首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The planned removal of four dams on the Klamath River (anticipated 2024) will be the largest river restoration effort ever undertaken on the planet. Dam removal will restore access to >50 km of the Klamath River mainstem for coho salmon, but mainstem habitat may not be suitable for rearing juvenile coho salmon. Instead, small tributaries may provide most rearing habitat for reestablishing coho salmon. We used four approaches to evaluate six Klamath River tributaries above existing dams to assess their potential to support juvenile coho salmon: (1) We measured summer temperature regimes and evaluated thermal suitability. (2) We applied an Intrinsic Potential (IP) model to evaluate large-scale geomorphological constraints on coho salmon habitat. (3) We used the Habitat Limiting Factors Model (HLFM) to estimate rearing capacity for juveniles given current habitat conditions. (4) We developed an occupancy model using data from reference tributaries to predict coho salmon rearing distribution. All six streams had summer temperatures cooler than the mainstem Klamath River. However, five of the streams have barriers that will restrict coho salmon to within 5 km of the confluence with the Klamath River and two were disconnected mid-summer. Despite these constraints, the tributaries will likely produce coho salmon. Most streams had high IP in their lower reaches, the HLFM model estimated a total capacity of 105,000 juvenile coho salmon, and the occupancy model predicted juvenile coho salmon will rear throughout the accessible reaches. Protection and habitat enhancement for these tributaries will be important for coho salmon reestablishment post-dam removal.  相似文献   

2.
The effects of restoration of impassable road culverts on the distribution of juvenile Atlantic salmon, Salmo salar L., were evaluated in seven small tributaries of the subarctic River Teno system, northernmost Finland/Norway. Restoration enabled the passage of juvenile salmon through the culverts and increased the distribution area of salmon parr in the seven streams by tens or hundreds of metres, depending on the natural slope of the tributary with a total of ≈1 km new area for ascending juveniles. Areas upstream of the culverts were colonised after varying number of years, mostly 2–3, following restoration. Age‐1 and age‐2 parr were the first salmon age groups entering the new territory after removal of the migration barrier. Although the restoration measures were conducted at the downstream outlet area of the culverts only, the connectivity was improved and increased the production area accessible to juvenile salmon. Such removal of migration barriers and securing habitat connectivity by passable culverts should be taken into account in environmental management strategies of river systems safeguarding the essential habitats of salmonid fish.  相似文献   

3.
The downstream movement of coho salmon fry and parr in the fall, as distinct from the spring migration of smolts, has been well documented across the range of the species. In many cases, these fish overwinter in freshwater, but they sometimes enter marine waters. It has long been assumed that these latter fish did not survive to return as adults and were ‘surplus’ to the stream's carrying capacity. From 2004 to 2010, we passive integrated transponder tagged 25,981 juvenile coho salmon in three streams in Washington State to determine their movement, survival and the contribution of various juvenile life histories to the adult escapement. We detected 86 returning adults, of which 32 originated from fall/winter migrants. Half of these fall/winter migrants spent ~1 year in the marine environment, while the other half spent ~2 years. In addition, the median return date for fall/winter migrants was 16 days later than spring migrants. Our results indicated that traditional methods of spring‐only smolt enumeration may underestimate juvenile survival and total smolt production, and also overestimate spring smolt‐to‐adult return (SAR). These are important considerations for coho salmon life cycle models that assume juvenile coho salmon have a fixed life history or use traditional parr‐to‐smolt and SAR rates.  相似文献   

4.
Abstract–  Comparing genetic and demographic estimates of dispersal in freshwater fish can improve understanding of movement distributions and population connectivity. Here we examined genetic variation among mottled sculpin (Cottus bairdi) in the Nantahala River (North Carolina, USA) to compare genetic estimates of dispersal with estimates derived from mark–recapture studies of individual movement. Microsatellite‐based analysis of gene flow revealed evidence of strong isolation by distance among locations spanning only 5.6 km and limited dispersal among clusters of sites separated by swift cascades. Estimates of between‐cluster contemporary dispersal rates derived from Bayesian assignment tests ranged from 1% to 6%, with most movement occurring among adjacent clusters in a downstream direction. Evidence of a long‐term net immigration asymmetry and decreasing genetic diversity from downstream to upstream locations indicates that historical patterns of stream colonisation contrast with contemporary dispersal patterns. Our findings are largely consistent with predictions from individual movement patterns but suggest that long moves (>500 m) are more frequent, and maximum dispersal distances are greater than what has been reported from mark–recapture studies. The discrepancy may reflect spatial limitations of mark–recapture methods or temporal variation in dispersal in individuals and populations.  相似文献   

5.
The dispersal ecology of most stream fishes is poorly characterised, complicating conservation efforts for these species. We used microsatellite DNA marker data to characterise dispersal patterns and effective population size (Ne) for a population of Roanoke logperch Percina rex, an endangered darter (Percidae). Juveniles and candidate parents were sampled for 2 years at sites throughout the Roanoke River watershed. Dispersal was inferred via genetic assignment tests (ATs), pedigree reconstruction (PR) and estimation of lifetime dispersal distance under a genetic isolation‐by‐distance model. Estimates of Ne varied from 105 to 1218 individuals, depending on the estimation method. Based on PR, polygamy was frequent in parents of both sexes, with individuals spawning with an average of 2.4 mates. The sample contained 61 half‐sibling pairs, but only one parent–offspring pair and no full‐sib pairs, which limited our ability to discriminate natal dispersal of juveniles from breeding dispersal of their parents between spawning events. Nonetheless, all methods indicated extensive dispersal. The AT indicated unrestricted dispersal among sites ≤15 km apart, while siblings inferred by the PR were captured an average of 14 km and up to 55 km apart. Model‐based estimates of median lifetime dispersal distance (6–24 km, depending on assumptions) bracketed AT and PR estimates, indicating that widely dispersed individuals do, on average, contribute to gene flow. Extensive dispersal of P. rex suggests that darters and other small benthic stream fishes may be unexpectedly mobile. Monitoring and management activities for such populations should encompass entire watersheds to fully capture population dynamics.  相似文献   

6.
Exotic species present a great threat to native fish conservation; however, eradicating exotics is expensive and often impractical. Mechanical removal can be ineffective for eradication, but nonetheless may increase management effectiveness by identifying portions of a watershed that are strong sources of exotics. We used mechanical removal to understand processes driving exotic brown trout (Salmo trutta) populations in the Logan River, Utah. Our goals were to: (i) evaluate the demographic response of brown trout to mechanical removal, (ii) identify sources of brown trout recruitment at a watershed scale and (iii) evaluate whether mechanical removal can reduce brown trout densities. We removed brown trout from 2 km of the Logan River (4174 fish), and 5.6 km of Right Hand Fork (RHF, 15,245 fish), a low‐elevation tributary, using single‐pass electrofishing. We compared fish abundance and size distributions prior to, and after 2 years of mechanical removal. In the Logan River, immigration to the removal reach and high natural variability in fish abundances limited the response to mechanical removal. In contrast, mechanical removal in RHF resulted in a strong recruitment pulse, shifting the size distribution towards smaller fish. These results suggest that, before removal, density‐dependent mortality or emigration of juvenile fish stabilised adult populations and may have provided a source of juveniles to the main stem. Overall, in sites demonstrating strong density‐dependent population regulation, or near sources of exotics, short‐term mechanical removal has limited effects on brown trout populations but may help identify factors governing populations and inform large‐scale management of exotic species.  相似文献   

7.
Juvenile salmonids display highly variable spatial and temporal patterns of early dispersal that are influenced by density‐dependent and density‐independent factors. Although juvenile coho salmon (Oncorhynchus kisutch) movement patterns in streams and their relationship with body mass and growth have been examined in previous studies, most observations were limited to one season or one stream section. In this study, we monitored the movement of juvenile coho salmon throughout their period of residence in a coastal basin to identify prevalent dispersal strategies and their relationships with body mass, growth rates and survival. Our results revealed seasonally and spatially variable movement patterns. Juvenile coho salmon that dispersed to tidally affected reaches soon after emergence remained more mobile and expressed lower site fidelity than those individuals that remained in upper riverine reaches. We did not detect significantly different growth rates between sedentary and mobile individuals. Although a greater proportion of sedentary than mobile fish survived winter to emigrate from the creek in the spring, reach of residence at the onset of winter influenced these survival estimates. Hence, apparent summer‐to‐smolt survival for mobile individuals was greater than for sedentary fish in tidally influenced reaches, whereas in riverine reaches the sedentary strategy seemed to be favoured. Our research identified complex movement patterns that reflect phenotypic and life history variation, and underscores the importance of maintaining diverse freshwater and estuarine habitats that support juvenile coho salmon before marine migration.  相似文献   

8.
The bullhead, Cottus gobio L., was observed in the River Utsjoki in the far north of Finland for the first time in 1979. This river is a tributary of the sub-Arctic River Teno, which flows into the Arctic Ocean and is one of the most important salmon rivers in northern Europe. The bullhead does not belong to the natural fish fauna of the Finnish river systems flowing into the Arctic. It was probably introduced by anglers as bait or accidentally during the water exchange activities as salmon fry were transferred from Finnish hatcheries to northern Norway. A viable bullhead population has dispersed through the River Utsjoki catchment. In 1995 its range extended from the lowest part of the river to a point 43 km upstream. It is highly probable that it has also entered the mainstem of the River Teno.  相似文献   

9.
Spatiotemporal changes in growth patterns of chum salmon Oncorhynchus keta that returned to the Ishikari (Japan) and Namdae (Korea) rivers in 1984–1998 were investigated using scale analysis. Juvenile chum salmon from both populations left coastal marine areas after spring at a size of over 8 cm fork length (FL). In summer, juvenile salmon from the Namdae River entered the Okhotsk Sea at a larger FL than did Ishikari River juveniles. There were no significant differences in annual growth between populations of 1-, 2-, and 4-year-old fish. For 3-year-old fish, however, Namdae River salmon had significantly higher synchronous and sympatric growth than did Ishikari River salmon. Mean FL of adults was also larger in Namdae River salmon than in Ishikari River salmon. Analysis of covariance (ANCOVA) results showed (1) negative linear relations between FL and catch, (2) homogeneous slopes of those relations at regional and species levels, and (3) nonhomogeneous slopes at the population level, indicating that density-dependent effects on growth were most significant at this level. We concluded that growth of chum salmon was concurrently influenced by stronger effects of intrapopulation competition and weaker effects of inter- and intraspecific interactions in the Bering Sea.  相似文献   

10.
Smallmouth bass, Micropterus dolomieu Lacepède, movement dynamics were investigated in a connected mainstem river‐tributary system. Smallmouth bass moved large distances annually (n = 84 fish, average = 24.6 ± 25.9 km, range = 0.03 to 118 km) and had three peak movement periods (pre‐spawn, post‐spawn and overwintering). Movement into and out of tributaries was common, but the movement between mainstem river and tributary habitats varied among tagging locations and season. In general, a large proportion of fish that were tagged in tributaries moved out of the tributaries after spawning (22/30 fish). Because of the importance of fish movement patterns on population dynamics, the observed individual variability in movement, quantified using a hierarchical model, and the potential for long‐distance movements are important considerations for smallmouth bass conservation and management. In addition, mainstem river‐tributary connectivity appears to play an important role for smallmouth bass during key life history events.  相似文献   

11.
Upstream counts of adult salmon in a tributary to the River Dee during autumn and winter were examined over a 13‐year period using an optical fish counter. Statistical analysis indicated that salmon were mainly primed to enter the tributary at a particular time of year, peaking at early December. However, environmental factors also had a large influence. Entry of salmon was initiated by high flow rates in the main stem of the River Dee. Increases in water level in the tributary itself were not needed to stimulate the entry of salmon. Moreover, a change in flow from 1 day to the next did not result in a response from salmon. Rather, they reacted only after more than a day of flow increase. There was no consistent threshold level of flow that triggered tributary entry. The upstream passage of salmon was reduced at low temperatures (below 3°C). The numbers of salmon migrating upstream showed a gradual increase as the temperatures increased up to 11°C, and then sharply decreased at higher temperatures. Female salmon migrated earlier by about 2 weeks on average than males. Increasingly, counters and traps are being installed on spawning tributaries to examine the state of salmon stocks. Caution should be exercised, however, in using upstream entry data from individual tributaries to provide an overall assessment of salmon abundance, as local conditions in the tributaries may affect the salmon counts in particular years.  相似文献   

12.
Salmon from different locations in a watershed can have different life histories. It is often unclear to what extent this variation is a response to the current environmental conditions an individual experiences as opposed to local‐scale genetic adaptation or the environment experienced early in development. We used a mark–recapture transplant experiment in the Shasta River, CA, to test whether life‐history traits of juvenile Chinook salmon Oncorhynchus tshawytscha varied among locations, and whether individuals could adopt a new life history upon encountering new habitat type. The Shasta River, a Klamath River tributary, has two Chinook salmon spawning and juvenile rearing areas, a lower basin canyon (river km 0–12) and upper basin spring complex (river km 40–56), characterised by dramatically different in‐stream habitats. In 2012 and 2013, we created three experimental groups: (i) fish caught, tagged and released in the upper basin; (ii) fish caught at the river mouth (confluence with the Klamath River, river km 0), tagged and released in the upper basin; and (iii) fish caught at the river mouth, tagged and released in the lower basin. Fish released in the upper basin outmigrated later and at a larger size than those released in the lower basin. The traits of fish transplanted to the upper basin were similar to fish originating in the upper basin. Chinook salmon juvenile life‐history traits reflected habitat conditions fish experienced rather than those where they originated, indicating that habitat modification or transportation to new habitats can rapidly alter the life‐history composition of populations.  相似文献   

13.
We studied salmon feeding selectivity and diel feeding chronology in the Columbia River plume. Juvenile chinook and coho salmon were caught by trawling at 2–3 h intervals throughout a diel period on three consecutive days (21–23 June 2000) at stations located 14.8 and 37 km offshore from the mouth of the Columbia River. A total of 170 chinook salmon were caught at the inshore and 79 chinook and 98 coho salmon were caught at the offshore station. After each trawl, potential prey were sampled at different depths with 2–3 different types of nets (1‐m diameter ring net, bongo net, neuston net). Despite the variability in zooplankton abundance, feeding selectivity was surprisingly constant. Both salmon species fed selectively on larger and pigmented prey such as hyperiid amphipods, larval and juvenile fish, various crab megalopae, and euphausiids. Hyperiid amphipods were abundant in the salmon diets and we hypothesize that aggregations of gelatinous zooplankton may facilitate the capture of commensal hyperiid amphipods. Small copepods and calyptopis and furcilia stages of euphausiids dominated the prey field by numbers, but were virtually absent from salmon diet. Juvenile chinook salmon, with increasing body size, consumed a larger proportion of fish. Stomach fullness peaked during morning hours and reached a minimum at night, suggesting a predominantly diurnal feeding pattern. In general, both chinook and coho salmon appear to be selective, diurnal predators, preying mostly on large and heavily pigmented prey items, in a manner consistent with visually oriented, size‐selective predation.  相似文献   

14.
Like Pacific salmon (Oncorhynchus spp.), nonnative American shad (Alosa sapidissima) have the potential to convey large quantities of nutrients between the Pacific Ocean and freshwater spawning areas in the Columbia River Basin (CRB). American shad are now the most numerous anadromous fish in the CRB, yet the magnitude of the resulting nutrient flux owing to the shift from salmon to shad is unknown. Nutrient flux models revealed that American shad conveyed over 15,000 kg of nitrogen (N) and 3,000 kg of phosphorus (P) annually to John Day Reservoir, the largest mainstem reservoir in the lower Columbia River. Shad were net importers of N, with juveniles and postspawners exporting just 31% of the N imported by adults. Shad were usually net importers of P, with juveniles and postspawners exporting 46% of the P imported by adults on average. American shad contributed <0.2% of the total annual P load into John Day Reservoir, but during June when most adult shad are migrating into John Day Reservoir, they contributed as much as 2.0% of the P load. Nutrient inputs by American shad were similar to current but far less than historical inputs of Pacific salmon owing to their smaller size. Given the relatively high background P levels and low retention times in lower Columbia River reservoirs, it is unlikely that shad marine‐derived nutrients affect nutrient balances or food web productivity through autotrophic pathways. However, a better understanding of shad spawning aggregations in the CRB is needed.  相似文献   

15.
The anadromous, or sea‐going, life history form of brown trout, or sea trout ( Salmo trutta), may lead to potential mixing of populations while foraging at sea. In this article, we assess the potential that multiple populations are using common semi‐enclosed estuaries and quantify the potential levels of straying (i.e. dispersal) of foreign‐produced individuals into populations by using otolith chemical signatures as natural ‘tags’. To do so, we created a database of juvenile fish otolith chemistry (a marker of freshwater production) from four rivers and compared the chemistry of harvested fish in two estuaries important to anglers, the Renews River and Chance Cove Brook, to the database. A discriminant function analysis revealed significant differences in the otolith chemistry of juvenile fish inhabiting the four rivers with a 97% cross‐validated accuracy when classifying individual juveniles to their natal river, indicating our baseline was robust. When assigning adults caught over 3 years (2007–2009) in the recreational fishery in the Renews River estuary, it was determined that over 95% of the fish caught each year originated from Renews River. In contrast, harvested fish in Chance Cove during 2009 were disproportionately comprised of fish produced in Renews River, suggesting the potential for source‐sink population dynamics in Newfoundland. Taken as a whole, these results indicate limited population mixing in nearshore estuaries of this region, but also highlight the potential for some populations to subsidise the harvest by anglers in different areas.  相似文献   

16.
To examine the role of longitudinal connectivity on the spatial and temporal dynamics of mountain whitefish (Prosopium williamsoni), we quantified movement and population dynamics following installation of the Landsburg Dam fishway, Cedar River, WA, USA. Mountain whitefish is widely distributed, poorly studied and not the focus of restoration. Before the fishway, mountain whitefish were not observed above the dam. Here, we focus on snorkel counts collected at reach and mesohabitat (e.g. pools) scales over 11 summers on the 20‐km above‐dam segment following restoration. A camera within the ladder provided number, size and movement timing, thereby informing on behaviour and recolonisation. Segment‐scale abundance increased following fish passage reaching an asymptote in 7 years, and mountain whitefish were detected throughout the main stem in 10 years. Annual movement through the ladder increased over time and was positively correlated with instream abundance and discharge, but negatively correlated with water temperature. About 60% of fish movements occurred in spring and early summer, potentially for foraging opportunities. Reach‐scale abundance peaked between 7 and 10 km from the dam; deep, cool (~10.6 to 11.6°C) conditions characterised these reaches. At the mesohabitat scale, mountain whitefish detection increased with depth and velocity after accounting for distance from the dam. Our results show how restoring longitudinal connectivity allowed this nontarget species to colonise newly available habitat. Their response supports the critical roles of longitudinal connectivity and environmental conditions, that manifest at different spatial scales, in dictating how freshwater fish respond to habitat disturbance.  相似文献   

17.
Gradually increasing levels of gill Na+K+ ATPase activity were observed in juvenile chinook, Oncorhynchus tshawytscha, and coho, Oncorhynchus kisutch, salmon and steelhead trout, Salmo gairdneri, undergoing parr-smolt transformation in artificial rearing facilities on the Columbia River. Portions of the same populations released to migrate seaward, however, generally showed much greater increases in enzyme activity with time and distance from the release point. After migrating 714 km to the Columbia River estuary, spring chinook salmon had a mean gill Na+K+ ATPase activity 2.5 times greater than fish retained at the hatchery and 1.9 times greater than fish adapted to 28 ppt seawater for 208 days. Similar observations were made on coho salmon.  相似文献   

18.
Non‐native predators may interfere with conservation efforts for native species. For example, fisheries managers have recently become concerned that non‐native brown trout may impede efforts to restore native salmon and trout in California's Trinity River. However, the extent of brown trout predation on these species is unknown. We quantified brown trout predation on wild and hatchery‐produced salmon and trout in the Trinity River in 2015. We first estimated the total biomass of prey consumed annually by brown trout using a bioenergetics model and measurements of brown trout growth and abundance over a 64‐km study reach. Then, we used stable isotope analysis and gastric lavage to allocate total consumption to specific prey taxa. Although hatchery‐produced fish are primarily released in the spring, hatchery fish accounted for most of the annual consumption by large, piscivorous brown trout (>40 cm long). In all, the 1579 (95% CI 1,279–1,878) brown trout >20 cm long in the study reach ate 5,930 kg (95% CI 3,800–8,805 kg) of hatchery fish in 2015. Brown trout predation on hatchery fish was ca. 7% of the total biomass released from the hatchery. Brown trout only ate 924 kg (95% CI 60–3,526 kg) of wild fish in 2015, but this was potentially a large proportion of wild salmon production because wild fish were relatively small. As large brown trout rely heavily on hatchery‐produced fish, modifying hatchery practices to minimise predation may enhance survival of hatchery fish and potentially reduce the abundance of predatory brown trout.  相似文献   

19.
An animal's performance during its early life stage can greatly influence its survival to adulthood. Therefore, understanding aspects of early life history can be informative, particularly when designing management plans to rebuild a population. For a threatened population of fall Chinook salmon (Oncorhynchus tshawytscha) in the Snake River of Idaho, we reconstructed the early life history for 124 returning wild and hatchery adults using information recorded in their otoliths. Of our sampled wild adults (n = 61), 43% and 49% reared within the Snake River and Clearwater/Salmon rivers. We also found that only 21% of our sampled wild adults exhibited the historically common subyearling out‐migration strategy, in which juveniles exit freshwater shortly after hatching, while the remaining wild adults exhibited the yearling out‐migration strategy (i.e., individuals delay their freshwater exit). As expected, yearlings had, on average, a significantly larger body size than subyearlings at ocean entry. However, 35% of wild yearlings overlapped in size with wild subyearlings suggesting that spending more time in freshwater might not necessarily result in a larger body size. Lastly, we observed that variability in fork length at Snake River egress and ocean entry were best explained by migration strategy and where it reared, followed by hatch year and sex. Results from this study highlight the utility of adult otoliths in providing details about early life history, an understanding of which is critical to the conservation of Snake River fall Chinook salmon.  相似文献   

20.
Abstract – Atlantic salmon (Salmo salar) was once native to Lake Ontario, however, its numbers rapidly declined following colonisation by Europeans and the species was extirpated by 1896. Government agencies surrounding Lake Ontario are currently undertaking a variety of studies to assess the feasibility of reintroducing Atlantic salmon. We released hatchery‐reared adult Atlantic salmon into a Lake Ontario tributary to examine spawning interactions between this species and fall‐spawning exotic salmonids found in the same stream. Chinook salmon, coho salmon and brown trout were observed interacting with spawning Atlantic salmon in nearly one‐quarter of our observation bouts, with chinook salmon interacting most frequently. Whereas a previous investigation found that chinook salmon caused elevated agonistic behaviour and general activity by spawning Atlantic salmon, the present study found that interspecific courtship was the most common form of exotic interaction with spawning Atlantic salmon. In particular, we observed precocial male Chinook salmon courting female Atlantic salmon and defending the female against approach by male Atlantic salmon. We discuss the potential implications of these interactions on the Lake Ontario Atlantic salmon reintroduction programme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号