首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Abstract –  To evaluate the effects of habitat, foraging strategy (drift vs. limnetic feeding) and internal prey subsidies (downstream transport of invertebrate drift between habitats) on fish production, we measured the growth of juvenile coho salmon confined to enclosures in flowing (pond inlets and outlets) or standing water (centre of pond) habitats in a constructed river side-channel. The effects of habitat and foraging strategy on fish growth were mediated primarily through habitat effects on prey abundance. Invertebrate drift biomass was nearly an order of magnitude higher at pond inlets relative to outlets. Drift-feeding coho in inlet enclosures grew 50% faster than drift-feeding coho at pond outlets or limnetic feeding coho in the centre of ponds, suggesting that elevated drift at inlets was sufficient to account for higher inlet growth rates. Forty per cent of prey biomass in stomachs was terrestrial in origin. These results indicate that, in addition to dependence on external terrestrial subsidies, streams with alternating slow and fast water (i.e., pool-riffle) sequences are also characterised by internal prey subsidies based on transport of drifting invertebrates from refuge habitats (high velocity riffles) to habitats more suitable for drift-feeding predators (e.g., pools), which may result in higher maximum fish growth in systems where internal subsidises are large. Restoration of small streams to maximise productive capacity for pool-rearing salmonids will require a better understanding of the length and interspersion of habitats that maximises both internal prey subsidies and available rearing habitat for juvenile salmon.  相似文献   

2.
A catchment‐scale salmon, Salmo salar L., habitat enhancement scheme was developed for the River Main (Northern Ireland) with reference to baseline habitat and electric fishing surveys. In total, 19 separate sites were enhanced using flow deflectors or random boulder addition. Habitat suitability for juvenile salmon increased at enhanced sites following the scheme, and significant changes in underlying physical habitat characteristics (particle size, depth and flow) were detected after the installation of flow deflectors. The overall index of salmon fry recruitment, monitored across the catchment, showed no change between pre‐ and post‐enhancement periods. The mean biomass of salmon evident at individual enhancement sites (5.1 g m?2) was significantly higher than the mean biomass at control sites (1.2 g m?2). Increased densities of >0+ juvenile salmon were associated with enhanced sites relative to controls. Marking studies indicated the potential for long‐range dispersal of juvenile salmon between 0+ (summer) and 1+ (summer) age classes. The potential of the scheme to enhance the local salmon stock was discussed.  相似文献   

3.
  • 1. Prevailing freshwater conservation approaches in the USA stem from policy‐based ecosystem management directives, science‐based gap analyses, and legal interpretations of critical habitats. In California, there has been no systematic prioritization of freshwater habitats critical to the persistence of anadromous salmonid populations.
  • 2. Anadromous salmonids provide an optimal focal species for conservation prioritization of freshwater habitats in California owing to their flagship, umbrella and keystone status.
  • 3. The Navarro River is a key watershed for both Endangered Species Act and Clean Water Act recovery efforts in the state of California. This watershed serves as a case study in the use of iterative discriminant analysis to objectively classify freshwater habitats critical to the persistence of two species of threatened anadromous salmonids, steelhead (Oncorhynchus mykiss) and coho (Oncorhynchus kisutch).
  • 4. Riverscape parameters were used initially to define suitable habitat for focal species; subsequent refinement accounted for human disturbance within the watershed. Results from this study identify 22.1 km of riverine habitat critical to the persistence of coho salmon in the Navarro River watershed, which need active conservation or restoration; it also identified an additional 269.4 km of riverine habitat in need of protection for its aquatic habitat values.
Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
5.
Northern pike (Esox lucius) are opportunistic predators that can switch to alternative prey species after preferred prey have declined. This trophic adaptability allows invasive pike to have negative effects on aquatic food webs. In Southcentral Alaska, invasive pike are a substantial concern because they have spread to important spawning and rearing habitat for salmonids and are hypothesised to be responsible for recent salmonid declines. We described the relative importance of salmonids and other prey species to pike diets in the Deshka River and Alexander Creek in Southcentral Alaska. Salmonids were once abundant in both rivers, but they are now rare in Alexander Creek. In the Deshka River, we found that juvenile Chinook salmon (Oncorhynchus tshawytscha) and coho salmon (O. kisutch) dominated pike diets and that small pike consumed more of these salmonids than large pike. In Alexander Creek, pike diets reflected the distribution of spawning salmonids, which decrease with distance upstream. Although salmonids dominated pike diets in the lowest reach of the stream, Arctic lamprey (Lampetra camtschatica) and slimy sculpin (Cottus cognatus) dominated pike diets in the middle and upper reaches. In both rivers, pike density did not influence diet and pike consumed smaller prey items than predicted by their gape‐width. Our data suggest that (1) juvenile salmonids are a dominant prey item for pike, (2) small pike are the primary consumers of juvenile salmonids and (3) pike consume other native fish species when juvenile salmonids are less abundant. Implications of this trophic adaptability are that invasive pike can continue to increase while driving multiple species to low abundance.  相似文献   

6.
The spatial scale of environmental factors influencing population dynamics ranges from microhabitat to continental or even global scales. Integration of multiple spatial scales is important in order to understand links between environmental variation and population processes. In the present study, we investigate how multiscale drivers influence the production of stream‐rearing Atlantic salmonids (Atlantic salmon, Salmo salar L. and brown trout, Salmo trutta L.) measured in terms of abundance. Variation in juvenile production was studied using data from single‐pass electrofishing surveys (measured as biomass per m2) from nine rivers. These data were combined with habitat data ranging from an important in‐stream microhabitat variable (shelter availability) to properties of the catchment. Variation in productivity within and among rivers was affected by both properties of in‐stream habitat and catchment properties. Shelter availability and the proportion of the catchment consisting of cultivated land and lakes influenced biomass positively, while catchment area had the opposite effect. For a different set of rivers (= 20), river gradient and catchment area were shown to positively affect the amount of shelter. Finally, the variables identified in the two preceding analysis were included in the analysis of population productivity using catch statistics from 160 rivers. The proportion of cultivated land and lakes, estimated shelter availability were found to have positive effects. In addition, temperature had a positive effect, while river width had a negative effect. This study shows that combining multiple‐scale environmental factors can explain a substantial proportion of variation in population productivity among and within the populations of Atlantic salmonids.  相似文献   

7.
  1. Juvenile Pacific salmon exhibit diverse habitat use and migration strategies to navigate high environmental variability and predation risk during freshwater residency. Increasingly, urbanization and climate-driven hydrological alterations are affecting the availability and quality of aquatic habitats in salmon catchments. Thus, conservation of freshwater habitat integrity has emerged as an important challenge in supporting salmon life-history diversity as a buffer against continuing ecosystem changes.
  2. To inform catchment management for salmon, information on the distribution and movement dynamics of juvenile fish throughout the annual seasonal cycle is needed. A number of studies have assessed the ecology of juvenile coho salmon (Oncorhynchus kisutch) during summer and autumn seasons; catchment use by this species throughout the annual cycle is less well characterized, particularly in high-latitude systems.
  3. Here, n = 3,792 tagged juvenile coho salmon were tracked throughout two complete annual cycles to assess basin-wide distribution and movement behaviour of this species in a subarctic, ice-bearing catchment.
  4. Juvenile coho salmon in the Big Lake basin, Alaska, exhibited multiple habitat use and movement strategies across seasons; however, summer rearing in lotic mainstem environments followed by migration to lentic overwinter habitats was identified as a prominent behaviour, with two-thirds of tracked fish migrating en masse to concentrate in a small subset of upper catchment lakes for the winter. In contrast, the most significant tributary overwintering site (8% of tracked fish) occurred below a culvert and dam, blocking juvenile fish passage to a headwater lake, indicating that these fish may have been restricted from reaching preferred lentic overwinter habitats.
  5. These findings emphasize the importance of maintaining aquatic connectivity to lentic habitats as a conservation priority for coho salmon during freshwater residency.
  相似文献   

8.
  1. Identification, protection and enhancement of essential habitats are priority issues for management and restoration of exploited species. The shores utilized by Asian horseshoe crabs as nurseries were surveyed and the coastal habitat characteristics were described in the northern Beibu Gulf of China. Regression models were applied to explore species‐habitat relationships.
  2. Fourteen and ten nursery sites were identified for Tachypleus tridentatus and Carcinoscorpius rotundicauda populations, respectively. Xiacun and Jinhaiwan in the eastern region of the northern Beibu Gulf were the essential nurseries for T. tridentatus, whereas Shanxin and Jiaodong in the western part were the primary nursery shores for C. rotundicauda. These shores supported high densities (4–6 individuals/100 m2) of juvenile horseshoe crab populations.
  3. Mangrove and seagrass coverage area, coupled with sediment physico‐chemical parameters, particularly grain size, and the environmental heterogeneity of nursery habitats explained the distribution pattern of juvenile populations. Most juvenile populations were found along the outer fringe of mangroves in the small shallow estuary, particularly near outflows of tidal creeks with generally higher chlorophyll a and organic carbon contents. The distribution of high‐density juvenile populations of both species also overlapped with areas of seagrass patches.
  4. These findings highlight the importance of mangroves and seagrasses in the nursery habitat use of Asian horseshoe crabs. Preserving the estuarine habitats with these vegetation types and identifying the high‐use nursery sites should be prioritised in China and other Asian places to conserve the declining Asian horseshoe crab populations.
  相似文献   

9.
Abstract Many habitat enhancement techniques aimed at restoring salmonid populations have not been comprehensively assessed. The growth and diet of juvenile Chinook salmon, Oncorhynchus tshawytscha (Walbaum), rearing in a reach designed to enhance spawning were evaluated to determine how a non‐target life stage fared in the engineered habitat. Prior work demonstrated differences in food web structure between restored and unenhanced reaches of the Merced River, thus juvenile salmon feeding dynamics were also hypothesised to vary. Dependent variables were compared among fish collected from within and near the upper boundary of the restored reach and in an unenhanced habitat upstream. Diets, otolith‐derived growth and stable isotope‐inferred trophic positions were compared. Baetidae mayflies were particularly important prey in the restored reach, while elsewhere individuals exhibited heterogeneous diets. Salmon residing at the bottom of the restored reach exhibited slightly faster growth rates relative to fish collected elsewhere, although stable isotope and diet analyses suggested that they fed at a relatively low trophic position. Specialised Baetis predation and/or abundant interstitial refugia potentially improved rearing conditions in the restored reach. Data suggest that gravel enhancement and channel realignment designed to augment adult spawning habitat may simultaneously support juvenile Chinook salmon despite low invertebrate food resources.  相似文献   

10.
In this study, we examined summer and fall freshwater rearing habitat use by juvenile coho salmon (Oncorhynchus kisutch) in the quickly urbanising Big Lake drainage in south‐central Alaska. Habitat use was assessed by regressing fish count data against habitat survey information across thirty study sites using generalised linear mixed models. Habitat associations were examined by age‐0 and age‐1+ cohorts separately, providing an opportunity to compare habitat use across different juvenile coho salmon life stages during freshwater rearing. Regression results indicated that the age‐0 cohorts were strongly associated with shallow, wide stream reaches with in‐stream vegetation, whereas age‐1+ cohorts were associated with deeper stream reaches. Furthermore, associations between fork length and habitat characteristics suggest cohort‐specific habitat use patterns are distinct from those attributable to fish size. Habitat use information generated from this study is being used to guide optimal fish passage restoration planning in the Big Lake drainage. Evidence for habitat use partitioning by age cohort during freshwater juvenile rearing indicates that pooling age cohorts into a single “juvenile” stage for the purposes of watershed management may mask important habitat use dynamics.  相似文献   

11.
  • 1. In Australia, the carp Cyprinus carpio L. is regarded as a threat to the native fish and the aquatic environment. In recent years, Botany Wetlands, a significant coastal wetland in the Sydney region, has been invaded by the undesirable cyprinids, carp and goldfish (Carrasius auratus L.).
  • 2. In 1996 a cyprinid removal programme commenced at Botany Wetlands with the objective of managing the invasive species, increasing fish diversity, reducing cyanobacterial blooms and hence enhancing the aquatic habitat. Using electrofishing and gill netting, 4073 carp and 261 goldfish, amounting to 10 117 kg of cyprinid biomass were removed between 1996 and 2004. The captured carp ranged from 60 to 835 mm. Males matured before females. Carp between 350 and 680 mm in length grew at the rate of 1.66±0.38 g day?1.
  • 3. The success of the programme was monitored by assessing four indicators related to carp populations and two related to habitat. The former included the pattern of length–frequency distribution, mean weight per size class, condition factor (CF) and the catch per unit effort (CPUE), and the latter the Secchi disc transparency and cyanobacterial counts. After 8 yr of removal, the plots of carp length–frequency distribution flattened, CF decreased from 2.86 to 1.82 and CPUE decreased from 97 kg day?1 to 50 kg day?1. A 10‐fold decrease occurred in cyanobacterial counts and the Secchi disc transparency increased by 20%. More than 20 000 fingerlings of native Australian bass Macquaria novemaculeata (S.) have been introduced to the wetlands, increasing the potential for juvenile carp predation and biodiversity.
Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
13.
We determined the habitat usage and habitat connectivity of juvenile Chinook (Oncorhynchus tshawytscha) and coho (Oncorhynchus kisutch) salmon in continental shelf waters off Washington and Oregon, based on samples collected every June for 9 yr (1998–2006). Habitat usage and connectivity were evaluated using SeaWiFS satellite‐derived chlorophyll a data and water depth. Logistic regression models were developed for both species, and habitats were first classified using a threshold value estimated from a receiver operating characteristic curve. A Bernoulli random process using catch probabilities from observed data, i.e. the frequency of occurrence of a fish divided by the number of times a station was surveyed, was applied to reclassify stations. Zero‐catch probabilities of yearling Chinook and yearling coho salmon decreased with increases in chlorophyll a concentration, and with decreases in water depth. From 1998 to 2006, ~ 47% of stations surveyed were classified as unfavorable habitat for yearling Chinook salmon and ~ 53% for yearling coho salmon. Potentially favorable habitat varied among years and ranged from 9 856 to 15 120 km2 (Chinook) and from 14 800 to 16 736 km2 (coho). For both species, the smallest habitat area occurred in 1998, an El Niño year. Favorable habitats for yearling Chinook salmon were more isolated in 1998 and 2005 than in other years. Both species had larger and more continuous favorable habitat areas along the Washington coast than along the Oregon coast. The favorable habitats were also larger and more continuous nearshore than offshore for both species. Further investigations on large‐scale transport, mesoscale physical features, and prey and predator availability in the study area are necessary to explain the spatial arrangement of juvenile salmon habitats in continental shelf waters.  相似文献   

14.
  • 1. A procedure is described to estimate viable population size and the area of habitat needed to support an endangered stream fish population. Monte Carlo simulations were used to evaluate population fates with stochastic demography and random variation simulated to cause age class 0 failures in some years. Viable population was defined in this paper to be large enough to have less than a 10% chance of extinction in 100 years and to have a long‐term effective size of at least 500 breeding adults, although the method could be applied for any assumed extinction rate and effective size.
  • 2. Using data for Rio Grande cutthroat trout (Oncorhynchus clarkii virginalis) in an age class model, it was inferred from simulations that minimum viable population size was 2750 fish, which would require 2.2 ha of habitat at median density of the subspecies in New Mexico streams.
  • 3. Minimum viable population size occurred at the highest survival rate of young of year and no population‐wide year class failures. Viable population size, and hence required habitat size, increased as the failure rate for age class 0 increased or when the survival rate from age 0 to 1 declined. This suggested that managers should avoid managing for smallest possible viable population size and instead plan for much larger population sizes to accommodate temporal variation in demography and habitat quality.
  • 4. Decreased survival rate of young of year caused the stable age class distribution to be skewed toward the age class 0, which profoundly reduced effective population size. This suggested that habitat restoration that improves survival of young of year would be a good strategy to increase effective size over the long term.
  • 5. Estimating required habitat size could improve introductions of fish to create new populations. Although requiring time‐consuming simulations, the procedure can be used to estimate required habitat size for any species for which population and demographic data are available.
Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
16.
Salmonid fishes may reside within or migrate between stream and lake habitats, or undergo anadromous migrations between freshwater and the ocean. While the degree of anadromy of salmonids has been thoroughly compared, no analogous review has examined the degree of lake use. To assess the extent of reliance on lake habitat in this family, we considered 16 species of salmon, trout and charr from the genera Oncorhynchus, Salmo and Salvelinus, comparing their (a) use of lakes as spawning habitat, (b) rearing strategies in lakes, and (c) occurrence and diversity of lacustrine trophic polymorphism. In identifying the primary life‐history patterns of each species and exploring the lesser‐known lacustrine behaviours, we found that the extent of reliance on lakes exhibits a negative association with the degree of anadromy. Oncorhynchus rely least on lakes, Salmo to an intermediate level and Salvelinus the most, opposite of the general prevalence of anadromy among these genera. Lakes are critical to adfluvial and lake‐resident salmonids, but they also support anadromous and fluvial life histories by providing spawning, rearing, overwintering and/or summer refuge habitat. Adfluviality, although a non‐anadromous life history, consists of similar migration‐related traits and behaviours as anadromy, including the parr–smolt transformation, sex‐biased patterns of migration and residency, and the presence of precocious males. Lakes support life‐history variants, reproductive ecotypes and trophic morphs unique to lacustrine habitat. Therefore, conservation of salmonids is dependent on maintaining the diversity and quality of their habitats, including lakes.  相似文献   

17.
The addition of a proprietary, fully‐fermented yeast Saccahromyces cerevisiae culture supplement (DVAqua®, Diamond V Mills, Cedar Rapids, IA, USA) was evaluated during long‐term feeding of McConaughy strain rainbow trout Oncorhynchus mykiss. Beginning at initial feeding and continuing for 408 days of hatchery rearing, the trout received either a commercially‐manufactured feed or the same feed containing 0.125 g kg?1 DVAqua. This study was conducted at a production level as part of normal (real‐world) hatchery operations, with the fish periodically inventoried and moved into different rearing units. Although no rearing‐tank replication occurred during the first 54 days of feeding, multiple tanks and raceways were used thereafter. Fish in rearing units receiving DVAqua supplementation exhibited less mortality, particularly during the earlier rearing stages. During the final 177 days of rearing in six raceways, DVAqua‐fed McConaughy strain trout were significantly larger and had a significantly improved feed conversion ratio. The overall feed conversion ratio for the entire duration of the study was 1.17 in the fish receiving DVAqua supplementation compared to 1.21 in the control group. Despite the limitations of this study, the use of DVAqua is recommended for McConaughy strain rainbow trout and other less‐domesticated, more difficult‐to‐rear salmonids.  相似文献   

18.
We investigated the summer ecology of juvenile steelhead trout Onchorhynchus mykiss and Chinook salmon O. tshawytscha in the context of habitat use and movement behaviour. The study area was a 14.8 km section of the Chehalis River, Washington, and is of particular interest due to recent proposals for both a flood retention dam and restoration actions in this watershed. Ten study reaches were paired in distance upstream and downstream from a central point where a passive integrated transponder antenna array was operated between late June and September 2014. Juvenile densities for each species were associated with reach‐scale habitat and temperature characteristics. Juvenile steelhead underwent upstream and downstream movements up to 7 km, although more fish from further away moved downstream than upstream. Juvenile steelhead repeated horizontal movements throughout the study period, but daily detections were not associated with temperature or flow. The majority (81%) of steelhead movements occurred between the hours of 04:00–07:00 and 18:00–21:00. Juvenile Chinook underwent a downstream migration that was nearly complete by the end of August. Most juvenile Chinook were detected just once and movements occurred on days with warmer stream temperature and higher flows. The majority of Chinook movements occurred at night. Although juvenile salmonids are often thought to have small home ranges during summer months, our results suggest that horizontal movements may be more prevalent than previously thought. Summer habitat should be defined by a network of suitable rearing reaches with connectivity available in both upstream and downstream directions.  相似文献   

19.
20.
  1. The coast of Fujian Province is a key area for the Indo‐Pacific humpback dolphin (Sousa chinensis), but the characteristics of their preferred habitats are poorly defined.
  2. The species distribution model, MaxEnt, was used to predict suitable habitat distributions of humpback dolphins in Fujian, China. The model indicated that the distance to the coastline (63.5% contribution), chlorophyll‐a levels (20.2%) and the bathymetry (15.6%) were important predictors of humpback dolphin habitats.
  3. The model predicted 2,043.96 km2 of highly suitable habitat that was concentrated in five areas. Four are known to be within the area of the current distribution of humpback dolphins; Putian was identified as a new area with suitable habitat, however, it is unclear if dolphins are present.
  4. The predicted locations of suitable humpback dolphin habitats provided in this study should be the focus of future research and nature reserve designs.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号