首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of recent reports have implicated bacteria from the family Francisellaceae as the cause of disease in farmed and wild fish and shellfish species such as Atlantic cod, Gadus morhua L., tilapia, Oreochromis spp., Atlantic salmon, Salmo salar L., three‐line grunt, Parapristipoma trilineatum (Thunberg), ornamental cichlid species, hybrid striped bass Morone chrysops x M. saxatilis and, recently, a shellfish species, the giant abalone, Haliotisgigantea Gmelin. The range of taxa affected will very probably rise as it is likely that there has been considerable under‐reporting to date of these disease agents. In common with other Francisella species, their isolation and culture require specialized solid and liquid media containing cysteine and a source of iron. This likely restricted earlier efforts to identify them correctly as the cause of disease in aquatic animals. The most information to date relates to disease in cod, caused by F. noatunensis and tilapia, caused by F. noatunensis subsp. orientalis (also termed F. asiatica), both causing granulomatous inflammatory reactions. Mortalities in both species can be high and, as the disease can likely be transferred via live fish movements, they pose a significant threat to tilapia and cod aquaculture operations. Although the fish‐pathogenic Francisella species are classified in the same genus as the human pathogens F. tularensis, causative agent of tularemia, and F. philomiragia, the risk to humans from the fish and shellfish pathogenic Francisella species is considered very low.  相似文献   

2.
Edwardsiella spp., Streptococcus spp., and Francisella noatunensis subsp. orientalis are some of the most important fish pathogens affecting global tilapia, Oreochromis spp., aquaculture. In Costa Rica, the aquaculture industry is dominated by freshwater‐cultured Nile tilapia, Oreochromis niloticus, which are raised in all seven national provinces. At present, little is known regarding the diversity of pathogens present in these facilities, and definitive identification of agents associated with disease outbreaks are rare. To evaluate the prevalence of common bacterial pathogens in these systems, this study used multiplex quantitative polymerase chain reaction (qPCR) assays targeting Edwardsiella, Streptococcus, and Francisella species as a diagnostic and surveillance tool. In 2017, seven different tilapia hatcheries were visited, and 350 fingerlings were subjected to necropsy and molecular diagnostic evaluation. Fish exhibiting gross signs of disease were subjected to histological and microbiological analysis. For the first time, Edwardsiella anguillarum was recovered and molecularly confirmed from diseased tilapia in Costa Rica. In addition, F. noatunensis subsp. orientalis was identified in a region of Costa Rica where it had not been previously reported.  相似文献   

3.
Sixteen countries, including Bangladesh, have reported the presence of tilapia lake virus (TiLV), an emerging tilapia pathogen. Fish polyculture is a common farming practice in Bangladesh. Some unusual mortalities reported in species co-cultivated with TiLV-infected tilapia led us to investigate whether any of the co-cultivated species would also test positive for TiLV and whether they were susceptible to TiLV infection under controlled laboratory experiments. Using 183 samples obtained from 15 farms in six districts across Bangladesh, we determined that 20% of the farms tested positive for TiLV in tilapia, while 15 co-cultivated fish species and seven other invertebrates (e.g. insects and crustaceans) considered potential carriers all tested negative. Of the six representative fish species experimentally infected with TiLV, only Nile tilapia showed the typical clinical signs of the disease, with 70% mortality within 12 days. By contrast, four carp species and one catfish species challenged with TiLV showed no signs of TiLV infection. Challenged tilapia were confirmed as TiLV-positive by RT-qPCR, while challenged carp and walking catfish all tested negative. Overall, our field and laboratory findings indicate that species used in polycultures are not susceptible to TiLV. Although current evidence suggests that TiLV is likely host-specific to tilapia, targeted surveillance for TiLV in other fish species in polyculture systems should continue, in order to prepare for a possible future scenario where TiLV mutates and/or adapts to new host(s).  相似文献   

4.
Flavobacterium columnare is a bacterial pathogen for many freshwater fish species. It is responsible for outbreaks in fish farms worldwide, causing high mortality rates. Fish vaccination is a potential approach for prevention and control of disease, with oral vaccines suitable for fish because of their easier application, low cost and minimum stress to fish. Alginate microparticles have been widely used as controlled release systems, including for fish vaccination. The aim of this study was to evaluate the capacity of oral and parenteral vaccines against F. columnare to induce a humoral response, as well as the in vivo efficiency in Nile tilapia fingerlings. The fingerlings were immunized with bacterin by intraperitoneal (i.p.), intramuscular (i.m.), oral and immersion routes, as well as orally with alginate microparticles containing formalin-killed bacteria. A sandwich ELISA was developed to detect specific antibodies against F. columnare. The animals were challenged with pathogenic strain BZ-1 to determine the relative percentage of survival. A significant humoral response was induced by bacterin administered by i.p. and i.m. routes (P < 0.05). However, none of the vaccine preparations were effective in protecting fish against F. columnare infection (P < 0.05). In spite of high antibody levels, there was no relation between immunoglobulin titers and resistance to columnaris for Nile tilapia fingerlings. These data suggest that use of serological analysis as the only method to determine vaccine efficiency against F. columnare infection in Nile tilapia can lead to imprecise results for the usefulness of these products in vivo.  相似文献   

5.
In the Mediterranean area, wild fish have often been suggested as either the reservoirs of the causative agents or at least the carriers of the pathogens responsible for disease outbreaks in cultured fish. However, no epidemiological investigations on actual pathogen/disease interactions between farmed and wild fish have been conducted even for the most important fish pathogens. Only sporadic isolations and identifications of various pathogens in wild fish have been done and real associations with the pathological conditions that exist within the farm environment and vice versa have not been established. Monogenean ectoparasite Sparicotyle chrysophrii and isopod Ceratothoa oestroides are commonly found in the Mediterranean cage-reared sea bream and sea bass and in the surrounding wild fish population. Both species were recognized as pathogens that seasonally inflict serious losses in fingerlings and juveniles of sea bream and sea bass, being potentially propagated and exchanged during wild and caged fish interaction. In order to evaluate the degree of pathogens transfer between wild and farmed fish, we investigated genetic population structures of these two important parasitic pathogens inferred by mtDNA cytochrome oxidase I locus. Parasites isolated from wild and farmed fish on the two most productive Adriatic fish farms showed genetic heterogeneity, contradicting widely accepted hypothesis of cross-contamination, at least in case of S. chrysophrii and C. oestroides. As far as we know, this is the first report that in a study of pathogen transfer molecular evidence was employed to asses the genetic population structure of shared parasites.  相似文献   

6.
罗非鱼链球菌病研究进展   总被引:20,自引:0,他引:20  
卢迈新 《南方水产》2010,6(1):75-79
链球菌(Streptococcus spp.)是一种广泛分布于自然界的革兰氏阳性菌,是人类的重要病原之一,也是其他多种脊椎动物包括猪、牛、鱼等的重要病原菌。目前已有多个国家报道了鱼类链球菌病的暴发与流行,受感染的鱼类包括多种海水和淡水鱼类,以温水性鱼类最为严重。近年中国罗非鱼链球菌感染的报道也呈现增加趋势,尤其在2009年,广东、海南、福建和广西地区养殖罗非鱼的链球病发病率为20%~50%,死亡率达50%~70%,甚至更高。链球菌病已严重危害着中国罗非鱼养殖业的健康发展。文章对罗非鱼链球菌病的病原、流行及防治方法作一综述,以期为今后开展罗非鱼链球菌病防控研究提供参考。  相似文献   

7.
Streptococcus iniae and Gyrodactylus niloticus are two common pathogens of cultured Nile tilapia, Oreochromis niloticus. We studied concurrent infection of tilapia by G. niloticus and S. iniae and evaluated whether parasitism in tilapia with Gyrodactylus increased susceptibility and mortality following immersion infection with S. iniae. Results showed that death mainly occurred in fish with G. niloticus and challenged with S. iniae (G-S group). The accumulative mortality (42.2%) was significantly higher in the G-S group than in fish not infected by the parasite (6.7%), but exposed to S. iniae. Bacteriological examination revealed S. iniae from > or =92% of dead or moribund fish challenged with S. iniae. Gyrodactylus not only damaged fish epithelium and provided entry for invasive bacteria but also was found to harbour viable cells of S. iniae for 24 and 72 h. Streptococcus iniae was isolated from 60% and 40% of G. niloticus collected from fish infected by intraperitoneal injection or immersion, respectively, at 24 h post-challenge. The present study confirms that parasitism of tilapia by G. niloticus increased host mortality following exposure to the bacterial pathogen S. iniae.  相似文献   

8.
Mycotic aspects of epizootic ulcerative syndrome (EUS) of Asian fishes   总被引:2,自引:0,他引:2  
Abstract A survey of fish affected with epizootic ulcerative syndrome taken from outbreaks in countries throughout South and South-East Asia showed that a morphologically typical fungus was consistently present within lesions. Although the majority of the fungal mycelium was dead in most lesions it proved possible to isolate a very delicate and culturally demanding Aphanomyces from such lesions in a few cases. It also proved relatively easy to isolate other members of the Saprolegniaceae including Aphanomyces from the surface of lesions, but these were considered saprophytes derived from background spore burdens in the water. Sporangium morphology of the putatively pathogenic isolates of Aphanomyces was different from that of saprophytic Aphanomyces strains and they also had a lower thermal tolerance. When a mycelium from these strains was placed below the dermis of healthy fish, it caused an inflammatory response and proceeded to migrate down into the tissues of the fish, inducing severe myonecrosis with chronic epithelial reaction. The saprophytic isolates induced a local host response followed by healing of the induced lesion, and destruction or expulsion of the mycelium. It is considered that the specific slow-growing, thermo-labile Aphanomyces is the pathogenic fungus which causes so much tissue damage in this disease, although it may not be a primary pathogen in its own right.  相似文献   

9.
The aquatic orthomyxovirus infectious salmon anaemia virus (ISAV) causes a severe disease in farmed Atlantic salmon, Salmo salar L. Although some ISA outbreaks are caused by horizontal transmission of virus between farms, the source and reservoir of the virus is largely unknown and a wild host has been hypothesized. Atlantic salmon are farmed in open net‐pens, allowing transmission of pathogens from wild fish and the surrounding environment to the farmed fish. In this study, a large number of fish species were investigated for ISAV host potential. For orthomyxoviruses, a specific receptor binding is the first requirement for infection; thus, the fish species were investigated for the presence of the ISAV receptor. The receptor was found to be widely distributed across the fish species. All salmonids expressed the receptor. However, only some of the cod‐like and perch‐like fish did, and all flat fish were negative. In the majority of the positive species, the receptor was found on endothelial cells and/or on red blood cells. The study forms a basis for further investigations and opens up the possibility for screening species to determine whether a wild host of ISAV exists.  相似文献   

10.
Tilapia lake virus (TiLV) is a highly contagious pathogen that has detrimental effects on tilapia farming. This virus was discovered in 2014 and has received tremendous global attention from the aquaculture sector due to its association with high fish mortalities and its strong economic impact on the tilapia aquaculture industry. Currently, TiLV has been reported in 16 countries, and this number is continuing to rise due to improved diagnostic assays and surveillance activities around the world. In this review, we summarize the up-to-date knowledge of TiLV with regard to TiLV host species, the clinical signs of a TiLV infection, the affected tissues, pathogenesis and potential disease risk factors. We also describe the reported information concerning the virus itself: its morphology, genetic make-up and transmission pathways. We review the current methods for virus detection and potential control measures. We close the review of the TiLV story so far, by offering a commentary on the major TiLV research gaps, why these are delaying future TiLV research and why the TiLV field needs to come together and proceed as a more collaborative scientific community if there is any hope limiting the impact of this serious virus.  相似文献   

11.
Streptococcus agalactiae (Group B Streptococcus, GBS) is associated with diverse diseases in aquatic animals. The capsule polysaccharide (CPS) encoded by the cps gene cluster is the major virulence factor of S. agalactiae; however, limited information is available regarding the pathogenic role of the CPS of serotype Ia piscine GBS strains in fish. Here, a non‐encapsulated mutant (Δcps) was constructed by insertional mutagenesis of the cps gene cluster. Mutant pathogenicity was evaluated in vitro based on the killing of whole blood from tilapia, in vivo infections, measuring mutant survival in tilapia spleen tissues and pathological analysis. Compared to wild‐type (WT) GBS strain, the Δcps mutant had lower resistance to fresh tilapia whole blood in vitro (p < 0.01), and more easily cleared in tilapia spleen tissue, and was highly attenuated in tilapia and zebrafish. Additionally, compared to the Δcps mutant, numerous GBS strains and severe tissue necrosis were observed in the tilapia spleen tissue infected with WT strains. These results indicated that the CPS is essential for GBS pathogenicity and may serve as a target for attenuation in vaccine development. Gaining a better understanding of the role, the GBS pathogenicity in fish will provide insight into related pathogenesis and host–pathogen interactions.  相似文献   

12.
Francisella orientalis is a highly virulent, emerging bacterium that causes mass mortalities in tilapia. This pathogen also affects numerous other warm-water fish species, including three-line grunt, hybrid striped bass and various ornamental fish. This study sheds light on two new species of fish that are susceptible to F. orientalis. Asian seabass and largemouth bass showed variable levels of susceptibility in a bacterial challenge experiment. After intraperitoneally injected with a dose of 106 CFU/fish, a total of 64.28% and 21.42% mortalities were obtained in Asian seabass and largemouth bass, respectively. Meanwhile, Nile tilapia showed acute mortality of 100%. All fish showed typical lesions of francisellosis, including multifocal granulomas in the spleen and head kidney. Immunohistochemical analysis revealed strong positive signals inside the granulomas of all fish. The bacterial recovery in solid media from infected fish was highest in Nile tilapia (85.71%), followed by Asian seabass (35.71%) and largemouth bass (21.42%). PCR results tested 100% positive for Nile tilapia, and 78.57% and 21.42% for Asian seabass and largemouth bass, respectively. In conclusion, Asian seabass and largemouth bass are susceptible to this pathogen, which warrants new management strategies when employing predation polyculture systems of these species with tilapia.  相似文献   

13.
罗非鱼源蜡样芽孢杆菌分离、鉴定及药敏特性研究   总被引:1,自引:0,他引:1  
从福建漳州某养殖场患出血病死亡的罗非鱼肝脏、肾脏及脾脏分离到一株致病性菌株FJLF。对该菌进行了形态特征观察、理化特性测定及16S rRNA序列分子鉴定。生理生化特征和16S rRNA基因序列分析结果显示,分离到的FJLF株为蜡样芽孢杆菌(Bacillus cereus)。人工感染该菌后发病鱼出现与自然发病类似症状,且从病灶中分离到与原感染菌一致菌株。腹腔注射后该菌株对罗非鱼的半致死剂量LD_(50)=2.30×10~6CFU/g。FJLF株对诺氟沙星、头孢噻肟、新霉素及卡那霉素等8种抗生素高度敏感;对环丙沙星、痢特灵、红霉素及链霉素中度敏感;对苯唑西林、青霉素、头孢拉定及阿莫西林等10种抗生素耐药。  相似文献   

14.

The development and intensification of Nile tilapia farming systems has happened together with ever increased use of antibiotics and therapeutants. Research on the use of probiotics has come along as alternative to routine use of antibiotics in fish diets. The manipulation of the gut microbiota through dietary probiotic inclusion targeting improved growth rate and disease resistance has been investigated in many farmed fish species. However, mechanisms underlying modulation of fish immune response remains unclear. This review summarizes and discuss recent findings in the role of probiotics on the immunity of Nile tilapia Oreochromis niloticus addressing available information regarding immunological parameters such as phagocytic activity, lysozyme, respiratory burst activity, antioxidant enzymes, complement system as well as immune-related gene expression, in the aim to foster research efforts on effective strategies for the successful use of probiotics in the tilapia farming industry.

  相似文献   

15.
Fish diseases can be caused by a variety of diverse organisms, including bacteria, fungi, viruses and protozoa, and pose a universal threat to the ornamental fish industry and aquaculture. The lack of rapid, accurate and reliable means by which fish pathogens can be detected and identified has been one of the main limitations in fish pathogen diagnosis and fish disease management and has consequently stimulated the search for alternative diagnostic techniques. Here, we describe a method based on multiplex and broad-range PCR amplification combined with DNA array hybridization for the simultaneous detection and identification of all cyprinid herpesviruses (CyHV-1, CyHV-2 and CyHV-3) and some of the most important fish pathogenic Flavobacterium species, including F. branchiophilum, F. columnare and F. psychrophilum. For virus identification, the DNA polymerase and helicase genes were targeted. For bacterial identification, the ribosomal RNA gene was used. The developed methodology permitted 100% specificity for the identification of the target species. Detection sensitivity was equivalent to 10 viral genomes or less than a picogram of bacterial DNA. The utility and power of the array for sensitive pathogen detection and identification in complex samples such as infected tissue is demonstrated in this study.  相似文献   

16.
为探讨无乳链球菌(Streptococcus agalactiae)感染罗非鱼(Oreochromis spp)的致病途径。采用腹腔注射、灌胃和浸泡三种方式对吉富罗非鱼进行无乳链球菌(HN016菌株)胁迫感染,利用平板活菌计数法统计三种方式感染后病原菌在体内组织的分布。注射和灌胃两种方式感染后均出现典型的链球菌感染发病症状,其中注射组在感染24 h后出现死亡高峰,死亡率为92.5%;灌胃组感染48 h后出现死亡高峰,死亡率为90%;而浸泡组,感染后均没有出现明显的发病症状,也没有出现死鱼。注射组和灌胃组在感染后2 h,其脾脏、肝脏、前肾、胃、腮、皮肤和肌肉组织中均可分离出病原菌,5 h后在脑组织中均可分离出病原菌,8 h后各组织分离出的病原菌数达到峰值;而浸泡组在感染8 h后才从各组织中分离出病原菌,且它们的数量均低于同时期的注射组和灌胃组。注射和灌胃两种方式可使吉富罗非鱼快速感染无乳链球菌而发病,而浸泡方式感染后病原菌虽可以侵入机体,但不表现出症状。由此,我们推测在自然条件下养殖的罗非鱼是通过口腔采食携带无乳,链球菌的食物而被感染。  相似文献   

17.
Channel catfish virus (CCV) disease is an acute haemorrhagic disease in juvenile channel catfish ( Ictalurus punctatus ). To date channel catfish is the only species affected by natural outbreaks of the CCV but juvenile large mouth bass ( Micropterus salmoides ) and silurus ( Silurus meriaionalis ) have suffered high mortalities in recent years in China. Histopathological phenomenon of sick fish is similar to CCV disease, and the identified virus was CCV. In this report, the pathogenicity of infectious CCV was examined by infection trials on the first known host species, the channel catfish and other teleosts. Our results indicated that there were higher detection rates of CCV from large mouth bass and silurus fish. Channel catfish virus did not induce mortality in other cypriniformes, but histopathological studies revealed that carp might be infected by both bathing and intraperitoneal infection. No deaths, clinical or histopathological signs, were found in the six other species exposed by immersion or injection. Experimental infection studies confirm that CCV infect not only channel catfish but also other species (large mouth bass, silutus and carp). The outbreaks of CCV disease only occurred when the cultured temperature was above 25 °C.  相似文献   

18.

The rapid intensification of the aquaculture system has led to several environmental impacts involving water quality deterioration, pollution, and disease outbreaks. Consequently, an eco-friendly technique is inevitable that could ensure better production with less impact on the environment by minimizing the effluent discharge from aquaculture practice. Biofloc technology is such a kind breakthrough that would be easy to perform; operation and establishment procedure is quite simple at a relatively low cost that would be convenient to fish farmers. It can serve as a perfect solution for aquaculture species through improving its all characteristics such as substantial biomass density, survival, and disease resistance ability to the pathogen by an immunostimulatory effect of microbial floc on the immune system that would assure the biosecurity and sustainability of this extraordinary technique.

  相似文献   

19.
Francisella sp. is an emergent bacterial pathogen that causes acute to chronic disease in warm and cold water cultured and wild fish species. During the past 3 years, the bacterium has been detected in tilapia, Oreochromis niloticus , cultured in Costa Rica. Infected fish presented non-specific clinical signs, such as erratic swimming, anorexia, anaemia, exophthalmia and high mortality. Upon macroscopic and microscopic examination, several internal organs (mainly spleen and kidney) were enlarged and contained white nodules. Histological examination revealed the presence of multifocal granulomatous lesions, with the presence of numerous small, pleomorphic, cocco-bacilli. The bacteria were isolated from infected tilapia on selective media and grown on several media with and without antibiotics. Specific PCR primers to the Francisella genus were used to confirm the preliminary diagnoses. In comparison with several bacterial 16S rRNA sequences, our isolate was found to share 99% identity with other Fransicella spp. isolated from fish, and more than 97% identity to the human pathogen Francisella tularensis . Koch's postulates were fulfilled after experimental intraperitoneal and gill exposure challenges.  相似文献   

20.
黏膜及其表面的共生菌群是鱼类抵御外界不利环境的第一道屏障。为探索养殖罗非鱼表皮和鳃黏膜共生菌菌群的结构特征是否与其健康状况间存在相关关系,本研究运用高通量测序技术,以无乳链球菌腹腔注射攻毒48 h后存活和濒死尼罗罗非鱼为检测对象,检测攻毒前后罗非鱼表皮和鳃黏膜共生菌群落结构差异。结果显示,健康尼罗罗非鱼表皮和鳃黏膜共生菌均存在优势菌群,主要为特吕珀菌属、硫杆菌属、弓形杆菌属、海单胞菌属和弧菌属。人工感染无乳链球菌后存活尼罗罗非鱼表皮和鳃黏膜共生菌菌群与感染前无显著差异;与存活组相比,濒死尼罗罗非鱼的表皮和鳃黏膜共生菌菌群多样性下降,其中弓形杆菌属、假交替单胞菌属、海单胞菌属、假单胞菌属和弧菌属等含量显著下降,链球菌属含量占总菌群的55.30%±1.24%,表明养殖尼罗罗非鱼表皮和鳃黏膜共生菌群落结构可能与其健康状况相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号