首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the ionoregulatory responses to temperature changes in two species of freshwater fish that differ in thermal preferences; the stenothermal, cold-water rainbow trout (Oncorhynchus mykiss) and the more eurythermal, warm-water common shiner (Notropis cornutus). We found that rainbow trout maintained constant plasma Na+ levels over the entire temperature regime (5–20 °C). Upon transfer from 15 °C (holding temperature) to 5 and 10 °C, rainbow trout experienced a significant drop in Na+ uptake (Jin Na), but after two weeks Jin Na had upregulated to warm temperature levels. Further, Na+ efflux (Jout Na) fell significantly at the colder temperatures. As a result, trout at the lowest temperatures were still in ion balance. When trout were exercised to exhaustion both O2 consumption (MO2) and Jout Na rose significantly at all temperatures, but while MO2 continued to be dependent upon temperature, Jout Na was high and constant. In contrast to the trout, common shiners experienced a 20% drop in plasma Na+ at 5 °C. Upon exposure to cold temperatures they experienced a reduced Jin Na, and showed no signs of acclimation during the subsequent two weeks. Likewise Jout Na was constant at all temperatures. These findings raise questions regarding the degree to which fish employ homeostatic mechanisms designed to defend a set- point (i.e., steady-state) osmolarity and ionic composition.  相似文献   

2.
The effects of in vitro thermal stress and the potential role ofheat shock proteins in thermoprotection were examined in the nucleated red blood cells (rbcs) of rainbow trout (Oncorhynchusmykiss). Oxygen consumption, a general indicator of cellular metabolism, was maintained in trout rbcs until 30 °C, but was markedly reduce by 35 °C. Subsequent experiments were then conducted which involved exposing rbcs to 30 °C to determine which physiological variables might be compromised by an extendedheat stress. Although this temperature challenge caused an induction of Hsp 70 mRNA, and a significant reduction in the amount of oxygen bound to hemoglobin, carbonic anhydrase (CA) activity was unaffected by an 8 h, 30 °C exposure.heat stress also caused a rise in methemoglobin formation, but the increase in rbc methemoglobin concentration did not appear to be a stimulus for Hsp 70 induction. Rbc oxygen consumption, CA activity and hemoglobin/oxygen binding ability were unaltered when hsp synthesis was inhibited by the translational inhibitor, cycloheximide. These results indicate that hsps do not have a role in protecting rbc metabolism or the function of important rbc proteins, such as hemoglobin and CA. Extended 30 °Cheat stress did cause a significant leakage of potassium from the rbcs, which appeared to be intensified in the presence of cycloheximide. These latter results suggest that hsps may play a limited role in preserving rbc membrane integrity and/or ionoregulatory processes.  相似文献   

3.
Swimming exercise and dissolved oxygen (DO) are important parameters to consider when operating intensive salmonid aquaculture facilities. While previous research has focused on each of these two variables in rainbow trout Oncorhynchus mykiss, studies examining both variables in combination, and their potential interaction, are absent from the scientific literature. Both swimming exercise (usually measured in body lengths per second, or BL/s) and DO can be readily controlled in modern aquaculture systems; therefore, we sought to evaluate the effects of these variables, separately and combined, on several outcomes in rainbow trout including growth performance, fin health and survival. Rainbow trout fry (18 g) were stocked into 12 circular 0.5 m3 tanks, provided with either high (1.5–2 BL/s) or low (approximately 0.5 BL/s) swimming exercise and high (100% saturation) or low (70% saturation) DO, and grown to approximately 1 kg. By the conclusion of the study, higher DO was independently associated with significantly (p < .05) increased growth performance. Significant differences were not noted in other outcomes, namely feed conversion, condition factor and mortality, although caudal and right pectoral fin damage was associated with low oxygen and low swimming exercise treatments respectively. Cardiosomatic index was significantly higher among exercised fish. These results suggest that swimming exercise and DO at saturation during the culture of rainbow trout can be beneficial to producers through improved growth performance and cardiac health.  相似文献   

4.
Abstract. Two studies were conducted to determine the effects of rearing Snake River cutthroat trout, Oncorhynchus clarki Richardson, and Eagle Lake rainbow trout, Oncorhynchus mykiss Richardson, in oxygen supersaturated water. The performance of cutthroat trout held at oxygen saturation as high as 172% was compared with that of control fish held in water at or below saturation. At an oxygen saturation level of 172%, total gas pressure reached 117% in late afternoon, and nitrogen saturation was reduced to 93%. The rainbow trout were held at a maximum of 150% oxygen saturation; total gas pressure did not exceed 112% in late afternoon and nitrogen saturation was reduced to 99%. Fish growth, fin quality and feed conversions were not significantly affected in either species. At the termination of the study gas bubble disease was observed in 94% of the cutthroat trout held in oxygen supersaturated water. Gas bubble disease was not observed in rainbow trout.  相似文献   

5.
Abstract – Warm stream temperatures may effectively limit the distribution and abundance of Pacific salmon Oncorhynchus spp. in streams. The role of cold thermal refugia created by upwelling groundwater in mediating this effect has been hypothesized but not quantitatively described. Between June 21 and September 15, 1994, rainbow trout O. mykiss abundance within 12 northeast Oregon (USA) stream reaches was inversely correlated with mean ambient maximum stream temperatures ( r =−0.7, P <0.05). Some rainbow trout used thermal refugia (1–10 m2 surface area) that were on average 3–8°C colder than ambient stream temperatures. Within the warmest reaches, high ambient stream temperatures (>22°C) persisted from mid-June through August, and on average 10–40% of rainbow trout were observed within thermal refugia during periods of midday maximum stream temperatures. Frequency of cold-water patches within reaches was not significantly associated with rainbow trout density after accounting for the influence of ambient stream temperature ( P =0.06; extra sum of squares F -test). Given prolonged high ambient stream temperatures in some reaches, the thermal refugia available in the streams we examined may be too small and too infrequent to sustain high densities of rainbow trout. However, these refugia could allow some rainbow trout to persist, although at low densities, in warm stream reaches.  相似文献   

6.
Cold-acclimation of rainbow trout brings only limited changes in muscle metabolic capacities, but marked modifications in membrane composition. Thus, we examined whether the functional properties of mitochondria from trout red muscle were modified by seasonal temperature acclimatization. Mitochondria from fall-acclimatized trout had higher maximal capacities (state 3 rates) for the oxidation of pyruvate and acyl carnitines at 12 and 20 °C than mitochondria isolated from summer-acclimatized trout. For these substrates, the increased oxidative capacity completely compensated for the seasonal drop in temperature. Pyruvate and palmitoyl carnitine were consistently the preferred substrates, while decanoyl and octanoyl carnitine were oxidized at higher rates than glutamine, particularly in fall trout. State 4 rates of oxygen uptake (obtained when all ADP has been converted to ATP) differed less among substrates, but varied seasonally. State 4 rates at 12 and 20 °C were higher in mitochondria isolated from fall than summer trout. At low temperatures, the Q10 of both maximal and state 4 rates of substrate oxidation tended to be higher for mitochondria from fall trout. The apparent Arrhenius activation energy (Ea) for mitochondrial pyruvate oxidation was higher in fall than summer trout whereas the Eas for palmitoyl carnitine and decanoyl carnitine oxidation did not change. The fatty acids of mitochondrial phospholipids from fall trout were more polyunsaturated than those from summer trout, with 12% more double bonds occurring than in summer trout, suggesting that membrane restructuring may be involved in the observed compensatory responses.  相似文献   

7.
The rainbow trout gonadal cell line, RTG-2, which survives temperatures from 0 to 28°C and proliferates at 5 to 26°C, responded to cortisol from 28°C to 0°C by influencing [3H]-thymidine incorporation into DNA. Over the normal temperature range of rainbow trout, 10–22°C, cortisol inhibited [3H]-thymidine incorporation. The antiglucocorticoid RU 486 had no effect on [3H]-thymidine incorporation at these temperatures and blocked the response to cortisol. Another antiglucocorticoid RU 362 also had no effect but was less effective in blocking the cortisol response. During incubation at 28°C this inhibitory response to cortisol was detected inconsistently during the first 24 h but was observed consistently during the second 24 h. At 0°C, cortisol and RU 486 had no effect during short treatments, but a 60 h exposure to either steroid stimulated [3H]-thymidine incorporation over a 48 h labelling period. These results suggest that temperature shifts between 10–22°C, do not change the direction of a response to cortisol and support the use of the upper portion (20–22°C) of the temperature range for studies on salmonid cells in culture.  相似文献   

8.
A mannose-terminated glycoprotein,125I-invertase, was taken up and degraded by isolated rainbow trout liver cells at 12°C. The uptake was inhibited by EGTA and no degradation occurred in the presence of ammonium ions. The liver cell suspension was fractionated by differential centrifugation in parenchymal and nonparenchymal cells, respectively. The parenchymal liver cells seemed to be the most active cells in uptake of labelled invertase bothin vitro andin vivo. Only negligible amounts of ligand were recovered in the nonparenchymal cells. Internalization of125I-invertase at different temperatures was demonstrated indirectly by releasing surface-bound ligand with EGTA. Ligand was internalized even at 0°C in trout liver cells.In vitro uptake of125I-invertase was inhibited by excess unlabelled invertase, by mannan and by N-acetylglucosamine.These data suggest that invertase is endocytosed by a mannose-specific pathway by the parenchymal liver cells of rainbow trout.  相似文献   

9.
Abstract

The production characteristics of juvenile rainbow trout, Oncorhynchus mykiss and brook trout, Salvelinus fontinalis were compared under winter pond conditions. Juvenile rainbow trout (55.1 ±1.5 g) and brook trout (28.9 ±0.4 g) were stocked at a density of 8,750 fish/ha into six 0.04-ha ponds. After 163 days, survival, growth, and feed conversion were similar (P >0.05). The results of this study suggest that brook trout may attain growth rates similar to rainbow trout under winter pond conditions in temperate regions of North America.  相似文献   

10.
Abstract. Oxygen consumption of juvenile rainbow trout (5 g at 13°C) at moderate swimming speeds did not change significantly when infected with Cryptobia salmositica. However, significant reductions of as much as 44% of the maximum aerobic scope for activity and 24% of the critical swimming speed were observed when the parasitaemia reached a maximum of 57.6 × 106 ml−1 fish blood at 3 weeks post- infection. Blood haematocrit was significantly reduced from the initial 34.1 to 19.7% at 4 weeks post- infection, probably as a result of haemolysis by the parasite. The destruction of red blood cells clearly led to lower oxygen carrying capacity, and reduced respiratory and swimming performance.  相似文献   

11.
Most previous studies of the temperature-induced restructuring of phospholipid molecular species composition have examined steps in the biosynthesis of phospholipids to explain the accumulation of unsaturated fatty acids in membranes of cold-acclimated poikilotherms. In contrast, the present study explores the role of phospholipases in this restructuring process by determining the rates of degradation of specific molecular species of phosphatidylcholine, using enzymes (microsomes) freshly isolated from the liver of rainbow trout. (Oncorhynchus mykiss) acclimated to either 5° or 20°C. The substrate preparation employed to assay phospholipase activity possessed a range of molecular species, all radiolabeled with 1-14C-palmitic acid at thesn-1 position, similar to that present in native trout liver microsomes. After defined periods of incubation (120 and 240 min at 5°C; 60 and 120 min at 20°C), phospholipids were extracted from the reaction mixture and the distribution of radioactivity among the molecular species of phosphatidylcholine was determined by HPLC/liquid scintillation counting. In general, molecular species catabolism was not significantly influenced by either assay or acclimation temperature. Only in 20°C-acclimated fish did a reduction in assay temperature (from to 20 to 5°C) result in significantly increased proportions of radioactivity being recovered in one polyunsaturated fatty acid-containing species (16:0/22:6-PC). It is concluded: 1) that phospholipase specificity, assayed under conditions approximating thosein situ, is not significantly influenced by temperature; and 2), that the increased proportions of unsaturated fatty acid-containing molecular species of phosphatidylcholine observed at low temperatures must reflect the specificity of biosynthetic rather than degradative processes.  相似文献   

12.
Protein synthesis was assessed in rainbow trout (Oncorhynchus mykiss) hearts perfused with medium containing 3H phenylalanine. Isolated hearts from fish acclimated to 5° and 15°C were used as the model system, and were perfused at variable test temperatures and pH. Protein synthesis expressed as nmol PHE mg protein–1 h–1 was two fold higher in hearts from fish acclimated to 15°C and tested at 15°C and extracellular pH 7.6 than in hearts from fish acclimated to 5°C and tested at 5°C and extracellular pH 8.0. The prime determinant of the decreased rate of protein synthesis was thermal history. Fish acclimated to 5°C had lower levels of RNA mg protein–1 than fish held at 15°C. There was a direct linear relationship between the rate of protein synthesis in nmol PHE mg protein–1 h–1 and RNA content. RNA activity (nmol PHE g RNA–1 h–1 remained constant regardless of thermal history or perfusion condition. Elevated pH resulted in only a marginal decrease in protein synthesis. Test temperature had no effect on in vitro rates of protein synthesis.  相似文献   

13.
Oxygen consumption, ammonia excretion and fish swimming speed were measured in fish induced to swim by optomotor reaction in a circular metabolism chamber. The relationship between the swimming speed and fish metabolism described by exponential equations allowed the extrapolation to the standard metabolism, i.e. at zero swimming speed. The partitioning of the catabolised protein in the energy supply was estimated based on AQ (volume of ammonia/ volume of oxygen) values. Weight specific standard metabolism, as expressed by the ammonia excretion rate, decreased by one order of magnitude in coregonids as the fish grew from 20 to 780 mg body weight. The slope of the relationship between oxygen uptake and swimming speed decreased in coregonid ontogenesis. In salmon, after 12 days of fasting 28% of energy used was derived from protein, whilst coregonid juveniles utilized mostly lipid. Active swimming in fasted juveniles of coregonid, as well as in salmon, led to the accelerated utilization of protein as a source of energy, based on AQ coefficients. In juveniles acclimated to a range of water temperatures from 14 to 26°C, the changes in standard or active metabolic rate (expressed as oxygen uptake or ammonia excretion) were described by Q10 coefficients. They were generally higher for the ammonia excretion rate than for the oxygen uptake rate and for active metabolism than for standard metabolism. Utilization of protein as energy for swimming differed significantly between the species, being in general one order of magnitude higher in coregonids than in salmon. The use of protein for swimming activity tended to decrease during coregonid ontogenesis.  相似文献   

14.
Northern Lake Huron (Ontario, Canada) supports the largest concentration of freshwater salmonid cage culture farms in Canada and receives inputs of domestic‐strain rainbow trout (Oncorhynchus mykiss) through escapement. We assessed the potential effects of these domestic fish on the naturalised rainbow trout of this ecosystem by comparing their respective ecologies. Mature adults were sampled from spawning tributaries, primarily in spring, and to a lesser extent in fall. Fish of domestic origin comprised ~80% of rainbow trout sampled from sites near cage culture facilities but <20% of rainbow trout sampled from more distant sites. Domestic adults in spawning condition (gametes free‐flowing) were present in the spawning tributaries in both spring and fall sampling seasons, whereas naturalised fish in spawning condition were only observed in the spring. Domestic adults were younger and smaller (in length), appeared to have shorter lifespan and had a higher male to female ratio compared with their naturalised counterparts. Growth rates (change in length with age) of naturalised and domestic females in the wild were similar, but domestic males grew more slowly than naturalised males. Domestic females also produced smaller eggs than naturalised females. Food web positions (inferred from δ13C and δ15N) of domestic and naturalised fish were very similar but varied more strongly with body size in the former. Domestic‐strain rainbow trout of cage culture origin can survive, grow and attempt to spawn in northern Lake Huron and have the potential to compete for food, mates and spawning habitat with naturalised rainbow trout.  相似文献   

15.
The first evidence of proliferative kidney disease (PKD) in an Austrian river (the River Kamp) was documented in 2016, and no information on the PKD infection status of trout in other rivers was available. Since then, brown trout (Salmo trutta fario) and rainbow trout (Oncorhynchus mykiss) have been collected from rivers in Upper and Lower Austria for different diagnostic purposes. In this study, we summarize the recent findings of a first survey concerning the distribution of Tetracapsuloides bryosalmonae, the causative agent of proliferative kidney disease (PKD), from these samples. Between September 2015 and October 2017, a total of 280 brown trout and 39 rainbow trout were collected from 21 rivers in the provinces of Upper and Lower Austria. T. bryosalmonae was detected by PCR of kidney tissue in 17 of 21 sampled rivers and in 138 of 280 brown trout as well as in 11 of 39 rainbow trout. Pathological signs of PKD (e.g., hypertrophy of the kidney) were observed in 33 analysed brown trout and six rainbow trout samples. No correlations between fish infected by Tbryosalmonae and the parameters size and age class, condition factor, geological origin of the streams and distribution within the river course were found, while positively tested fish are significantly increased at sampling sites exceeding water temperatures of 15°C for median periods of 115 days. The prevalence within the affected streams or stream sections is highly variable, and in single rivers, infection rates of up to 90% are confirmed.  相似文献   

16.
Cold-active burbot (Lota lota (L.)) display reduced food intake during the summer. The impact of temperature on their energy budget was investigated in starved fish in a laboratory setting, simulating summer (20°C) and winter (4°C) conditions, to elucidate the impact of high temperature on burbot metabolism. Metabolic effects in burbot were compared to roach (Rutilus rutilus (L.)), which typically fast in winter. During warm acclimation, starvation (four weeks) resulted in a metabolic depression of oxygen consumption in both species. In roach, metabolic rate decreased by 55% after two weeks of starvation. Burbot, in contrast, displayed an immediate depression of metabolic rate by 50%. In both species, no reductions were observed in the cold. The temperature-induced differences between the metabolic rates at 20°C and 4°C showed a lower thermal sensitivity in burbot (Q 10 = 1.9) compared to roach (Q 10 = 2.7). Notably, for each species, energy consumption during starvation was highest under experimental conditions simulating their natural active periods, respectively. Warm acclimated roach relied mainly on muscle reserves, whereas in cold acclimated burbot, liver metabolic stores made a major contribution to the energy turnover. In cold acclimated roach and warm acclimated burbot, however, starvation apparently reduced swimming activity, resulting in considerable savings of energy reserves. These lower energy expenditures in roach and burbot corresponded to their natural inactive periods. Thus, starvation in burbot caused a lower energy turnover when exposed to high temperatures. These season-dependent adaptations of metabolism represent an advantageous strategy in burbot to manage winter temperature and withstand metabolism-activating summer temperatures, whereas roach metabolism correlates with the seasonal temperature cycle.  相似文献   

17.
A shortage of marine raw ingredients, such as fish oil, is predicted in the near future. The use of suitable alternative lipid sources, such as vegetable oils, is crucial for sustainable growth of the aquaculture sector. Three isonitrogenous (50% Crude Protein) and isoenergetic (19 kJ g−1) diets, in which fish oil was gradually replaced by soybean oil (0, 25 and 50% of the oil fraction) were tested for 12 weeks, using European sea bass (Dicentrarchus labrax) and rainbow trout (Oncorhynchus mykiss) juveniles. No dietary effects (p>0.05) on growth performance, feed conversion, digestibility or body composition were observed with either species. The results obtained suggest the inclusion of soybean oil up to 50% of the dietary lipid is possible, in diets for sea bass and/or rainbow trout juveniles.  相似文献   

18.
Experimental data are available for the oxygen cost of the branchial and cardiac pumps in fish. These data were used to theoretically analyze the relative oxygen cost of these pumps during rest and swimming in rainbow troutSalmo gairdneri. Efficiency of the heart increases with activity and so the relative oxygen cost of the cardiac pumps decreased from 4.6% at rest to 1.9% at the critical swimming speed. The relative oxygen cost of the branchial pump is significant in the resting and slowly swimming fish, being 10 to 15% of total oxygen uptake. However, when swimming trout switch to a ram mode of ventilation, a considerable saving in oxygen cost is accrued by switching the cost of ventilation from the branchial to the tail musculature. Thus, the relative oxygen cost of the branchial and cardiac pumps actually decreases at critical swimming speed compared to rest and therefore is unlikely to be a major limiting factor in maximum oxygen delivery to the tissues.  相似文献   

19.
Many species living in deeper lentic ecosystems exhibit daily movements that cycle through the water column, generally referred to as diel vertical migration (DVM). In this study, we applied bioenergetics modelling to evaluate growth as a hypothesis to explain DVM by bull trout (Salvelinus confluentus) in a thermally stratified reservoir (Ross Lake, WA, USA) during the peak of thermal stratification in July and August. Bioenergetics model parameters were derived from observed vertical distributions of temperature, prey and bull trout. Field sampling confirmed that bull trout prey almost exclusively on recently introduced redside shiner (Richardsonius balteatus). Model predictions revealed that deeper (>25 m) DVMs commonly exhibited by bull trout during peak thermal stratification cannot be explained by maximising growth. Survival, another common explanation for DVM, may have influenced bull trout depth use, but observations suggest there may be additional drivers of DVM. We propose these deeper summertime excursions may be partly explained by an alternative hypothesis: the importance of colder water for gametogenesis. In Ross Lake, reliance of bull trout on warm water prey (redside shiner) for consumption and growth poses a potential trade‐off with the need for colder water for gametogenesis.  相似文献   

20.
Teleost fish have developed their own specific adaptive mechanism, both behavioral and physiological, to maintain homeostasis in response to unfavorable temperatures. Therefore, this study was aimed at assessing the critical thermal maxima (CTMax), critical thermal minima (CTMin), and oxygen consumption rate of Anabas testudineus (17.03 ± 1.2 g) after acclimating to three preset temperatures (25, 30, and 35°C) for 30 days. The CTMax and CTMin were 40.15, 41.40, 41.88°C and 12.43, 13.06, 13.94°C, respectively, and were significantly different (P < 0.05). The thermal tolerance polygon for the specified temperatures was 278.30°C2. The oxygen consumption rate (117.03, 125.70, 198.48 mg O2 kg−1 h−1, respectively) increased significantly (P < 0.05) with increasing acclimation temperatures. The overall results indicate that the thermal tolerance and oxygen consumption of A. testudineus are dependent on acclimation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号