2.5组)、肝胰腺(E0.5、E1.0、E10.0组);POD在血清和肝胰腺(E0.5、E1.0、E2.5组);SOD在血清和肝胰腺(E1.0组)以及MDA在血清(E1.0组)、肝胰腺(E0.5,E1.0组)较其他组均具有显著性差异(P<0.05).研究表明,PHB添加剂对中国明对虾免疫水平的提高具有促进作用.综合各组和各时间段免疫酶的变化,E1.0为最适浓度组,投喂2-3周时其免疫酶总体具有高水平活力值.  相似文献   

15.
以褐牙鲆(Paralichthys olivaceus)和大菱鲆(Scophthalmus maximus)为养殖对象,设计了2种新型的鲆鲽类网箱,即新型塑胶环保型单、双层网箱。通过褐牙鲆和大菱鲆网箱养殖实验来验证2种新型的网箱在实际生产中的可行性。结果显示,褐牙鲆传统木箱养殖组的商品鱼成活率为92.73%,单位面积产量为16.42 kg/m~2;塑胶单层网箱养殖组的成活率为96.37%,单位面积产量为17.42 kg/m~2。2个组的成活率、单位面积产量均存在显著差异(P0.05),单位面积产量同比增产6.10%。小规格大菱鲆传统网箱商品鱼成活率为92.50%,单位面积产量为8.09 kg/m~2;塑胶单层网箱组的商品鱼成活率为92.50%,单位面积产量为8.02 kg/m~2;塑胶双层网箱组的商品鱼成活率为92.00%,单位面积产量为10.53 kg/m~2,与传统网箱、单层塑胶网箱存在显著差异(P0.05),且同比增产分别为30.00%、31.00%。大规格大菱鲆单、双层塑胶环保型网箱养殖的成活率达到95.00%以上,单位面积产量均为14.52–16.32 kg/m~2;大规格大菱鲆双层网箱实验组平均尾重与单层网箱示范组差异显著(P0.05),单位养殖面积产量同比单层网箱示范组增产11.00%。研究表明,新型塑胶环保网箱养殖褐牙鲆效果良好。新型网箱相对于传统木制网箱除了具有节能环保、节约资源、操作便利的特点外,双层网箱养殖可提高有效利用面积,增加养殖效益。  相似文献   

16.
本研究拟探究经热灭活的白斑综合征病毒(White spot syndrome virus,WSSV)能否诱导中国明对虾(Fenneropenaeus chinensis)产生免疫致敏反应.将具有典型白斑综合征症状的对虾肌肉剁碎后经60℃灭活lh,采用单尾定量口饲的方法,连续6d投喂不同水温条件(15℃、23℃、28℃、32℃)下的实验组对虾(E15℃、E23℃、E28℃、E32℃);同时设置常温(23℃)条件下阳性对照组C23℃(投喂未经灭活的WSSV毒饵)、对照组CF23℃(只投喂商业配合饲料).在实验第13天对存活个体进行第二次人工WSSV感染,结果显示,WSSV经60℃处理lh可彻底失活,表现为连续投喂6d至第二次人工感染期间无对虾死亡,而阳性对照组C23℃死亡率为100%.截止实验第19天,E15℃、E23℃、E28℃、E32℃各组存活率分别为80.41%、33.29%、8.47%、16.43%,CF23℃组的存活率为8.89%,E15℃组与其他各实验组差异极显著(P<0.01),E230℃与CF23℃、E28℃、E32℃组差异显著(P<0.05),E28℃和E32℃组差异不显著(P>0.05);对各组实验材料进行WSSV绝对荧光定量检测,结果显示,经热灭活WSSV诱导的中国明对虾二次感染WSSV后,28℃环境下病毒增殖速度最快,高温(32℃)和低温(15℃)都会不同程度抑制WSSV的增殖速度.实验表明,热灭活WSSV可以诱导中国明对虾产生免疫致敏反应,对受WSSV感染的中国明对虾具有一定的保护作用;温度与WSSV的增殖速度密切相关.  相似文献   

17.
为探讨急性温度胁迫对虾夷扇贝(Patinopecten yessoensis)基因组 DNA 甲基化水平的影响,本研究从表观遗传学角度,运用甲基化敏感扩增多态性(Methylation-sensitive amplification polymorphism,MSAP)技术比较分析了升温海水(17℃和24℃)急性胁迫虾夷扇贝(原暂养于9℃的海水中)9 h 和24 h 后基因组 DNA 甲基化的变化情况。结果显示,9对引物在各组的总扩增位点数为314–337,总甲基化位点为79–94,所占比例为23.45%–28.51%;所有处理组基因组 DNA 总甲基化率低于对照组,急性升温胁迫使虾夷扇贝基因组 DNA 发生去甲基化,而且去甲基化程度随胁迫温差增大和胁迫时间增长而增强,说明急性升温胁迫能够改变 DNA 甲基化水平和模式。本研究为进行虾夷扇贝抗逆基因的筛查提供了新思路和研究基础,丰富了表观遗传学在扇贝中的研究资料。  相似文献   

18.
2015年秋季在桑沟湾开展围隔实验,研究了60 h内高容量虾夷扇贝(Patinopecten yessoensis)和龙须菜(Gracilaria lemaneiformis)养殖对水体中物理、化学和生物(浮游植物群落)等因素的影响。结果显示,养殖的虾夷扇贝和龙须菜在60 h内能显著改变水体中的溶解氧(DO)和溶解态无机氮(DIN)的浓度,同时,能显著影响浮游植物种群丰度和组成特征。从各实验组来看,12 h后,虾夷扇贝和龙须菜实验组浮游植物丰度显著低于空白实验组。虾夷扇贝对水体中4种硅藻优势种[包括柔弱拟菱形藻(Pseudo-nitzschia delicatissima)、双菱藻(Surirella sp.)、菱形藻(Nitzschia spp.)、针杆藻(Synedra spp.)]的滤除效应存在较大差异,即对柔弱拟菱形藻和双菱藻有较大的滤除效应,但对菱形藻和针杆藻却影响不大。基于水体中的光合色素变化特征也揭示了虾夷扇贝对浮游植物的选择性摄食效应,即虾夷扇贝能显著滤除水体中的岩藻黄素(fucoxanthin,硅藻特征色素)、别藻黄素(alloxanthin,隐藻特征色素)。与此相反,青绿藻素(prasinoxanthin,微微型藻类的特征色素)在48 h后,虾夷扇贝实验组显著高于空白实验组和大型藻实验组,说明龙须菜养殖对微微型青绿藻生物量无显著影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号