首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 261 毫秒
1.
Intestinal fluid was collected from 11 marine teleost fish from the Baltic sea and the Pacific ocean. The anterior, mid and posterior segments of the intestine contained 33–110 mM of HCO3 equivalents (with exception of the Atlantic cod which contained only 5–15 mM). Considering literature values of transepithelial potentials and concentration gradients, these high levels of HCO3 equivalents are probably the result of active HCO3 transport. Possible HCO3 transport mechanisms were studied in the Pacific sanddab (Citharichthys sordidus) in vitro. Measurements of net secretion of HCO3 equivalents across the intestinal epithelium revealed mucosal DIDS sensitivity (10–4 M) and Cl-dependence of the HCO3 equivalent net flux, but no serosal DIDS (10–4 M) sensitivity. Net Na+ uptake was abolished in the absence of Cl, but some Cl uptake persisted in the absence of Na+, at a rate similar to that of net HCO3 secretion. Anterior, mid and posterior segments of the intestine performed similarly. These observations support the presence of an apical rather than a basolateral Cl/HCO3 exchanger and thus contrast the currently accepted model for intestinal HCO3 secretion. This apical Cl/HCO3 exchanger alone, however, is not sufficient for maintaining the observed HCO3 equivalents gradient in vivo. We suggest a coupling of cytosolic carbonic anhydrase, a basolateral proton pump and the apical Cl/HCO3 exchanger to explain the intestinal HCO3 transport.  相似文献   

2.
The mudskipperB. boddaerti, was able to survive in waters of intermediate salinities (4–27). Fish submerged in dechlorinated tap water suffered 60% mortality by the fifth day while 60% of those in 100% sea-water (sw) died after the third day of exposure. After being submerged in 50% or 80% sw for 7 days, the plasma osmolality, plasma Na+ and Cl concentrations and the branchial Na+ and K+ activated adenosine triphosphatase (Na+,K+-ATPase) activity were significantly higher than those of fish submerged in 10% sw for the same period. However, the activities of the branchial HCO3 and Cl stimulated adenosine triphosphatase (HCO3 ,Cl-ATPase) and carbonic anhydrase of the latter fish were significantly greater than those of the former. Such correlation suggests that Na+,K+-ATPase is important for hyperosmotic adaptation in this fish while HCO3 -Cl-ATPase and carbonic anhydrase may be involved in hypoosmotic survival.  相似文献   

3.
Boleophthalmus boddaerti submerged in 10%, 50% and 80% seawater (sw) for 7 days, had whole body transepithelial potentials (TEP) of 3.3, 18.3 and 22.9 mV, respectively. Hypophysectomy significantly decreased the TEP ofB. boddaerti and reversed the polarity of the TEP of the fish exposed to 10% sw.Hypophysectomy also significantly decreased the branchial Na+-K+ activated adenosine triphosphatase (Na+,K+-ATPase) activity but increased the activity of branchial HCO3 -Cl stimulated adenosine triphosphatase (HCO3 ,Cl-ATPase) inB. boddaerti exposed to 10% sw. However, survival in 10% sw was not significantly impaired by hypophysectomy and no significant change in plasma osmolality and plasma Na+ and Cl concentrations was observed.Various doses of ovine-prolactin or salmon-prolactin were unable to restore the TEP of hypophysectomizedB. boddaerti in 10% sw to that of the sham-operated fish. However, cortisol increased TEP to a positive value in hypophysectomizedB. boddaerti, though it was still lower than the sham-operated control. Cortisol treatment also affected the plasma osmolality, plasma Na+ and Cl contents and branchial Na+,K+-ATPase and HCO3 ,Cl-ATPase activities. Overall, the hormonal control of osmoregulation inB. boddaerti appeared to differ from that of other teleosts.  相似文献   

4.
This study employed a recently developed radioisotopic assay (Wood and Perry 1991) to examine the inhibition, induced by catecholamines, of the conversion of plasma HCO 3 to CO2 in acidotic trout blood, and the influence of oxygenation status on the response. Blood was incubated in vitro at PCO 2= 2 torr, and 10–6 M noradrenaline was employed as the adrenergic stimulus. In particular we investigated whether the inhibition of plasma HCO 3 conversion could be explained by a limited supply of H+s for the intracellular HCO 3 dehydration reaction because of competition by the adrenergically activated Na /H+ exchanger. Hypoxia (PO 2= 15 torr) was employed as a tool to intensify this competition. Hypoxia raised RBC pHi, pHe, and plasma total CO2 concentration (CCO 2) by the Haldane effect, and increased the magnitude of Na+/H+ activation, expressed as the change in the transmembrane pH gradient (pHe-pHi). However hypoxia did not alter the inhibition of the conversion of plasma HCO 3 to CO2 caused by noradrenaline. Hypoxia itself stimulated the RBC-mediated conversion of plasma HCO 3 to CO2 by about 20% in the presence or absence of noradrenaline. The conversion rate was strongly correlated with pHe, pHe-pHi, and plasma CCO 2 in these experiments, but not with pHi. We conclude that adrenergically mediated inhibition in the conversion of plasma HCO 3 to CO2 by trout RBCs is not due to competitive limitation on intracellular H+s, but rather to changes in the electrochemical gradient for HCO 3 entry and/or to CO2 recycling from plasma to RBC. The deoxygenated condition helps to promote CO2 excretion at the level of the RBC.  相似文献   

5.
The presumptive Na+/H+ exchange sites of trout and eel erythrocytes were quantified using amiloride-displaceable 5-(N-methyl-N-[3H]isobutyl)-amiloride (3H-MIA) equilibrium binding to further evaluate the mechanisms of i) hypoxia-mediated modifications in the trout erythrocyte -adrenergic signal transduction system and ii) the marked differences in the catecholamine responsiveness of this system between the trout and eel. MIA was a more potent inhibitor of both trout apparent erythrocyte proton extrusion (IC50 = 20.1 ± 1.1 mol l–1, N = 6) activity (as evaluated by measuring plasma pH changes after addition of catecholamine in vitro) and specific 3H-MIA binding (IC50 = 257 ± 8.2 nmol l–1, N = 3) than amiloride, which possessed a proton extrusion IC50 of 26.1 ± 1.6 mol l–1 (N = 6) and a binding IC50 of 891 ± 113 nmol l–1 (N = 3). The specific Na+ channel blocker phenamil was without effect on adrenergic proton extrusion activity or specific 3H-MIA binding. Trout erythrocytes suspended in Na+-free saline and maintained under normoxic conditions possessed 37,675 ± 6,678 (N = 6) amiloride-displaceable 3H-MIA binding sites per cell (Bmax, presumptive Na+/H+ antiporters) with an apparent dissociation constant (KD) of 244 ± 29 nmol l–1 (N = 6). Acute hypoxia (PO2 = 1.2 kPa; 30 min) did not affect the KD, yet resulted in a 65% increase in the number of presumptive Na+/H+ antiporters. Normoxic eel erythrocytes, similarly suspended in Na+-free saline, possessed only 17,133 ± 3,716 presumptive Na+/H+ antiporters (N = 6), 45% of that of trout erythrocytes, with a similar KD (246 ± 41 nmol l–1, N = 6). These findings suggest that inter- and intra-specific differences in the responsiveness of the teleost erythrocyte -adrenergic signal transduction system can be explained, in part, by differences in the numbers of Na+/H+ exchange sites.  相似文献   

6.
The effect of sulfide on K+ influx pathways was measured in red blood cells (RBCs) of sulfide-sensitive rainbow trout (Oncorhynchus mykiss) and sulfide-tolerant crucian carp (Carassius carassius). In trout RBCs, maximal inhibition of Na+, K+-ATPase was attained at 10 mol l–1 sulfide and amounted to 32% without being influenced by pH between 6.7 and 8.3. Ouabain-resistant K+ influx in the absence and presence of sulfide was insignificant at pH values between 6.7 and 7.7. At higher pH values ouabain-resistant K+ influx increased, but was inhibited to about 15% by 30 mol l–1 sulfide. In RBCs of crucian carp neither Na+, K+-ATPase nor ouabain-resistant K+ influx were affected by sulfide concentrations up to 850 mol l–1. Differences in sulfide-sensitivity of K+ influx between both species can be based upon different properties of the membrane transporter themselves. The reduced Na+, K+-ATPase activity in trout RBCs may also result from a slightly reduced (by 9%) ATP level after sulfide exposure. In addition, intracellular sulfide concentrations were higher in trout RBCs as compared to crucian carp. In trout, intracellular sulfide concentrations reached extracellular levels within 5 min of incubation whereas sulfide concentrations in crucian carp RBCs remained about 2-fold lower than extracellular concentrations. Although the physiological basis of sulfide-insensitive K+ influx in crucian carp RBCs is currently unknown it may contribute to the extremely high sulfide-tolerance of this species.  相似文献   

7.
Atlantic salmon (Salmo salar L.) parr (mean start weight 50 g) were reared in freshwater (FW) and exposed to three levels of oxygen saturation measured in effluent water; control group (93% O2, LO2), medium (111% O2, MO2) and high (123% O2, HO2). Further three groups were exposed to similar water oxygen levels in combination with elevated carbon dioxide levels (17–18 mg L– 1 CO2), named LO2–CO2, MO2–CO2 and HO2–CO2, respectively. The experiment was run in duplicate tanks for 42 days, and the fish were subsequently transferred to the same seawater (SW) regime for 45 days for an assessment of post-smolt growth. As a consequence of the CO2 addition, tank pH levels in the FW period were reduced from 6.7 to 5.9 for the hypercapnia groups compared to for the normcapnia groups. Water temperature in FW ranged between 6.4 and 9.0 °C. Citrate was added to the water to complex labile aluminium.In the CO2 groups observed ventilation frequencies were significantly increased compared to the control (p < 0.05). This difference declined towards the end of the FW period, suggesting acclimation to elevated CO2. The degree of oxygenation appeared to contribute to the acclimation as the lowest mean ventilation frequency on day 36 was found in the HO2–CO2 group and the highest in the LO2–CO2 group. Lower plasma chloride and sodium levels were observed in the CO2 groups relative to the respective oxygenation groups during the FW period, while plasma chloride and sodium levels were normalised to equal levels for all groups after 44 days in SW. No significant differences were found among treatments for blood concentrations of red blood cells, haemoglobin, potassium and glucose during the experiment.By termination of the FW period, the HO2 group had significantly higher body weight than all other groups (p < 0.05), with specific growth rate significantly higher than the CO2 groups (p < 0.05). Further, the condition factor was significantly lower in all the CO2 groups at the end of the FW period compared to the control and normcapnia groups (p < 0.05). Although variable among replicates, occurrence of nephrocalcinosis was 10 times higher in the hypercapnia groups than in the control and normcapnia groups. Mortality was negligible (< 2.0%) during the trial, and most of the mortality occurred following SW transfer.  相似文献   

8.
Gill Na+-K+ ATPase and carbonic anhydrase activities were measured, on a fortnightly basis, from February to July, in 0+ age Atlantic salmon (Salmo solar), hatched and reared in a freshwater experimental station in Covas, northern Portugal. Plasma osmolarity and ionic composition were also measured. Gill Na+-K+ ATPase activity increased slowly until April (15–19 moles Pi mg prot–1 h–1). From April to late May there was a great increase in activity (19–32 moles Pi mg prot–1 h–1) followed by a sharp decline in June (15 moles Pi mg prot–1 h–1). In contrast, carbonic anhydrase activity decreased significantly from early April to early June (170-70 moles p-nitrophenol mg prot–1 h–1) and increased in late June, suggesting the existence of a compensatory mechanism for the changes in Na+-K+ ATPase activity. Plasma osmolarity and sodium concentration showed lower levels during the period of high ATPase activity. On the other hand, plasma calcium concentrations showed an increase during the same period (3.47–5.98 mm1–1 of plasma). A transitory decrease in osmolarity and plasma sodium and chlorine concentrations occurred in March, prior to the surge in Na+-K+ ATPase activity, suggesting that the physiological changes, characteristic of parr-smolt transformation can be a consequence of this loss of freshwater osmoregulatory capacity.  相似文献   

9.
The ingestion of an inert feed as a sole food source was investigated in larval silver sea bream (Sparus sarba) fed an alginate-based microparticulate diet. Using the auto-fluorescent properties of pigments associated with the alginate base, ingestion and gut content were investigated over a 6 h experimental period in fed and unfed larvae. By extracting and measuring chlorophyll a (Chl a) and phaeopigment content of feeding larval fish and relating this to standardized Chl a and phaeopigment content of the diet, relative to diet weight, it was determined that individual fed 7-day old larvae had a maximum gut content of 1.05±0.09 g diet while 14-day old fed fish had a maximum gut content of 3.17±0.90 g diet. On average, the gut content of 14-day old fish was 2.89 times greater than the gut content of 7-day old fish. The dry weight of larval sea bream increased from 43±4.2 g at day 7 to 134.3±20.4 g at day 14 indicating that growth of fish fed this inert feed was substantial. Gut pigment dynamics suggested that Chl a was degraded to phaeopigments by 7-day but not 14-day old larvae and the individual gut dietary content varied considerably in 14-day old fish. The maximum Chl a and phaeopigment content in larval sea bream was 0.4 ng ind–1 and 0.55 ng ind–1 for 7-day old fish and 1.54 ng ind–1 and 2.81 ng ind–1 for 14-day old fish respectively. The present method may potentially allow simple and direct assessment of larval fish feed ingestion in both an experimental and commercial setting.  相似文献   

10.
Gastric acid secretion from isolated cod stomach mucosa was measured using a pH-static titration method. A basal acid secretion rate (BASR) of 6.0±0.6 nEqH+min–1cm–1 was measured when using 0.9% NaCl as luminal solution. There was a dose-dependent increase in response to histamine between 0.12 and 0.20 M (EC50=0.15 M), above which gastric acid secretion plateaued at 13.5±1.8 nEqH+min–1cm–1. Ranitidine, a H2-receptor antagonist, completely blocked the stimulatory effect of histamine and reduced the BASR. The H1-receptor antagonist, clemastine, did not inhibit the response to histamine. Acid secretion rates decreased significantly when the pH of the luminal side of the mucosa was lowered from pH 5.75 to pH 4.50, indicating that a negative feedback mechanism was operating. Histological staining showed that oxynticopeptic cells were uniformly distributed throughout the cardiac stomach.It is concluded that the acid secretion in the isolated stomach mucosa of cod can be measuredin vitro with a pH-static titration method. The method was used to demonstrate that the BASR is downregulated by a decrease in pH. Furthermore, we conclude that the histamine receptor in the cod stomach mucosa resembles the mammalian H2-receptor and that histamine is secreted under basal conditions.  相似文献   

11.
Soft water acclimated (Ca2+ 0.02 mM; Na+ 0.03 mM; K+ 0.01 mM; pH 7.0), cannulated brown trout (Salmo trutta) were exposed to various pH and aluminium (Al) regimes (pH 7.0, pH 5.0, pH 5.0 plus Al: 50, 25, and 12.5 g l–1) for up to 5 days in order to determine (i) the sublethal concentration of Al at pH 5.0 for this species (ii) their ionoregulatory and respiratory status. No mortality or physiological disturbances were evident at pH 7.0 or pH 5.0. All trout died within 48 h at pH 5.0 in the presence of Al at 50 g l–1 and 67% died over the 5 day period at pH 5.0 in the presence of Al at 25 g l–1. Fish at these lethal Al concentrations showed significant decreases in arterial blood oxygen content (CaO2) but no changes in plasma osmolarity or the concentrations of plasma Na+, K+ and Cl. Physiological disturbance was more marked at the 50 g l–1 Al concentration. The surviving fish at 25 g l–1 showed few signs of physiological recovery while continually exposed to this regime. No fish died during the exposure to water of pH 5.0 containing 12.5 g l–1 Al, but physiological disturbance was still apparent. These sublethally-stressed trout showed a transient decline in the plasma concentrations of Na+ and Cl–1. Although CaO2 decreased, recovery was evident. The data suggest that in the brown trout, environmental Al concentration is as important as pH and calcium concentration in determining the physiological status of the fish.  相似文献   

12.
Growth performance, carcass composition, liver and blood parameters ofscaled carp (C), Cyprinus carpio, and blue tilapia (T),Oreochromis aureus, reared for eight weeks in twomonoculture (100%C and 100%T) and two polyculture (60%C–40%T and40%C-60%T) conditions were investigated. In polyculture 40%C–60%T bothspecies achieved the highest levels of specific growth rate and the lowestlevels of food conversion ratio and carcass lipid content. In addition, theyexhibited the highest values of plasma pO2 and pH and the lowestvalues of plasma pCO2, cholesterol and albumin, although thedifferences among treatments were not significant in the case of tilapia.Tilapia showed significantly lower plasma Cl levels than underthe other conditions. Carp in monoculture and tilapia in polyculture60%C–40%T had the lowest levels of specific growth rate and significantlyhigher levels of liver lipids and plasma triglycerides than in the other groups.In addition, carp in monoculture exhibited a significantly higher haematocritthan in polyculture. No significant variations among treatments were observedconcerning plasma cortisol, glucose, osmolality, Na+, K+,HCO3 andHCO3 /H2CO3 in either species.The combination of scaled carp and blue tilapia, in which blue tilapia were themain species, proved to be the best for both species. It was suggested thatgrowth and physiological changes under mono- and polyculture rearing, in anintensive system, seem to be as a result of a different state of stress relatedto fish behavior.  相似文献   

13.
The rate of oxygen consumption of minced whole body was determined volumetrically, as an indication of metabolic rate in vitro (M in vitro ), at 20°C in porgy Pagrus major ranging from 0.0002 g (just after hatch) to 2.9 g (67 days old) in body mass. A triphasic relationship was found between M in vitro of individual fish (l.min–1) and wet body mass W (g). During the prolarval stage accompanied with the transitional period to the postlarval stage (0.00020–0.00023 g, 0–6 days old), the mass-specific metabolic rate in vitro (M in vitro /W in l.g–1.min–1) increased with age (D in days) as expressed by an equation M in vitro /W = 3.88 + 0.74/D. During the postlarval stage (0.00031–0.003 g, 8–22 days old), M in vitro /W remained almost constant, independent of body mass following an equation M in vitro /W = 5.24 W–0.085. During the juvenile and adolescent stages (0.0047–2.9 g, 30–67 days old), M in vitro /W decreased with increasing body mass following an equation M in vitro /W = 1.66 W–0.235. These results correspond with the triphasic relationship between metabolism in vivo and body mass observed in intact porgy of 0.0002–270 g (Oikawa et al. 1991). It is concluded, therefore, that the dependence of mass-specific metabolic rate on body size exists in vitro as well as in vivo, during the early stages in the porgy. Based on these results, factors controlling the metabolism-size relationship are discussed.  相似文献   

14.
Thisstudy investigated the effects of shelter surface area (SSA) on the feeding,growth and survival of the donkey-ear abalone, Haliotisasinina reared in mesh cages (0.38×0.38×0.28m) suspended in flow-through tanks (water volume = 6m3). Cages had sections of polyvinylchloride (PVC) thatprovided shelters with surface area of 0.22 m2, 0.44m2 and 0.66 m2.Hatchery-produced abalone with initial shell length of 32 ± 1mm and wet weight of 7.5 g were stocked at 50individuals cage–1 that corresponded to stocking densities ofca. 227, 113 and 75 abalone m–2 of SSA. The ratios of sheltersurface area to cage volume (SSA:CV) were 5.5, 11 and 16.5. Abalones wereprovided an excess red seaweed Gracilariopsis bailinae(= Gracilaria heteroclada) at weekly intervals overa 270-day culture period. Feeding rates (18–20% of wet weight), foodconversion ratio (26–27) and percent survival (88–92%) did notdiffer significantly among treatments (p > 0.05). Body size at harvest rangedfrom 56 to 59 mm SL and 52 to 57 g wet body weightwith significant differences between abalone reared at SSA 0.22m2 and 0.66 m2 (p < 0.05).Abalone reared in cages with 0.66 m2 SSA grewsignificantly faster at average daily growth rates of 132 m and188 mg day–1. Stocking densities of 75–113m–2 SSA in mesh cages suspended in flow-throughtanks resulted in better growth of abalone fed red seaweed.  相似文献   

15.
Marked morphological responses occur in the gills of freshwater rainbow trout in response to experimental acid-base disturbance and these responses play an important role in acid-base correction. Compensated respiratory acidosis induced by 70h exposure to environmental hyperoxia (elevated water PO2) caused a 33% decrease in branchial chloride cell fractional surface area (CCFA). Metabolic alkalosis induced by normoxic recovery (6h) from hyperoxia (72h) caused a 50% increase in CCFA, whereas metabolic alkalosis induced by infusion (19h) of NaHCO3 caused a 70% rise. However, the largest increase (135%) in CCFA was seen in response to infusion (19h) of HCl. NaCl infusion had no effect. A particular goal was to assess the relative importance of changes in CCFA vs. changes in internal substrate (HCO3 ) availability in regulating the activity of the branchial Cl/HCO3 exchange system. For each of the experimental treatments, the accompanying blood acid-base status and branchial transport kinetics (Km, Jmax) for Cl uptake had been determined in earlier studies. In the present study, a positive linear relationship was established between CCFA and JCl– max in individual control fish in the absence of an acid-base disturbance. By reference to this relationship, observed changes in JCl– max during metabolic acid-base disturbances were clearly due to changes in both CCFA and internal substrate levels (plasma [HCO3 ]) with the two factors having approximately equal influence.  相似文献   

16.
In order to assess the possibilities of utilizing drainage effluents (salinity range 5.0–12.5), fish culture experiments were carried out. Experiments on polyculture using cow dung (24 000 kg ha–1 y–1) as pond fertilizer were conducted at five different salinity levels (0.3–8.5). Studies have revealed that carp perform well in salinities up to 7.5 and reasonably high fish production has been obtained. Even though the ponds had a high trophic status, higher salinities ( > 7.5) appear to repress fish growth probably due to low dissolved oxygen (DO), high BOD and high NH4-N. Experiments on monoculture of common carp (Cyprinus carpio) conducted at two different salinity levels (0.3–0.9 and 6.0–7.0) using four different organic fertilizers (cow dung at 24 000 kg and 20 000 kg, poultry at 1500 kg, duck at 6000 kg and sheep/goat at 1500 kg ha–1 y–1) have revealed the highest fish growth to be in poultry-treated ponds, followed in decreasing order by duck and sheep/goat wastes. Similar trends in fish production were observed both in fresh- and salt-water ponds. However, fish production was lower in ponds having higher salinities ( > 7.5). Nevertheless, these studies indicated that inland saline waters can be utilized for fish culture. With minor modifications in the existing technology of fish culture in stagnant freshwater fish ponds, animal wastes could be used to fertilize brackishwater fish ponds.  相似文献   

17.
Branchial plasma membranes from the freshwater cichlid teleostOreochromis mossambicus (tilapia) contain two Na+-dependent ATPases: Na+/K+ ATPase, and an amiloride-sensitive ATPase which is postulated to operate as a Na+/H+ (–NH4 +) ATPase. It is suggested that both enzyme activities are located in the basolateral membrane system of the chloride cells. K+ has opposing effects on the two enzymes: it stimulates Na+/K+ ATPase and inhibits Na+/H+ (–NH4 +) ATPase activity. Na+/H+ ATPase appears more sensitive to NH4 + at low concentrations than Na+/K+ ATPase and the stimulatory effect by NH4 + ions on the first enzyme could be important in facilitating NH4 + excretion by tilapia gills under physiological conditions.In vitro maximum stimulation by NH4 + is similar for the two enzymes (200%). In contrast to Na+/K+ ATPase, Na+/H+ ATPase activity is inhibited by supra-physiological (>20 mM) concentrations of NH4 +.  相似文献   

18.
The standard rate of oxygen consumption of ammocoetes (larvae) ofGeotria australis with a mean weight of c. 0.5 g was 9.6, 31.4 and 59.4l g–1 h–1 at 4.5, 15.5 and 25.0°C respectively, which gives an overall Q10 of 2.4. The regression coefficient for the logarithmic relationship between oxygen consumption and body weight at 15.5°C was 0.704. The ammocoetes ofG. australis have a much lower rate of oxygen consumption at 15.5 and 25.0°C than those of holarctic lampreys. This presumably reflects the lower oxygen delivery pressure to their tissues and helps account for their slow growth rate. At 15.5°C, ammocoetes ofG. australis emerged from the substrate at 21–25 mm Hg and, unlike those of the Northern HemisphereIchthyomyzon greeleyi, died at 14–17 mm Hg. Thus, despite having a thinner water/blood barrier in the gills and blood with a higher oxygen affinity and capacity than holarctic ammocoetes, the larvae ofG. australis cannot survive very low dissolved oxygen tensions. This is apparently related to an inability of larvalG. australis to meet the high oxygen requirements of the respiratory pump at these oxygen tensions. During metamorphosis, oxygen consumption at 15.5°C rose from approximately 27l g–1 h–1 at the beginning of transformation to 33.2l g–1 h–1 by Stage 3 and then rapidly to 66l g–1 h–1 at Stage 6. It remained near this level in Stage 7 and the downstream migrant.  相似文献   

19.
Effects of environmental calcium concentrations on the survival, growth, body calcium content and calcium uptake kinetics in developing tilapia (Oreochromis mossambicus) larvae were studied. Fertilized eggs were incubated in high- and low-calcium artificial freshwater (0.88–0.96 mmol l–1 vs. 0.02–0.03 mmol l–1 CaCl2 or CaSO4) until 3 days after hatching. Tilapia larvae showed similar hatching rates and wet weights in either high- or low-calcium medium, indicating neither the development nor the growth in tilapia larvae was affected by the environmental calcium levels. The body calcium content in low-calcium groups was about 90–95% that of high-calcium groups, No matter what calcium source was used (CaCl2 or CaSO4), acclimation to low calcium medium caused a stimulation of calcium uptake (measured in 0.2 mmol l–1 calcium),i.e., 1.2–1.3 fold higher than that of high calcium groups. This enhanced calcium uptake capacity was characterized by a 50% decrease in Km and a 25% increase in Jmax. Effect of different calcium salts on calcium influx was significant only in low calcium level,i.e., calcium influx in low-CaCl2 group higher than that in low-CaSO4 group. These results suggest that tilapia larvae are able to modulate their calcium uptake mechanism to maintain normal body calcium content and growth in environments with different levels of calcium.  相似文献   

20.
The effects of trout recombinant growth hormone (rtGH) treatment (0.25 g g–1 by intraperitoneal implant) on plasma ionic regulation, extracellular acid-base status and respiration were investigated in freshwater rainbow trout and during a 4-day period after direct transfer into seawater (35 g 1–1).In freshwater, rtGH treatment resulted in a significant increase in gill (Na+, K+) ATPase activity and in standard metabolism (MO2). The latter would mainly result from a higher rate of protein synthesis. Direct transfer from freshwater to seawater induced a decrease in arterial blood pH, far more pronounced in controls than in treated fish. This effect could be regarded in both groups mainly as a metabolic acidosis resulting from extracellular ion composition changes (i.e., an increase higher in chloride than in sodium, more marked in controls than in treated fish). As the rise in PaCO2, in spite of an increase in ventilatory activity, is more significant in controls than in treated fish, it can be assumed that rtGH treatment lightened the decrease in the gas diffusing capacity of gills induced by transfer to seawater. The initial increase in MO2 in both controls and treated fish could be the consequence of an increase in energetic cost of ventilation and osmoregulation. Then, in treated fish, the persistent high level of M may indicate a stimulation of intermediary metabolism by rtGH. In addition, the absence in treated fish of an increase in plasma lactate concentration, as observed in controls, would indicate that rtGH attenuated the decrease in O2 affinity of haemoglobin foreseeable from the metabolic acidosis.This article is dedicated to Professor Claude Peyraud, whose recent death has deeply saddened us. We respectfully pay a tribute to his memory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号