首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
This study aimed to investigate practical strategies to optimize the use of a high‐docosahexaenoic acid (DHA) lipid emulsion (M70), a product with great potential in live prey enrichments for marine larviculture. Considering its particularly high content in DHA (22:6n‐3), the adequate utilization of the emulsion for Artemia enrichments was evaluated in a series of six experiments. More specifically, the bioencapsulation efficiency of M70 into Artemia nauplii was tested under different experimental conditions of oxygen source, aeration flow, incubation temperature, concentration and dosage, as well as nauplial densities. Our results showed that an optimal utilization of M70 is achieved with incubation temperatures of 28°C, moderate aeration flows and nauplial densities of 300 ind per mL. In addition, the emulsion can be dispensed in the enrichment medium in one single dose of 0.8 g L?1, with no apparent detrimental effects on its oxidative stability and Artemia nauplii survival during enrichment.  相似文献   

2.
Five variables relating to the enrichment of live prey were studied using experimental micellar emulsions. Rotifers and Artemia nauplii were enriched for 12 and 24 hrs, respectively, and sampled at several intervals to analyse their fatty acid profile and determine the better time length for enrichment. Two hour and 18 hr were shown to be the most effective in boosting rotifer and nauplii, respectively, with arachidonic (ARA), eicosapentaenoic (EPA) and docosahexaenoic (DHA) fatty acids as well as in total lipid content. Three doses of the same emulsion were also used to check which one conferred the best fatty acid profile. In this case, the higher the dose utilized the higher the content of DHA present in the live food. The use of 15 g/Kg–20 g/Kg of egg yolk as emulsifier was proved to be very effective on rotifer boosting, whereas for nauplii, the amount of emulsifier might be reduced. Egg‐derived emulsifiers have been shown to be more effective for rotifer enrichment while for Artemia nauplii, soy lecithin rendered a better fatty acid profile. Finally, live prey lipid composition paralleled that of the oil used in the emulsion formula although rotifers were far more easily enriched than Artemia nauplii especially in DHA but not in EPA or ARA.  相似文献   

3.
The palm ruff, Seriolella violacea (Cojinoba), is a potential new species for Chilean aquaculture. To approach Cojinoba larviculture, an experimental Artemia enrichment emulsion, containing docosahexaenoic acid (DHA)/eicosapentaenoic acid (EPA) = 2.5, supplemented with vitamin E, astaxanthin, and β‐glucan, was evaluated in both Artemia and Cojinoba larvae, 30–50 d.a.h. This study tested an experimental enrichment emulsion versus a commercial emulsion, with an integral approach of multicompound emulsions. After 23 h enrichment, experimental emulsion (EE)‐enriched nauplii reached DHA and EPA concentrations of 23.8 and 18.7 mg/g dry weight (dwt), respectively, while in Cojinoba larvae they were 18.4 and 19.7 mg/g dwt. Control emulsion (CE)‐enriched nauplii exhibited lower DHA and EPA (6.1 and 7.7 mg/g dwt), while only DHA decreased in the control larvae (12.6 mg/g dwt). Vitamin E was higher in EE‐enriched nauplii (29.2 mg/100 g dwt) than in the control (8.4 mg/100 g dwt). Larvae fed EE‐enriched Artemia exhibited 8% increase in survival and 19% in growth compared with the control. Astaxanthin was detected only in larvae fed EE‐enriched nauplii. The tumor necrosis factor‐α concentration was not significantly different between larvae fed EE‐ and CE‐enriched nauplii. EE looks promising as an Artemia enrichment and experimental diet to assess palm ruff larval requirements, and has a positive impact on fish larvae performance.  相似文献   

4.
The main objective was to study time kinetics of change in important highly unsaturated fatty acids (HUFAs) in phosphatidylcholine (PC) and phosphatidylethanolamine (PE) of Artemia franciscana nauplii and juveniles following enrichment and subsequent starvation. Samples of Artemia nauplii were taken at variable times (0.5–24 h) following enrichment and starvation. Samples of Artemia juveniles were taken after 2, 3 and 4 days of cultivation. No docosahexaenoic acid (DHA) was found in PC and PE of Artemia nauplii during the first hour of enrichment, while a significant (< 0.05) increase was found in total lipids (TLs). The content of DHA in PC and PE increased thereafter steadily from 1 to 8 h of enrichment. DHA in PC and PE during enrichment (1–8 h) and following starvation (8–24 h), respectively, increased and decreased significantly (< 0.05), but at a lower rate than that in TL. Moreover, juvenile Artemia (2–4 days) contained a relatively low level of DHA in TL compared with enriched Artemia nauplii, but the content of DHA in PC and PE was similar. The results open perspectives for both industry and science. For scientific studies, the lag phase in HUFA enrichment makes it possible to produce Artemia nauplii with variable relative HUFA enrichments in phospholipids and TL.  相似文献   

5.
The aim of this study was to evaluate the effects of Artemia nauplii enriched with different concentrations of highly unsaturated fatty acids (HUFAs) on the lipid metabolic response, peroxidation, and antioxidant defence status of the lined seahorse (Hippocampus erectus) juveniles. Twenty‐day‐old juveniles were fed Artemia nauplii enriched with four different concentrations (0.0 µL/L [control, A], 13.5 µL/L [B], 27.0 µL/L [C], and 54.0 µL/L [D]) of HUFAs (two thirds DHA and one third EPA) for 30 d. The activities of lipase and lipoproteinlipase of the juveniles significantly increased with increasing HUFA concentration; however, the activities of malate dehydrogenase and lactate content decreased with increasing HUFA concentration. Alkaline phosphatase activity and pyruvic acid content were not significantly different among the three treatments and the control. Malonaldehyde content was significantly negatively related to the enrichment concentrations (in Treatments A, B, and C); however, it increased significantly in Treatment D. The activities of superoxide dismutase in Treatments A and B were significantly higher than that in Treatments C and D. Catalase activity increased significantly from the control to Treatment C, then decreased significantly in Treatment D. Glutathione peroxidase activities increased significantly with increasing concentration of HUFAs, and peaked in Treatment D. The results indicate that dietary HUFAs are able to modify some enzymatic activities, and moderate dietary HUFA supplementation significantly promotes lipid metabolism and reduces lipid peroxidation products by enhancing antioxidant defence in the juveniles. However, excess HUFAs may result in adverse effects on the enzymatic activities in the juveniles, which might be related to oxidative stress.  相似文献   

6.
Understanding the flow of fatty acids between trophic levels can provide important clues on prey–predator dynamics and nutritional requirements of the species. This study investigates the fatty acid flow between enrichment emulsions, Artemia nauplii and Hippocampus guttulatus juveniles, and evaluates the nutritional value of enriched and unenriched Artemia for newborn seahorses. The fatty acid profile of Artemia and seahorses generally reflected the dietary composition, but fatty acids were not linearly transferred between trophic levels. The incorporation of dietary fatty acids showed to be a more complex process involving dietary composition, predator metabolism and nutritional requirements. Artemia composition resulted from a dynamic balance between what was assimilated and metabolized by the nauplii during enrichment. Prey fatty acids were incorporated in seahorses, but HUFA, particularly DHA, were selectively retained to fulfil their high requirements. H. guttulatus newborns were not successfully reared on Artemia nauplii, not even on enriched Artemia, with low survival rates (15.0–26.7%) being observed in all feeding treatments. The high MUFA content and low DHA level of Artemia did not fulfil the high SFA and PUFA requirements of newborn juveniles, particularly their great DHA demands. Higher survivorship was obtained with enriched Artemia, but no differences were detected in juvenile growth.  相似文献   

7.
The purpose of this study was to evaluate the effect of varying dietary levels of highly unsaturated fatty acids (HUFAs) in live prey (Artemia nauplii and a calanoid copepod, Schmackeria dubia) on the growth performance, survival, and fatty acid composition of the lined seahorse, Hippocampus erectus, juveniles. Artemia nauplii were enriched with a commercial product (SS? 50DE‐microcapsule as HUFA source, 2/3 DHA, 1/3 EPA. Shengsuo Fishery Feed Research Center of Shandong Province, Qingdao, China) at four concentrations of 0.0, 14.0, 28.0, and 56.0. Newly hatched juveniles were cultured for 35 days. The content of docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and n‐3 HUFAs in the Artemia nauplii was positively related to the enrichment concentration. At the end of the trials, growth performance of the juveniles was positively related to the enrichment concentration as well. However, the juveniles fed prey enriched with the highest concentration of enrichment (56.0 μL/L) had the significantly lower (P < 0.05) survival rate. The juveniles fed the copepod had the best growth performance and the highest survival rate, suggesting that the copepod, S. dubia, is suitable for feeding the seahorse juveniles. The comparisons between the growth, survival, and fatty acid profiles of the juveniles fed Artemia and copepods indicate that the seahorse juveniles require dietary levels of DHA beyond those achieved by enriching prey with the HUFA enrichment. Surplus EPA resulted from an imbalance between DHA and EPA in the enriched Artemia nauplii probably caused an adverse effect on the seahorse juveniles. This study suggests that DHA and EPA requirement of the lined seahorse juveniles is roughly 32% of total fatty acid, and the optimal DHA/EPA ratio for the species is circa 4:1. To avoid an adverse effect resulting from excessive EPA, maximum proportion of EPA in enriched Artemia nauplii should not exceed 13% of total fatty acid, and a recommended minimum DHA/EPA ratio in the enriched Artemia nauplii is 1.46. Arachidonic acid (20:4n‐6) might not be an essential fatty acid for the seahorse juveniles.  相似文献   

8.
Western rock lobster, Panulirus cygnus, phyllosoma were grown from hatching to stage IV. Larvae were fed with Artemia enriched with a (i) base enrichment (Base) containing 520 g kg?1 squid oil or tailor made enrichments in which oils high in polyunsaturated fatty acid (PUFA) have been added at the expense of squid oil. These treatments were (ii) base enrichment supplemented with docosahexaenoic acid (DHA) rich oil, (iii) base enrichment supplemented with arachidonic acid (AA) rich oil, or (iv) base enrichment supplemented with DHA and AA (D + A) rich oils. Total survival of phyllosoma to stage IV was high, with no significant difference between treatments (range 12.3–17.5%). By stage IV, the larvae fed the DHA or AA enriched Artemia were significantly larger (3.33 mm length) than larvae fed the Base or D + A enriched Artemia (3.18–3.24 mm length). Phyllosoma were sampled at stages II and III for biochemical analysis. The major lipid class (LC) in all phyllosoma was polar lipid (PL) (88.9–92.4%), followed by sterol (ST) (6.2–9.7%). Triacylglycerol (TAG), free fatty acid (FFA) and hydrocarbon/wax ester were minor components (≤1%) in all phyllosoma samples. In contrast, the major LC in all enrichments and enriched Artemia was TAG (76.3–85.1% and 53.4–60.2%, respectively), followed by PL (11.4–14.8% and 30.6–38.1% respectively). The main fatty acids (FA) in phyllosoma were 16:0, 18:1n‐9, 18:1n‐7, 18:0, AA, eicosapentaenoic acid (EPA) and DHA. Addition of AA, and to a lesser extent DHA, to enrichments resulted in increased levels of those FA in Artemia and phyllosoma compared with the Base enrichment. This was particularly evident for stage III larvae. Comparatively, elevated growth for phyllosoma to stage IV was achieved with DHA and AA enriched diets. Our findings highlight the importance of lipids and in particular essential long‐chain PUFA, as nutritional components for phyllosoma diets.  相似文献   

9.
Different liposome formulations, includingseveral combinations of membrane composition,type of vesicle (multilamellar and largeunilamellar vesicles), preparation method, andvehiculated nutrient, have been assayed asbioencapsulation products to enrich Artemia nauplii with nutrients for feeding fish larvae.The stability of the liposome preparationsunder conditions of use as enrichment producthas been tested using water soluble fluorescentmarkers as leakage indicators. The content ofthe fatty acids and lipid classesbioencapsulated in Artemia nauplii withliposomes has been analyzed by gas and thinlayer chromatography, respectively, andcompared with other enrichment products. Theeffect of the liposome enriched Artemianauplii used as food for fish larvae has beenevaluated in sea bass cultures. Liposomes withhigh content in polyunsaturated fatty acidsleak out more than 50% of their aqueous phasein less than 2 hours, unless they arestabilized with cholesterol and formed as largeunilamellar vesicles. Such vesicles hold70% of the encapsulated material for 8 hours.Liposome enriched nauplii in this study reflectthe influence of the enrichment products,however, they are far from the commercialemulsion (Super Selco) in terms ofdocosahexaenoic acid content, except for thenauplii enriched with liposomes made of purekrill phospholipid extract by the method ofdetergent solubilization. The liposome enrichednauplii show a higher amount of polar lipids incontrast to the feed enriched with emulsions.The larvae fed liposome enriched nauplii haveonly a slightly lower docosahexaenoic acidcontent than those fed emulsion enrichednauplii. The results obtained confirm thesuitable potential use of liposomes as foodsupplement in larviculture. Problems andadvantages are discussed.  相似文献   

10.
The changes in the biochemical compositions and enzymatic activities of rotifer (Brachionus plicatilis) and Artemia, enriched and stored at 4°C temperature, were determined. The total starvation period was 16 h and samples were taken at the end of the 8th and 16th hours. In present study, the rotifer and nauplii catabolized a large proportion of the protein during the enrichment period. Lipid contents of both live preys increased during the enrichment period and decreased in nauplii and metanauplii throughout the starvation period but lipid content of the rotifer remained relatively constant during the starvation period. The changes observed in the amino acid compositions of Artemia and the rotifer were statistically significant (P < 0.05). The conspicuous decline the essential amino acid (EAA) and nonessential amino acid (NEAA) content of the rotifer was observed during the enrichment period. However, the essential amino acid (EAA) and nonessential amino acid (NEAA) contents of Artemia nauplii increased during the enrichment period. The unenriched and enriched rotifers contained more monounsaturated fatty acid (MUFAs) than polyunsaturated fatty acid (PUFAs) and saturated fatty acids (SFA). However, Artemia contained more PUFAs than MUFAs and SFA during the experimental period. A sharp increase in the amounts of docosahexaenoic acid (DHA) during the enrichment of the rotifer and Artemia nauplii was observed. However, the amount of DHA throughout the starvation period decreased in Artemia metanauplii but not in Artemia nauplii. Significant differences in tryptic, leucine aminopeptidase N (LAP), and alkaline phosphatase (AP) enzyme activities of Artemia and rotifer were observed during the enrichment and starvation period (P < 0.05). The digestive enzymes derived from live food to fish larvae provided the highest contribution at the end of the enrichment period. In conclusion, the results of the study provide important contributions to determine the most suitable live food offering time for marine fish larvae. Rotifer should be offered to fish larvae at the end of the enrichment period, Artemia nauplii just after hatching and before being stored at 4°C, and Artemia metanauplii at the end of the enrichment and throughout the starvation period.  相似文献   

11.
Live prey used in aquaculture to feed marine larval fish – rotifer and Artemia nauplii – lack the necessary levels of n‐3 polyunsaturated fatty acids (n‐3 PUFA) which are considered essential for the development of fish larvae. Due to the high voracity, visual feeding in conditions of relatively high luminosity, and cannibalism observed in meagre larvae, a study of its nutritional requirements is needed. In this study, the effect of different enrichment products with different docosahexaenoic acid (DHA) concentrations used to enrich rotifers and Artemia metanauplii have been tested on growth, survival, and lipid composition of the larvae of meagre. The larvae fed live prey enriched with Algamac 3050 (AG) showed a significantly higher growth than the rest of the groups at the end of the larval rearing, while the larvae fed preys enriched with Multigain (MG) had a higher survival rate. DHA levels in larvae fed prey enriched with MG were significantly higher than in those fed AG‐enriched prey. High levels of DHA in Artemia metanauplii must be used to achieve optimal growth and survival of meagre larvae.  相似文献   

12.
The nematode Panagrolaimus sp. was tested as live feed to replace Artemia nauplii during first larval stages of whiteleg shrimp Litopenaeus vannamei. In Trial 1, shrimp larvae were fed one of four diets from Zoea 2 to Postlarva 1 (PL1): (A) Artemia nauplii, control treatment; (NC) nematodes enriched in docosahexaenoic acid (DHA) provided by the dinoflagellate Crypthecodinium cohnii; (N) non‐enriched nematodes; and (Algae) a mixture of microalgae supplemented in C. cohnii cells. In Trial 2, shrimp were fed (A), (NC) and a different treatment (NS) with nematodes enriched in polyunsaturated fatty acids (PUFAs) provided by the commercial product S.presso®, until Postlarva 6 (PL6). Mysis 1 larvae fed nematodes of the three dietary treatments were 300 μm longer (3.2 ± 0.3 mm) than control larvae. At PL1, control shrimp were 300 μm longer (4.5 ± 0.3 mm) than those fed DHA‐enriched or PUFAs‐enriched nematodes. No differences were observed in length and survival at PL6 between control larvae and those fed DHA‐enriched nematodes (5.1 ± 0.5 mm; 33.1%–44.4%). Shrimp fed microalgae showed a delay in development at PL1. This work is the first demonstration of Panagrolaimus sp. suitability as a complete substitute for Artemia in rearing shrimp from Zoea 2 to PL6.  相似文献   

13.
The present study aimed to evaluate the effect of the supplementation of different crab zoeas to enriched Artemia basal diet for Octopus vulgaris paralarvae during the first month of life. Paralarvae were fed using enriched Artemia nauplii alone and Artemia co‐fed either first zoea stages of Grapsus adscensionis or Plagusia depressa. The experiment was carried out over a period of 28 days, in 0.12 m3 tanks with a flow‐through rearing system. Growth in dry weight as well as mantle length and width were assessed weekly. Additionally, prey and paralarvae fatty acid composition and digestive gland (DG) histology were evaluated. Addition of low amounts of crab zoeas (approx. 100 indv. L?1 day?1) provided during critical life stages of O. vulgaris proved to be good enough to improve paralarvae growth and survival in comparison with those fed exclusively on enriched Artemia. These results were supported by the finding of a higher number of glycoprotein absorption vacuoles in the DG from paralarvae co‐fed crab zoeas, suggesting a higher feeding activity. In addition, fatty acid analysis of crab zoea showed that these are good sources of dietary arachidonic and eicosapentaenoic acids during the octopus planktonic life stage, whereas the low docosahexaenoic (DHA) content suggests the use of additional DHA sources or higher zoea densities to meet paralarvae nutritional demand to carry out a successful metamorphosis to benthic life.  相似文献   

14.
Adequate enrichment of live prey like Artemia, naturally deficient of essential highly unsaturated fatty acids (HUFA), such as docosahexaenoic acid (22:6n‐3, DHA), is critical for the rapidly developing tissues, survival, normal development and production of good‐quality fingerlings. The aim of the study was to evaluate the effects of a pulse (10–30 dah) of Shewanella putrefaciens Pdp11 (2.5*107 cfu/ml) using Artemia metanauplii as live vector, on its proper lipid profiles and resultant Solea senegalensis body composition and performance. Probiotic administration significantly increased total lipids and specifically n‐3 HUFA levels in Pdp11‐enriched Artemia. The live prey lipid modulation was also reflected in the total lipid contents and fatty acid profiles of Pdp11 sole specimens, which achieved a higher growth performance. A fatty acid multivariate principal component analysis confirmed a neat separation of two groups corresponding to Control and probiotic fish for each age sampled (23, 56, 87 and 119 dah). In addition, a further SIMPER analysis highlighted that the Pdp11 Artemia effect on sole lipid profile was different for each fatty acid and was gradually diluted with age. Results suggest an ability of Pdp11 strain to produce n‐3 HUFA as an effective tool for fish marine larviculture optimization.  相似文献   

15.
This study was carried out to investigate the suitability of Artemia enriched with docosahexaenoic acid (DHA) and choline as live food on the growth and survival rate of the Pacific bluefin tuna (PBT; Thunnus orientalis) larvae. The PBT larvae were fed either Artemia enriched with oleic acid (Diet 1), DHA (Diet 2), DHA+choline 1.0 mg L?1 (Diet 3) and DHA+choline 2.0 mg L?1 (Diet 4) or striped knifejaw larvae (Diet 5, reference diet), in duplicate for 12 days. Enrichment of Artemia with DHA significantly increased the DHA levels to 13.9, 13.8 and 12.5 mg g?1 on a dry matter basis in Diets 2, 3 and 4 respectively; however, the levels were significantly lower than the reference diet (26.9 mg g?1 dry matter basis; Diet 5). Although growth and survival rate were significantly improved by the enrichment of Artemia with DHA and choline, the improvement was negligible compared with the enhanced growth and survival rate of the fish larvae‐fed group (P<0.05). The results demonstrated that enriched Artemia does not seem to be the right choice to feed the PBT larvae perhaps because of the difficulties in achieving the correct balance of fatty acid with higher DHA/EPA from Artemia nauplii.  相似文献   

16.
Highly unsaturated fatty acids (HUFA), like the eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids and polar lipids (essentially phospholipids, PL) have been identified as essential nutrients for common octopus (Octopus vulgaris) paralarvae. However, they are not available in sufficient amounts in live preys as Artemia, making necessary a supplementation of these nutrients previous use. A commercial emulsion, soya liposomes, and marine and soya lecithins were used to supply HUFA and PL to Artemia metanauplii, those being regarded as suitable size preys for octopus paralarvae. Our results prove that a simultaneous enrichment in HUFA and PL is possible using enrichment diets combining HUFA‐ and PL‐rich products in short‐term (4 h) incubations. Particularly interesting was the enrichment efficiency shown by the marine lecithin, which enabled the enhancement of the PL fraction of Artemia metanauplii and, importantly, also their HUFA with a remarkable 13% DHA of total fatty acids. Marine lecithin arises as a novel enrichment diet for Artemia and more effective than some commercial products currently used in hatcheries worldwide.  相似文献   

17.
Systemic granulomatosis is the most frequent disease in juvenile and adult meagre, but studies regarding the first appearance of granulomas in larvae do not exist. In order to evaluate this, meagre larvae were fed four different feeding regimes as follows: RS and RO (rotifer enriched with Easy DHA Selco or Ori‐Green from 3 to 30 dph respectively), RAS and RAO (rotifer enriched with Easy DHA Selco or Ori‐Green from 3 to 21 dph and Artemia enriched with Easy DHA Selco or Ori‐Green from 12 to 30 dph respectively). All treatments were also fed with commercial microdiet from 20 to 30 dph. At 30 dph weight, length, specific growth rate and survival were significantly higher in Artemia‐fed larvae, regardless of the enrichment. Microscopic first appearance of granulomas was observed in 20 dph larvae fed RS and RO. At 30 dph granulomas and thiobarbituric acid reactive substances (TBARS), values were significantly higher in RS and RO‐fed larvae than in RAS and RAO‐fed larvae. The results showed that granulomas first appeared in meagre larvae at 20 dph when fed rotifers only. Conversely, a reduced appearance of granulomas and lipid peroxidation occurs when Artemia is included in the feeding sequence reinforcing the hypothesis of a nutritional origin of the systemic granulomatosis.  相似文献   

18.
The effect of docosahexaenoic acid (DHA) on the growth performance, survival and swim bladder inflation of larval Seriola dumerili during the rotifer feeding period was investigated in two feeding experiments. Amberjack larvae at 3 day post hatching were fed rotifers enriched with (1) freshwater C hlorella (Chlo), (2) a mixture (2:1, v/v) of Chlo and DHA‐enriched C hlorella (DHA‐Chlo), (3) DHA‐Chlo and (4) DHA‐Chlo and commercial DHA emulsion, in triplicate for 7 days. The average DHA contents of the rotifers were 0.0, 0.4, 1.0 and 1.9 mg g?1 DM respectively. The survival rate was improved by the enrichment of rotifers with DHA‐Chlo alone, and DHA‐Chlo and emulsion. Growth and swim bladder inflation of fish fed rotifers enriched with DHA‐Chlo were significantly (< 0.05) improved, however, with increased levels of DHA further improvement was not found. DHA content in the larval whole body proportionally increased with the DHA level in the rotifers. These results suggest that DHA enrichment of rotifers is effective to improve the growth, survival rate and swim bladder inflation of amberjack larvae. The DHA requirement of amberjack larvae is estimated to be 1.5 mg g?1 on a dry matter basis of rotifers.  相似文献   

19.
This study aimed to establish feeding strategies covering the whole larval period of the forktail blenny, Meiacanthus atrodorsalis, based on the standard hatchery feeds of rotifers and Artemia. Three purposely designed experiments were conducted to determine the appropriate times and techniques to transition larvae from rotifers onto Artemia nauplii of a Great Salt Lake (GSL) strain, and a specialty AF strain, as well as subsequent transition onto enriched metanauplii of GSL Artemia. With a 3‐day co‐feeding period, larvae adapted well to a transition from rotifers to newly hatched GSL Artemia nauplii as early as 5 days posthatching (DPH), and as early as 3 DPH when fed the smaller AF Artemia nauplii. However, prolonging the rotifer‐feeding period up to 11 DPH did not negatively affect survival. Larvae fed Artemia nauplii of the AF strain showed 17–21% higher survival, 24–33% greater standard length and body depth, and 91–200% greater dry weight, after 20 days relative to those fed nauplii of the GSL strain. Meanwhile, enriched Artemia metanauplii of the GSL strain were shown to be an acceptable alternative to AF Artemia nauplii for later larvae, producing similar survival and growth when introduced from 8 DPH. Based on our findings, we recommend feeding M. atrodorsalis larvae rotifers as a first food between 0 and 2 DPH, introducing AF Artemia nauplii from 3 DPH, followed by enriched GSL Artemia metanauplii from 8 DPH onward, with a 3‐day co‐feeding period between each prey change.  相似文献   

20.
Successful breeding of fish species in aquaculture depends on several factors, among which the temperature and feed are the most significant ones. This study was designed to evaluate the effect of temperature in the range of 14–18°C on the rate of embryogenesis and duration of larva period and to estimate the efficiency of Artemia nauplii enriched with PUFAs in growing sturgeon larvae. The temperature of 16°C is the most suitable for both egg incubation and Atlantic sturgeon prelarvae maintenance under aquaculture conditions. Even minor temperature fluctuations of 1 degree up or down leads to increased loss both of eggs and prelarvae. Increased temperature shortens the incubation period but has a lesser impact on the duration of prelarvae onset of external feeding. The technology of Artemia nauplii bioencapsulation with a PUFA‐containing supplement in A. oxyrinchus rearing increases sturgeon larvae weight by 1.5 times at a constant survival dynamic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号