首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Brook Trout (Salvelinus fontinalis) is an important fish species in Ontario, Canada, supporting recreational fisheries that contribute significantly to local economies. Hydroelectric dams disrupt the river continuum, altering downstream conditions and impacting riverine fish populations. Specifically, Brook Trout activity has been found to increase during hydropeaking periods, when dam operators rapidly increase river discharge to meet electricity demands. Higher energetic outputs driven by hydropeaking may decrease the energy available to allocate towards fish growth and condition, negatively impacting Brook Trout. We investigated the impact of two different hydropeaking regimes on resident Brook Trout populations downstream from a 15‐MW dam used for hydropeaking, compared to a population in a nearby naturally flowing river. Length‐at‐age as determined by otolith back‐calculations was higher in the regulated river relative to the naturally flowing river. Muscle tissue caloric content and weight–length relationships did not differ between rivers. Field metabolism, as inferred from fish otolith δ13C values, was higher in the regulated river relative to the naturally flowing river and was significantly positively related to time spent hydropeaking. Higher metabolic outputs in the regulated river were likely offset by an increased food supply, allowing for higher Brook Trout length‐at‐age. The opposing and complicated impacts of river regulation on Brook Trout highlight the need for studies to consider multiple indicators of fish health when characterising the response of fish populations to river regulation.  相似文献   

2.
Abstract – Brook charr (Salvelinus fontinalis) is a sentinel fish species that requires clean, cold water habitats generally resulting from landscapes that allow for surface water flows devoid of sediment and contaminants and high groundwater discharge of cold water. As such, brook charr are impacted by land cover changes that alter stream temperature regimes. We evaluated brook charr populations across their eastern and midwestern range in the United States with reference to thermal habitat availability in relationship to land cover and per cent baseflow. We found that while forest cover does protect brook charr thermal habitat, high levels of groundwater discharge can allow for increased levels of agriculture within a watershed by keeping the water cold in spite of warm ambient summer temperatures. Our study concludes that with enhanced communication among land, water and fisheries managers, society can provide for sustainable stream salmonid populations despite increased threats on cold water resources.  相似文献   

3.
Coastal Brook Trout (Salvelinus fontinalis) populations are found from northern Canada to New England. The extent of anadromy generally decreases with latitude, but the ecology and movements of more southern populations are poorly understood. We conducted a 33‐month acoustic telemetry study of Brook Trout in Red Brook, MA, and adjacent Buttermilk Bay (marine system) using 16 fixed acoustic receivers and surgically implanting acoustic transmitters in 84 individuals. Tagged Brook Trout used the stream, estuary (50% of individuals) and bay (10% of individuals). Movements into full sea water were brief when occurring. GAMM models revealed that transitions between habitat areas occurred most often in spring and fall. Environmental data suggest that use of the saline environment is limited by summer temperatures in the bay. Movements may also be related to moon phase. Compared to more northern coastal populations of Brook Trout, the Red Brook population appears to be less anadromous overall, yet the estuarine segment of the system may have considerable ecological importance as a food resource.  相似文献   

4.
Quantifying fish movements in river networks helps identify critical habitat needs and how they change with environmental conditions. Some of the challenges in tracking fish movements can be overcome with the use of passive integrated transponder (PIT) tagging and antennas. We used PIT technology to test predictions of movement behaviour for four fish species at a mainstem–tributary confluence zone in an arid‐land river system. Specifically, we focused on the McElmo Creek tributary confluence with the San Juan River in south‐western Utah, USA. We quantified variation in species occurrences at this confluence zone from May 2012 to December 2015 relative to temporal and environmental conditions. We considered occurrences among species relative to tagging origins (tributary versus mainstem), season and time of day. Generally, fishes tagged in the focal tributary were more likely to be detected compared to fish tagged in the mainstem river or other tributaries. Additionally, adults were most likely to be detected across multiple years compared to subadults. Based on a Random Forests model, the best performing environmental variables for predicting seasonal detections included mainstem discharge during run‐off season (razorback sucker Xyrauchen texanus), tributary discharge during monsoon season (Colorado pikeminnow Ptychocheilus lucius) and mainstem water temperature (flannelmouth sucker Catostomus latipinnis and channel catfish Ictalurus punctatus). The variable responses by endemic and introduced fishes indicate tributary habitats provide several key functions within a fish community including spawning, rearing, foraging and refuge.  相似文献   

5.
Lapointe NWR, Thorson JT, Angermeier PL. Seasonal meso‐ and microhabitat selection by the northern snakehead (Channa argus) in the Potomac river system.
Ecology of Freshwater Fish 2010: 19: 566–577. © 2010 John Wiley & Sons A/S Abstract – The northern snakehead (Channa argus) is a large piscivorous fish that is invasive in eastern Europe and has recently been introduced in North America. We examined the seasonal habitat selection at meso‐ and microhabitat scales using radio‐telemetry to increase understanding of the ecology of this species, which will help to inform management decisions. After the spawning season (postspawn season, September–November), northern snakeheads preferred offshore Eurasian water‐milfoil (Myriophyllum spicatum) beds with shallow water (~115 cm) and soft substrate. In the winter (November–April), these fish moved to deeper water (~135 cm) with warmer temperatures, but habitat selection was weak at both scales. Northern snakeheads returned to shallower water (~95 cm) in the prespawn season (April–June) and used milfoil and other cover. Habitat selection was the strongest at both meso‐ and microhabitat scales during the spawning season (June–September), when fish preferred macrophytes and cover in shallow water (~88 cm). Our results help to identify habitats at the risk of invasion by northern snakeheads. We suggest that control efforts and future research focus on shallow waters, and take into consideration the seasonal habitat preferences.  相似文献   

6.
The timing of smolt migration is a key phenological trait with profound implications for individual survival during both river descent and the subsequent sea sojourn of anadromous fish. We studied relationships between the time of smolt migration, water temperature and light intensity for Atlantic salmon (Salmo salar) and sea trout (Salmo trutta). During 2006–2012, migrating smolts descending the southern Norway River Storelva were caught in a rotary screw trap located at the river mouth. The date of 50% cumulative smolt descent correlated significantly with the date when the river temperature exceeded 8°C for both Atlantic salmon and sea trout smolts. In 2010, smolts of both species were passive integrated transponder (PIT)‐tagged, and the diel timing of their migration was precisely documented. The degree of night migration decreased in both species as the river temperature rose, and at temperatures above 12–13°C, more smolts migrated during day than during night. A multinomial model was fitted for estimating temperature and species effects on probabilities of migration during night, daytime, dusk and dawn. Atlantic salmon smolts preferred migrating under lower light intensities than sea trout smolts during early, but not late spring when both species migrated during bright daylight. In accordance with the early‐season tendency to migrate at night, Atlantic salmon smolts migrated more during darker hours of the day than sea trout. In both species, smaller smolts migrated under dark conditions than during light conditions. Most of the findings on thermal, light and temporal effects on the observed smolt migration pattern can be explained as adaptations to predation avoidance.  相似文献   

7.
I examined the effects of extreme hypoxia and water level fluctuations on the distribution and movement of an air-breathing clariid catfish, Clarias liocephalus, in a papyrus swamp in western Uganda. Monthly records of the distribution and relative abundance of C. liocephalus across 28 swamp stations were used to examine seasonal trends in habitat use and movement. My results suggest that dissolved oxygen did not directly limit use of, or dispersal through, the papyrus swamp. C. liocephalus were found at most stations in the dry season, and there was no significant relationship between the number of stations used per month and mean monthly dissolved oxygen levels. In addition, there was no evidence for a significant effect of oxygen on the relative abundance of fish among stations during the driest months, or during peak flood conditions. However, relative abundance was positively correlated with water depth during the dry season. Fish from deeper habitats exhibited fewer injuries and lower rates of disappearance than fish from shallower waters. This may reflect the risk of aerial predation for surfacing fish. A comparison of habitat use and movements of C. liocephalus with the only other fish species found in the papyrus swamp, Barbus neumayeri, supports the idea that respiratory mode can affect the use of hypoxic papyrus swamps. B. neumayeri, is a small water-breathing cyprinid that uses aquatic surface respiration in response to severe hypoxia. The air-breathing capabilities of C. liocephalus permitted more widespread use of swamp waters than B. neumayeri. This study demonstrates that an understanding of the respiratory mode of fish species may be useful in predicting patterns of habitat use.  相似文献   

8.
The mobility patterns of two native species, barbel, Barbus barbus (L.) and chub, Squalius cephalus (L.), and of one non‐native fish species, the catfish Silurus glanis (L.), were assessed on a 35.5‐km reach of the Upper Rhône River, a strong flowing river with notable thermal regime alterations. An active acoustic tracking technique adapted to large rivers allowed (1) the identification of longitudinal home ranges, movements and preferred habitat at large scale, and (2) the analysis of the influence of discharge and water temperature on the movement patterns of the fish. The active fish‐tracking system recorded 1,572 fish localisations over 7 months on a weekly basis for 80% of the tagged fish (37 barbel, 23 chub and 13 catfish). Compared with the catfish, barbel and chub showed wider longitudinal home ranges, more movements >1 km and higher interindividual variability. The catfish preferred artificially heated habitats with less morphological diversity. The three species were more often localised in river sections with high density of woody debris. The results suggest that habitat degradation is more damaging for cyprinids in large modified rivers, while the catfish seemed less, impacted.  相似文献   

9.
The sustainability of freshwater fisheries is increasingly affected by climate warming, habitat alteration, invasive species and other drivers of global change. The State of Michigan, USA, contains ecologically, socioeconomically valuable coldwater stream salmonid fisheries that are highly susceptible to these ecological alterations. Thus, there is a need for future management approaches that promote resilient stream ecosystems that absorb change amidst disturbances. Fisheries professionals in Michigan are responding to this need by designing a comprehensive management plan for stream brook charr (Salvelinus fontinalis), brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) populations. To assist in developing such a plan, we used stream‐specific regression models to forecast thermal habitat suitability in streams throughout Michigan from 2006 to 2056 under different predicted climate change scenarios. As baseflow index (i.e., relative groundwater input) increased, stream thermal sensitivity (i.e., relative susceptibility to temperature change) decreased. Thus, the magnitude of temperature warming and frequency of thermal habitat degradation were lowest in streams with the highest baseflow indices. Thermal habitats were most suitable in rainbow trout streams as this species has a wider temperature range for growth (12.0–22.5 °C) compared to brook charr (11.0–20.5 °C) and brown trout (12.0–20.0 °C). Our study promotes resilience‐based salmonid management by providing a methodology for stream temperature and thermal habitat suitability prediction. Fisheries professionals can use this approach to protect coldwater habitats and drivers of stream cooling and ultimately conserve resilient salmonid populations amidst global change.  相似文献   

10.
Oxygen stable isotope temperature reconstruction methods were used to estimate mean experienced summer temperatures from growth zones within individual Arctic charr otoliths sampled from lakes with contrasting morphologies but proximate locations. For either lake, otolith‐estimated temperatures were not significantly related to back‐calculated growth. Fish in the smaller lake evidenced an increase in growth with age related to increasing use of cooler thermal habitats, with the use of thermal habitat possibly governed by predation risks. No relationships between age, growth or temperature were observed in the larger lake. Significant negative effects on back‐calculated growth were observed due to increasing air temperatures in the smaller and shallower lake, possibly owing to warmer surface and littoral waters and a limited amount of preferred cool‐water habitat. A similar relationship was not observed in the larger and deeper lake and indicated that resident Arctic charr were not as vulnerable to the impacts of temperature warming, possibly because of better behavioural thermoregulation opportunities in the cooler, deeper lake. Results provide evidence for differing climate‐influenced growth outcomes among proximately located populations, with outcomes likely to depend on the differences among habitats, including lake size and morphometry which may act to influence fish densities in available preferred thermal habitats.  相似文献   

11.
生态调度是缓解水电工程对鱼类不利影响的有效措施之一,确定生态调度目标鱼类是制定生态调度方案的基础和前提。在野外调查和查阅相关文献资料的基础上,运用物种濒危系数、遗传价值系数和物种价值系数对金沙江乌东德坝址至白鹤滩坝址之间分布的53种土著鱼类进行生态调度需求次序的定量研究,结果表明,处于生态调度需求1级的鱼类有4种,为圆口铜鱼、长鳍吻鮈、中华金沙鳅和齐口裂腹鱼,这些鱼类均属长江上游特有鱼类,也是受水电开发影响较为显著的种类;处于生态调度需求2级的鱼类有14种,包括长江上游特有鱼类11种,这些鱼类产卵繁殖对流水生境均有一定需求;处于生态调度需求3级的鱼类有28种,这些鱼类以广适型种类为主,对水流条件的要求不高;处于生态调度需求4级的鱼类有7种,多为常见的小型鱼类,其产卵繁殖对生境要求不高。评价结果基本反映了乌东德坝下江段鱼类对生态调度的实际需求,考虑到产漂流性卵鱼类和产粘沉性卵鱼类繁殖需求的差异,综合确定圆口铜鱼和齐口裂腹鱼为乌东德水电站生态调度的主要目标鱼类,长鳍吻鮈、中华金沙鳅等作为兼顾目标鱼类。  相似文献   

12.
13.
Understanding juvenile salmonid habitat requirements is critical for their effective management, but little is known about these requirements in lowland rivers, which include important but unique salmonid habitats. We compared the relative influence of in-stream Ranunculus cover, water depth, prey abundance, distance upstream and two previously unexplored factors (water velocity heterogeneity and site colonisation potential) on summer densities of juvenile Atlantic salmon and brown trout. We applied electrofishing, habitat surveys and macroinvertebrate kick sampling, and calculated the site colonisation potential from salmon redd surveys across 18–22 sites in a lowland river in 2015–2017. Due to a recruitment crash in 2016, models including and excluding this unusual year were explored. Excluding 2016 data, juvenile salmon densities showed a positive association with Ranunculus cover and numbers of nearby upstream redds, and a negative association with distance upstream from the tidal limit. Trout densities were positively associated with velocity heterogeneity, indicating a potential indirect influence of Ranunculus mediated by water velocity. When including 2016, year had the largest effect on densities of both species, highlighting the impact of the recruitment failure. These findings uncover interspecific differences in the habitat requirements of juvenile salmonids in lowland rivers. Velocity heterogeneity and site colonisation potential had high explanatory power, highlighting that they should be considered in future studies of habitat use. These findings demonstrate that temporal replication and recruitment dynamics are important considerations when exploring species–habitat associations. We discuss potential management implications and argue that Ranunculus cover could be an important management tool in conservation of lowland salmonids.  相似文献   

14.
Electronically tagged juvenile Pacific bluefin, Thunnus orientalis, were released off Baja California in the summer of 2002. Time‐series data were analyzed for 18 fish that provided a record of 380 ± 120 days (mean ± SD) of ambient water and peritoneal cavity temperatures at 120 s intervals. Geolocations of tagged fish were estimated based on light‐based longitude and sea surface temperature‐based latitude algorithms. The horizontal and vertical movement patterns of Pacific bluefin were examined in relation to oceanographic conditions and the occurrence of feeding events inferred from thermal fluctuations in the peritoneal cavity. In summer, fish were located primarily in the Southern California Bight and over the continental shelf of Baja California, where juvenile Pacific bluefin use the top of the water column, undertaking occasional, brief forays to depths below the thermocline. In autumn, bluefin migrated north to the waters off the Central California coast when thermal fronts form as the result of weakened equatorward wind stress. An examination of ambient and peritoneal temperatures revealed that bluefin tuna fed during this period along the frontal boundaries. In mid‐winter, the bluefin returned to the Southern California Bight possibly because of strong downwelling and depletion of prey species off the Central California waters. The elevation of the mean peritoneal cavity temperature above the mean ambient water temperature increased as ambient water temperature decreased. The ability of juvenile bluefin tuna to maintain a thermal excess of 10°C occurred at ambient temperatures of 11–14°C when the fish were off the Central California coast. This suggests that the bluefin maintain peritoneal temperature by increasing heat conservation and possibly by increasing internal heat production when in cooler waters. For all of the Pacific bluefin tuna, there was a significant correlation between their mean nighttime depth and the visible disk area of the moon.  相似文献   

15.
The use of nature‐like fishways to increase ecosystem connectivity has increased in recent years, but their effectiveness has rarely been evaluated. A rock ramp was constructed in the Shiawassee River in 2009, and post‐construction effects (2011–2012) were evaluated on the summer fish assemblage by comparing fish assemblage composition to a nearby free‐flowing river and a nearby river with a dam. Patterns of fish species richness, mean catch‐per‐unit‐effort and proportional abundance in reaches upstream and downstream of the rock ramp, dam and comparable sites in the free‐flowing river were evaluated. Overall, species richness by site and proportional abundance in the rock‐ramp river were more similar to the free‐flowing river, while species richness by reach was more similar to the dammed river. These findings suggest that the rock ramp has improved connectivity for the summer fish assemblage, but has not fully restored conditions to the level observed in a free‐flowing river.  相似文献   

16.
Abstract Dam removal has been increasingly proposed as a river restoration technique. In 2011, two large hydroelectric dams will be removed from Washington State’s Elwha River. Ten anadromous fish populations are expected to recolonise historical habitats after dam removal. A key to understanding watershed recolonisation is the collection of spatially continuous information on fish and aquatic habitats. A riverscape approach with an emphasis on biological data has rarely been applied in mid‐sized, wilderness rivers, particularly in consecutive years prior to dam removal. Concurrent snorkel and habitat surveys were conducted from the headwaters to the mouth (rkm 65–0) of the Elwha River in 2007 and 2008. This riverscape approach characterised the spatial extent, assemblage structure and patterns of relative density of Pacific salmonids. The presence of dams influenced the longitudinal patterns of fish assemblages, and species richness was the highest downstream of the dams, where anadromous salmonids still have access. The percent composition of salmonids was similar in both years for rainbow trout, Oncorhynchus mykiss (Walbaum), coastal cutthroat trout, Oncorhynchus clarkii clarkii (Richardson) (89%; 88%), Chinook salmon, Oncorhynchus tshawytscha (Walbaum) (8%; 9%), and bull trout, Salvelinus confluentus (Suckley) (3% in both years). Spatial patterns of abundance for rainbow and cutthroat trout (r = 0.76) and bull trout (r = 0.70) were also consistent between years. Multivariate and univariate methods detected differences in habitat structure along the river profile caused by natural and anthropogenic factors. The riverscape view highlighted species‐specific biological hotspots and revealed that 60–69% of federally threatened bull trout occurred near or below the dams. Spatially continuous surveys will be vital in evaluating the effectiveness of upcoming dam removal projects at restoring anadromous salmonids.  相似文献   

17.
Howell PJ, Dunham JB, Sankovich PM. Relationships between water temperatures and upstream migration, cold water refuge use, and spawning of adult bull trout from the Lostine River, Oregon, USA.
Ecology of Freshwater Fish 2010: 19: 96–106. This article is a US Government work and is in the public domain in the USA Abstract – Understanding thermal habitat use by migratory fish has been limited by difficulties in matching fish locations with water temperatures. To describe spatial and temporal patterns of thermal habitat use by migratory adult bull trout, Salvelinus confluentus, that spawn in the Lostine River, Oregon, we employed a combination of archival temperature tags, radio tags, and thermographs. We also compared temperatures of the tagged fish to ambient water temperatures to determine if the fish were using thermal refuges. The timing and temperatures at which fish moved upstream from overwintering areas to spawning locations varied considerably among individuals. The annual maximum 7‐day average daily maximum (7DADM) temperatures of tagged fish were 16–18 °C and potentially as high as 21 °C. Maximum 7DADM ambient water temperatures within the range of tagged fish during summer were 18–25 °C. However, there was no evidence of the tagged fish using localized cold water refuges. Tagged fish appeared to spawn at 7DADM temperatures of 7–14 °C. Maximum 7DADM temperatures of tagged fish and ambient temperatures at the onset of the spawning period in late August were 11–18 °C. Water temperatures in most of the upper Lostine River used for spawning and rearing appear to be largely natural since there has been little development, whereas downstream reaches used by migratory bull trout are heavily diverted for irrigation. Although the population effects of these temperatures are unknown, summer temperatures and the higher temperatures observed for spawning fish appear to be at or above the upper range of suitability reported for the species.  相似文献   

18.
Understanding the spatial ecology of juvenile freshwater fish beyond summer months is an essential component of their life history puzzle. To this end, declines in the natural populations of sympatric Muskellunge (Esox masquinongy) and Northern Pike (Esox lucius) in the upper St. Lawrence River prompted study of spatiotemporal patterns and habitat requirements associated with earlier life stages of these congeneric, freshwater predators in fall and overwinter periods. Over 75 age-0 esocids were tagged and passively monitored using acoustic telemetry in four nursery embayments in fall and winter months from 2015 and 2017 months to elucidate spatiotemporal ecology and test hypotheses related to emigration. Presence, residency, space and habitat use were assessed and modelled against key environmental (i.e. water temperature and level) and biological (total length) covariates using mixed effect models. Muskellunge were found to spend more time in deeper, littoral regions with canopy-forming, submerged aquatic vegetation while Northern Pike aggregated in the deepest, highly vegetated region of their nursery embayment. Results suggest fish may exhibit transitionary movements in fall months and may span outwards into nearshore regions along the main river channel. Studies informing coastal restoration initiatives to increase Muskellunge production are encouraged to assess sympatric habitat use relative to prominent embayment structures and further explore depth partitioning by these young predators. With a substantial influence from water-level regulation on use of nursery habitat, future studies must work in concert with management plans aimed at producing more natural riverine cycles and thus increased recruitment of Esox species.  相似文献   

19.
Abstract – Although introductions of prey species have the potential to significantly alter habitat use by top predatory fish, this aspect has rarely been directly quantified. Introduction of yellow perch (Perca flavescens), a littoral–pelagic prey species, to a small boreal lake previously dominated by littoral cyprinids provided a unique opportunity to examine how a change in forage base influenced habitat use by the sole top predator, lake trout (Salvelinus namaycush). We monitored lake trout pelagic and spatial distribution using acoustic telemetry before (2001) and after (2008) the introduction of perch to determine whether habitat use reflected a deeper, offshore prey community. After accounting for differences in water temperature and dissolved oxygen concentrations between years and the inclusion of a control lake, our data suggest that lake trout habitat use changed after the introduction of yellow perch. Lake trout, on average, were 1.4 m deeper (P < 0.01), reduced their use of littoral habitat by 55% (P = 0.03) and experienced a 71% decrease in home range size (P < 0.01), consistent with a greater offshore habitat overlap between predator and prey after the introduction of yellow perch. This study illustrates how introduced prey species may have a significant influence on habitat use by top predatory fish, while also showing the importance of using direct measurements to quantify behavioural changes.  相似文献   

20.
Thermal habitat was recorded by data storage tags (DSTs) applied to Atlantic salmon (Salmo salar L.) kelts during their seaward migration in the spring of 1998 at enumeration facilities in Highlands River, Humber River, Western Arm Brook, and Campbellton River, Newfoundland. In total, 139 DSTs were applied and data were downloaded from eleven of the recovered tags. The recovered tags had been applied at Highlands, Campbellton and Western Arm rivers and recovered in the coastal waters of Newfoundland and Québec and at the enumeration facilities at Highlands and Campbellton rivers. Water temperatures experienced by the fish were recorded for periods of 62–118 days at resolutions of 15–30 min. The data from the sea record on the DSTs were analysed for temperature patterns in relation to migration behaviour and diurnal movement of the fish. A variety of patterns were exhibited on the temperature records suggesting that the fish were behaving in various ways at different times. For Campbellton and Highlands fish over the course of some 24 h periods, night‐time temperatures changed little and were among the highest daily temperatures experienced by the fish, whereas daytime temperatures often showed dramatic and frequent shifts in temperature presumably as the fish rapidly and frequently changed depth. For the Western Arm Brook fish, rapid fluctuations in temperature occurred sometimes during the day and night without a consistent diurnal pattern. We also considered large‐scale aspects of the data by examining oceanographic conditions in relation to the temperatures recorded by the tags.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号