首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
In a 80-day feeding trial, a total of 1050 juvenile Jian carp ( Cyprinus carpio var. Jian) with an average initial weight of 10.71 ± 0.05 g were fed semi-purified diets containing seven graded levels of pyridoxine (0.20, 1.71, 3.23, 4.96, 6.32, 8.58 and 12.39 mg pyridoxine kg−1 diet). Results indicated that with increasing dietary pyridoxine levels up to 4.96 mg kg−1 diet, percent weight gain (PWG) and specific growth rate (SGR) were improved, and no differences were found with further increase of pyridoxine levels. Feed intake also followed the similar pattern to that observed with PWG and SGR when dietary pyridoxine levels were ≤6.32 mg kg−1 diet. But feed efficiency and protein efficiency ratio were not affected by pyridoxine levels. Crude protein of carcass, productive protein value and plasma ammonia concentration were improved with increasing dietary pyridoxine levels up to 4.96 mg kg−1 diet. Amylase activities in the intestine were improved with increasing dietary pyridoxine levels up to 4.96 mg kg−1 diet, but protease and lipase activities in the intestine were not affected by pyridoxine levels. Na+, K+-ATPase and Gamma-glutamyl transpeptidase activities in proximal intestine, mid intestine (MI) and distal intestine (DI) were lowest when fed the diet containing 1.71 mg pyridoxine kg−1 diet. The alkaline phosphatase activities in MI and DI followed the same pattern. The dietary pyridoxine requirement of juvenile Jian carp based on PWG estimated by broken line model was 6.07 mg pyridoxine kg−1 diet.  相似文献   

2.
A 9-week feeding trial was carried out with juvenile Jian carp to study the effect of dietary pantothenic acid (PA) on growth, body composition and intestinal enzyme activities. Semi-purified diets with seven levels (4.0, 15.5, 25.6, 36.1, 45.9, 56.1 and 65.9 mg PA kg−1) of supplemental calcium d -pantothenate were fed to Jian carp (13.0 ± 0.0 g). PA improved specific growth rate (SGR), protein productive value (PPV), protein efficiency ratio (PER) and lipid production value (LPV) ( P <  0.05). Fish fed the control diet had significantly lower feed efficiency (FE) than that in any other group ( P <  0.05). Body protein content increased with increasing PA levels ( P <  0.05), but moisture, lipid and ash of fish carcasses were negatively related to the graded PA levels ( P <  0.05). Intestine protein content (IPC), hepatopancreas protein content (HPC) and activity of α-amylase, lipase, trypsin, Na+,K+-ATPase, alkaline phosphatase (AKP) and gamma-glutamyl transpeptidase (γ-GT) were all positively affected by the dietary PA levels ( P <  0.05), while intestine index (ISI) and hepatopancreas index (HSI) decreased with the increment of supplemental levels of PA ( P <  0.05). These results suggested that PA could enhance fish growth and intestinal enzyme activities. The dietary PA requirement of juvenile Jian carp, Cyprinus carpio var . Jian (13.0–73.0 g), for optimal growth estimated by the broken-line analysis was 23.0 mg PA kg−1 diet.  相似文献   

3.
An 8-week feeding trial was conducted in flow through system to examine the effects of dietary supplementation of lysine and methionine on growth, nutrient utilization, haemato-biochemical status and carcass compositions in Indian major carp, rohu, Labeo rohita fingerlings (average weight 6.32 ± 0.06 g). Four experimental soy protein-based diets D 0 (without lysine or methionine supplementation), D 1 (lysine supplementation alone), D 2 (methionine supplementation alone) and D3 (both lysine and methionine supplementation) were fed to triplicate groups. l -Lysine and dl -methionine were added to the diets containing 550 g kg−1 soybean meals at 4 and 7 g kg−1 of dry diet respectively. Significant higher weight gain, specific growth rate (SGR), protein efficiency ratio (PER), dry matter retention, nitrogen retention, total ash retention, whole carcass protein, haemoglobin concentration, haematocrit value, total erythrocytic count, total leucocytic count, plasma glucose and plasma total protein and lower FCR, per cent lipid retention and whole body moisture content were observed in fish fed soya protein-based diet supplemented with both lysine and methionine than that of fish of other dietary groups at the end of 8 weeks feeding trial. Although fish fed diet supplemented with either methionine or lysine did not show any significant differences of growth performances, feed utilization, carcass composition and haemato-biochemical status, fish of both of these dietary groups showed significantly better growth performances, feed utilization, carcass composition and haemato-biochemical status than that of fish fed diet without lysine and methionine supplementation.  相似文献   

4.
Two feeding experiments were conducted to re-evaluate the total sulphur amino acid (TSAA; methionine and cystine) requirement and determine the replacement value of cystine for methionine of juvenile Nile tilapia ( Oreochromis niloticus ). Semi-purified diets used in both experiments contained 3510 kcal gross energy and 280 g of protein per kilogram diet from casein, gelatin and crystalline amino acids. The basal diet of the first experiment contained 3.1 g methionine and 0.4 g cystine per kilogram. l -methionine was added to the seven remaining diets at 1.0 g kg−1 increment to produce methionine levels ranging from 3.1 to 10.1 g kg−1 diet. Each diet was fed to four replicate groups of juvenile Nile tilapia (1.28 g mean weight) in a recirculation system for 8 weeks. Broken-line regression analysis of weight gain data indicated that the TSAA requirement of juvenile Nile tilapia was 8.5 g kg−1 of the diet or 30.4 g kg−1 of dietary protein. In the second experiment, TSAA level was set at 95% of the requirement value determined in the first experiment. Seven diets were made with different ratios of l -methionine and l -cystine (20 : 80, 30 : 70, 40 : 60, 50 : 50, 60 : 40, 70 : 30 and 80 : 20, based on an equimolar sulphur basis). Each diet was also fed to four replicate groups of juvenile Nile tilapia (4.14 g mean weight) in a recirculation system for 8 weeks. Regression analysis of weight gain data using broken-line model indicated that cystine (on a molar sulphur basis) could replace up to 49% of methionine requirement in semi-purified diets for juvenile Nile tilapia.  相似文献   

5.
The objective of the present study was to investigate the effect of dietary phospholipid (PL) level on growth and feed intake of juvenile amberjack ( Seriola dumerili ) fed non-fishmeal (non-FM) diet containing alternative protein sources; soybean protein isolate, tuna muscle by-product powder and krill meal. Three non-FM diets were prepared to contain three levels (14, 37 and 54 g kg−1 dry diet) of PL (soybean lecithin acetone insoluble, 886 g kg−1) and growth performance was monitored in a 30-day growth trial by using 2.6 g of fish. The results indicated that final body weight, weight gain and feed intake significantly increased with increasing dietary PL level. At the highest dietary PL level (54 g kg−1 dry diet), the fish consumed 14.8% and 10.2% as much feed as those fish fed diets containing 14 g kg−1 dry diet and 37 g kg−1 dry diet PL, respectively. An increasing tendency with increasing dietary PL level on feed efficiency was observed. In conclusion, the present study demonstrated that dietary PL supplementation could increase feed intake, and improve the growth of juvenile S. dumerili fed non-FM diets. Therefore, purified PL might be a good candidate to stimulate the growth of fish through enhancing the feed intake when they are fed diets containing alternative protein sources.  相似文献   

6.
This study was conducted to evaluate the effects of dietary myo -inositol (MI) on the antioxidant status of juvenile Jian carp ( Cyprinus carpio var. Jian). A total of 1050 Jian carp (22.28±0.07 g) were randomly distributed into seven groups of three replicates each, feeding diets containing graded levels of MI (163.5, 232.7, 384.2, 535.8, 687.3, 838.8 and 990.3 mg kg−1 diet) for 60 days. Results indicated that the malondialdehyde content was the lowest for fish fed diets containing ≥384.2 mg MI kg−1, and the highest for fish fed the MI-unsupplemented basal diet ( P <0.05). The protein carbonyl content was decreased with increasing dietary MI levels up to 535.8 mg kg−1 diet, and no differences were found with a further increase in the MI concentration. The anti-superoxide anion capacity (ASA) and anti-hydroxyl radical capacity (AHR) were increased with increasing MI levels up to 535.8 mg kg−1 diet, and plateaued thereafter. The superoxide dismutase and glutathione- S -transferase activities showed the same tendency with the ASA capacity. Catalase, glutathione peroxidase and glutathione reducase activities were improved with increasing MI levels up to 838.8, 384.2 and 687.3 mg kg−1 diet, respectively, and remained nearly constant thereafter. These results suggested that MI could inhibit oxygen radical generation, increase enzymatic antioxidant capacity and prevent oxidative damage of carp. Dietary MI requirements for ASA and AHR activities of juvenile Jian carp were 567.94 and 517.22 mg MI kg−1 diet respectively.  相似文献   

7.
The dietary methionine requirement of juvenile Arctic charr Salvelinus alpinus (L.) was assessed by feeding diets supplemented with graded levels of DL-methionine (9, 12, 15, 18, 21, and 24 g kg−1dietary protein) for 16 weeks at 12°C. All diets contained 400 g kg−1 protein, 170 g kg−1 lipid, 66 g kg−1 ash and an estimated 17.5 MJ digestible energy (DE) kg−1. When live-weight gain was examined using quadratic regression, the estimate of methionine requirement for optimal growth was 17.6 g kg−1 of dietary protein (DP) or 7 g kg−1 of the diet. Requirements estimated on the basis of carcass protein and energy gains were 18.8 and 17.9 g kg−1 DP, respectively. Plasma methionine concentrations and ocular focal length variability measurements did not provide a sensitive measure of requirement, because each responded in a linear fashion to increasing dietary methionine levels. Based on the prevalence of cataracts, the methionine level required to prevent lens pathology (26.7 g kg−1 DP) appears to be higher than that required for maximum growth.  相似文献   

8.
Mature winged bean Psophocarpus tetragonolobus seeds were quick-cooked and the full-fat meal derived was used to completely replace menhaden fish meal as a dietary protein source for the African catfish Clarias gariepinus . Five dry practical diets (400 g crude protein kg−1 and 17.5 kJ gross energy g−1 dry diet) containing menhaden fish meal (diet 1) or winged bean meal with or without graded levels of supplemental L -methionine (diets 2, 3, 4 and 5; 0, 5, 10 and 15 g kg−1, respectively) were fed to catfish fingerlings (5.8  +  1.2 g) for 70 days. Weight gain, growth rate, feed conversion and protein utilization by catfish fed a winged bean meal diet without L -methionine supplementation (diet 2) was inferior ( P  > 0.05) to that in catfish fed the other diets, where performance differed nonsignificantly. Carcass protein of catfish was lower ( P  < 0.05) while liver protein was higher ( P  < 0.05) in catfish fed the winged bean meal diet without methionine supplementation. Results suggest that winged bean meal cannot replace fish meal as a protein source in catfish diets except with a minimum supplementation with 5 g L -methionine kg−1 diet.  相似文献   

9.
Growth and amino acid oxidation studies were conducted to estimate methionine requirement of juvenile Japanese flounder, Paralichthys olivaceus , by using the purified diets containing 500 g kg–1 crude protein from casein, gelatine and crystalline amino acids (CAA). Diets with six graded levels of methionine (5.3, 8.3, 11.3, 14.3, 17.3 and 20.3 g kg–1 diet) were fed to triplicate groups of the juvenile (initial weight 2.8 ± 0.05 g) twice a day for 40 days. To prevent leaching losses, CAA were precoated using carboxymethylcellulose (CMC), and further diets were bound by CMC and κ-carrageenan. Based on broken-line analysis of percentage weight gain and feed conversion efficiency, the methionine requirements of Japanese flounder in the presence of 0.6 g kg–1 of cystine were 14.9 and 14.4 g kg–1 dry diet, respectively. After the growth study was finished, a direct estimate of methionine requirement was made by examining the influence of dietary methionine level on 14C-methionine oxidation by determining radioactive carbon dioxide, protein and nonprotein fractions of the whole body. The dose–response curve between expired radioactive CO2 and dietary methionine levels showed that the optimum methionine level for the flounder was estimated to be within the range of 14.3–17.3 g kg–1 of diet in high agreement with values obtained from the growth study.  相似文献   

10.
Non-faecal phosphorus (P) was determined for large yellowtail to estimate a minimum available P requirement (Experiment  1) and to justify inorganic P supplementation in a fish meal-based diet (Experiment 2). In Experiment 1, purified diets with incremental P concentrations were fed to yellowtail (mean weight 917 g) at a feeding rate of 1.5% of body weight. The peaks of non-faecal P excretion appeared 5–6 h after feeding in fish fed more than 4.5 g available P kg−1 dry diet. Broken-line analysis indicated that the minimum available P requirement was 4.4 g kg−1 dry diet. In Experiment 2, a purified diet (PR) containing 6.5 g available P kg−1 and a fish meal-based diet with (F1) and without (F0) additional phosphorus were fed to yellowtail (mean weight 1.1 kg) at 1.5% (PR) and 2% (F0 and F1) feeding rates respectively. There was no significant difference in P excretion between fish fed the F0 (5.5 g soluble P kg−1 dry diet) and the PR diet. However, significantly higher (34.5%) amounts of non-faecal P excretions (7.4 g soluble P kg−1 dry diet) were found in fish fed F1 compared with the F0 diet. This suggested that there was an excess of dietary P in the F1 diet and that supplementation is not needed in fish meal-based diets for large yellowtail.  相似文献   

11.
Three isolated marine diatoms ( Amphora , Navicula and Cymbella ) grown on substrate were evaluated as feed supplement for Penaeus monodon postlarvae (PL) in hatchery system for a period of 19 days without changing water. Specific growth rate (day−1) (0.27 ± 0.0) and survival (%) (56.3 ± 1.8) of PLs were significantly higher ( P  < 0.05) in treatment tanks when compared with the control (0.20 ± 0.0; 36.0 ± 1.5, respectively). Shrimp PLs reared in substrate-based tanks had significantly higher ( P  < 0.05) levels of protein, lipid (521.0 ± 7.0; 304.0 ± 2 g kg−1 dry weight, respectively), ecosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) (189.0 ± 2.0; 176.0 ± 2 g kg−1 of total fatty acid, respectively) than the control (435.0 ± 22.0; 258.0 ± 22 g kg−1 dry weight; 172.0 ± 5.0; 152 ± 2 g kg−1 total fatty acid, respectively). The periphytic diatoms contained protein and lipid (430–490; 230–260 g kg−1 dry weight, respectively), EPA (30–150 g kg−1 of total fatty acids), DHA (20–30 g kg−1 of total fatty acids) and nine essential amino acids. The results showed that isolated marine periphytic diatoms grown on substrate could be used as feed supplement in enhancing the growth and survival of P. monodon postlarvae.  相似文献   

12.
An 8-week feeding trial was conducted to determine the threonine requirement of juvenile Pacific white shrimp Litopenaeus vannamei (Boone) in low-salinity water (0.50–1.50 g L−1). Diets 1–6 were formulated to contain 360 g kg−1 crude protein with fish meal, wheat gluten and pre-coated crystalline amino acids with six graded levels of l -threonine (9.9–19.0 g kg−1 dry diet). Diet 7, which was served as a reference, contained only intact proteins (fish meal and wheat gluten). Each diet was randomly assigned to triplicate groups of 30 shrimps (0.48±0.01 g), each four times daily. Shrimps fed the reference diet had similar growth performance and feed utilization efficiency compared with shrimps fed the diets containing 13.3 g kg−1 or higher threonine. Maximum specific growth rate (SGR) and protein efficiency ratio were obtained at 14.6 g kg−1 dietary threonine, and increasing threonine beyond this level did not result in a better performance. Body compositions, triacyglycerol and total protein concentrations in haemolymph were significantly affected by the threonine level; however, the threonine contents in muscle, aspartate aminotransferase and alanine aminotransferase activities in haemolymph were not influenced by the dietary threonine levels. Broken-line regression analysis on SGR indicated that optimal dietary threonine requirement for L. vannamei was 13.6 g kg−1 dry diet (37.8 g kg−1 dietary protein).  相似文献   

13.
This study assessed the use of increasing levels of brown propolis extract (BPE) as a growth promoter in Nile tilapia fingerling feeds. In a complete randomized design, 75 Nile tilapia fingerlings with 60 days on average and weighing 4.1±0.1 g were assigned to 25 aquaria (60 L) and subjected to 5 treatments in 5 repetitions for 30 days. Propolis from Serra do Araripe, Cariri Region, South Ceará State – Brazil was used to produce the BPE. The treatments involved the addition of BPE to feed samples (0.91, 1.83, 2.74 and 3.65 g kg−1) and feed control (without BPE). The final mean weight and the percentage of weight gain varied quadratically with the increase in BPE ( P <0.01), with a maximum of 2.22 g kg−1. The other evaluated parameters were not affected by the treatments ( P >0.05). The level of best performance parameters was 2.22 g kg−1, between the levels of 1.83 and 2.74 g BPE kg−1 feed inclusion. These results indicate the potential to use the brown propolis extract as a growth promoter to Nile tilapia fingerlings.  相似文献   

14.
A total of 630 juvenile Chinese sucker, with an average initial weight of 1.72 ± 0.05 g, were fed seven diets for 56 days to study the effect of dietary methionine levels on growth, feed utilization, body composition and haematological parameters on juvenile Chinese sucker. Diet 1 using fish meal as the sole protein source and diets 2–7 using fish meal and fermented soybean meal as intact protein sources supplemented with crystalline amino acids contained six levels of l ‐methionine ranging from 6.4 to 18.9 g kg?1 of dry diet at a constant dietary cystine level of 3.7 g kg?1. Each diet was randomly assigned to three aquaria. Results indicated that the highest weight gain, specific growth rate (SGR), feed efficiency ratio, protein efficiency ratio and protein productive value occurred at 13.9 g methionine kg?1 diet among the methionine supplemented dietary groups, beyond which they showed declining tendency. The whole body and muscle protein contents of juvenile Chinese sucker were positively correlated with dietary methionine level, while muscle lipid content was negatively correlated with it. The total essential amino acids content of muscle was increased significantly with increasing dietary methionine level from 6.4 to 13.9 g kg?1 (< 0.05). Apparent digestibility coefficients of dietary protein were significantly affected by dietary treatments. Serum protein, cholesterol and triacylglycerol increased with increasing dietary methionine levels, but showed a relatively lower value for fish fed the 18.9 g methionine kg?1 diet. Quadratic regression analysis of SGR against dietary methionine level indicated that optimal dietary methionine requirement for juvenile Chinese sucker was 14.1 g kg?1 of the diet in the presence of 3.7 g kg?1 cystine (corresponding to 32.0 g kg?1 of dietary protein on a dry‐weight basis).  相似文献   

15.
This study was conducted to determine the effects of feeding increasing lipid concentrations (310, 380 and 470 g kg–1 lipid on dry weight) in diets based mainly on herring byproducts to Atlantic salmon Salmo salar . The diets were isonitrogenous, varying in dietary lipid content at the expense dietary starch. Average fish weight increased from 1.2 kg in April to 2.2–2.7 kg at the end of the feeding trial in September. Significantly greater growth was found in fish fed either the 380 g kg−1 or the 470 g kg−1 lipid diets compared with the 310 g kg−1 lipid diet. Muscle lipid content increased in all dietary groups on a wet weight basis from 7.7 ± 1.4% to 12 ± 3% in salmon fed the 310 g kg−1 lipid diet, and to 16 ± 2% in salmon fed the 380 g kg−1 and 470 g kg−1 lipid diets. In fish of similar weight there was a positive correlation between dietary lipid and muscle lipid concentrations. Low concentrations of muscle glycogen were detected in fish fed each of the diets, while muscle vitamin E concentrations slowly decreased as muscle lipid increased. Muscle fatty acid composition reflected dietary fatty acid profiles, containing similar percentages of total saturated, monoenic and n-3 fatty acids (20:5n-3 and 22:6n-3) in fish from all dietary treatment groups. However, a higher ratio of n-3/n-6 was found in muscle from fish fed the 470 g kg−1 lipid diet compared with the other two groups. Blood chemistry values varied somewhat, but all values were within normal ranges for Atlantic salmon of these sizes.  相似文献   

16.
Five iso-nitrogenous (300 g crude protein kg−1 diet) semi-purified diets with graded levels of carbohydrate at 220 (D-1), 260 (D-2), 300 (D-3), 340 (D-4) and 380 (D-5) g kg−1 diet were fed ad libitum to Puntius gonionotus fingerlings (average weight 0.59±0.01 g) in triplicate groups (20 fish replicate−1) for a period of 90 days to determine the effect of the dietary carbohydrate level on the growth, nutrient utilization, digestibility, gut enzyme activity and whole-body composition of fish. Fifteen flow-through cement tanks of 100 L capacity with a flow rate of 0.5 L min−1 were used for rearing the fish. The maximum weight gain, specific growth rate, protein efficiency ratio, RNA:DNA ratio, whole-body protein content, protease activity, protein and energy digestibility and minimum feed conversion ratio (FCR) were found in the D-2 group fed with 260 g carbohydrate kg−1 diet. The highest protein and energy retention was also recorded in the same group. However, from the second-order polynomial regression analysis, the maximum growth and nutrient utilization of P. gonionotus fingerlings was 291.3–298.3 g carbohydrate kg−1 diet at a dietary protein level of 300 g kg−1 with a protein/energy (P/E) ratio of 20.58 −20.75 g protein MJ−1.  相似文献   

17.
Six isonitrogenous (350 g kg−1 crude protein) and isoenergetic (17573 kJ kg−1) experimental diets incorporating raw and fermented sesame ( Seasamum indicum ) seed meal at 200, 300, and 400 g kg−1 into a fishmeal based diet were fed to rohu Labeo rohita fingerlings for 60 days and the growth performance and feed utilization efficiency of the fish was studied. The antinutritional factor phytic acid, from raw sesame seed meal, could be reduced below detection limit by fermentation with lactic acid bacteria ( Lactobacillus acidophilus ). Fermentation of the oilseed meal resulted in reduction of the tannin content from 20 to 10 g kg−1. In terms of growth response, feed conversion ratio and protein efficiency ratio, a diet containing 400 g kg−1 fermented sesame seed meal resulted in a significantly ( P  < 0.01) best fish performance. In general, growth and feed utilization efficiencies of fish fed fermented sesame seed meal diets were superior to those fed raw oilseed meal diets. Apparent protein digestibility (APD) values decreased with increasing levels of raw oilseed meal. APD was, however, significantly ( P  < 0.01) higher at all levels of incorporation of fermented sesame seed meal, while diets containing raw oilseed meal resulted in poor protein and lipid digestibility. Carcass protein and lipid contents of fish fed fermented sesame seed meal diets increased with increasing level of incorporation, being highest with 400 g kg−1 fermented oilseed meal-containing diet. The results showed that sesame seed meal may be incorporated in carp diets up to 200 g kg−1 and 400 g kg−1 in raw and treated (fermented) forms respectively.  相似文献   

18.
This study was conducted to determine the dietary vitamin E requirement of juvenile hybrid striped bass ( Morone chrysops female ×  Morone saxatilis male). Semi-purified diets supplemented with 0.2 mg Se kg−1 from Na2SeO3 and either 0 (basal), 10, 20, 40, 60, or 80 mg vitamin E kg−1 as  DL -α-tocopheryl acetate were fed to hybrid striped bass initially averaging 1.8 ± 0.1 g (mean ± SD) for 12 weeks. Fish fed the basal diet, which contained 5.8 mg α-tocopherol kg−1 dry weight, were darker in colour and had reduced weight gain, as well as generally reduced haematocrit values compared with fish fed diets supplemented with vitamin E. In addition, fish fed diets containing less than 20 mg supplemental vitamin E kg−1 had significantly ( P  < 0.05) reduced weight gain and feed efficiency compared with those fed diets supplemented with vitamin E at 20–80 mg kg−1. Dietary supplementation of vitamin E caused incremental increases in the concentration of α-tocopherol in both plasma and liver tissues. However, hybrid striped bass fed graded levels of vitamin E did not exhibit a dose response in terms of ascorbic acid-stimulated lipid peroxidation of hepatic microsomes. Regression analysis of weight gain data using the broken-line model indicated a minimum vitamin E requirement ( ±  SE) of 28 ( ±  3) mg kg−1 dry diet. Based on these data, the dietary vitamin E requirement of hybrid striped bass appears to be similar to that determined for other fish species.  相似文献   

19.
Six isonitrogenous [450 g kg−1 crude protein (CP)] and isoenergetic diets (23 kJ g−1) with six levels of defatted soybean meal inclusion (0, 132, 263, 395, 526 and 658 g kg−1) in substitution of fish meal were evaluated in gilthead sea bream of 242 g initial weight for 134 days. Fish fed diets S0, S13, S26 and S39 had a similar live weight (422, 422, 438 and 422 g, respectively) but fish fed diets S53 and S66 obtained the lowest final weight (385 and 333g, respectively), and similar results were presented in specific growth rate (SGR). Fish fed diets S53 and S66 also obtained the highest feed conversion ratio (FCR). Quadratic multiple regression equations were developed for SGR and FCR which were closely related to dietary soybean level. The optimum dietary soybean levels were 205 g kg−1 for maximum SGR and 10 g kg−1 for minimum FCR. Sensorial differences were appreciated by judges between fish fed S0 and S39 soybean level, but after a re-feeding period of 28 days with diet S0, these differences disappeared.  相似文献   

20.
Five iso-nitrogenous (300 g kg−1 diet) purified diets with graded level of lipid at 40 (D-1), 60 (D-2), 80 (D-3), 100 (D-4) and 120 (D-5) g kg−1 diet were fed to Puntius gonionotus fingerlings for 90 days to determine their dietary lipid requirement. Two hundred and twenty-five fingerlings (average weight 2.34 ± 0.03 g) were equally distributed in five treatments in triplicate groups with 15 fish per replicate. Fifteen flow-through cement tanks of 100 L capacity with a flow rate of 0.5 L min−1 were used for rearing the fish. Specific growth rate (SGR), feed conversion ratio (FCR), nutrient digestibility, retention, digestive enzyme activity, RNA : DNA ratio and whole-body composition were considered as the response parameters with respect to dietary lipid levels. Maximum SGR and minimum FCR with highest RNA : DNA ratio, whole-body protein content and digestive enzyme activity was found in D-3 group fed with 80 g kg−1 diet lipid. Nutrient digestibility was similar in all the groups irrespective of the dietary lipid level. Maximum protein and energy retention was recorded at 80 g kg−1 dietary lipid fed group. However, from the second-order polynomial regression analysis, the maximum growth of P. gonionotus fingerlings was found at 96.9 g lipid kg−1 diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号