首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
冬季苦草分解速率及营养盐释放规律研究   总被引:2,自引:0,他引:2  
采用分解网袋法研究了冬季苦草腐败分解速率及其氮、磷损失规律。结果表明:苦草腐败释放的磷大部分被底泥吸附,少量进入水体;释放到水体中的氨氮(NH4+-N)、亚硝态氮(NO2--N)和硝态氮(NO3--N)数量也较少;底泥减缓了苦草干重损失速度,而加快了TN和TP损失速率;苦草分解过程中磷的释放速率比氮快;苦草腐败分解具有阶段性,前36d分解迅速,以后分解速率显著下降。  相似文献   

2.
硝氮(NO3--N)和氨氮(NH4+-N)是水体中无机氮的主要形态。利用15N稳定同位素技术研究了斜生栅藻(Scendesmus obliquus)对NO3--N和NH4+-N的吸收特征。结果显示,在相同浓度条件下,斜生栅藻对NH4+-N的吸收速率显著高于对NO3--N的吸收率,在180min的试验中,对15NH4+-N的吸收速率为0.62~1.15μmol/(g·min);对15NO3--N的吸收速率为0.08~0.15μmol/(g·min)。在NO3--N和NH4+-N2种形态氮源同时存在的混合组中  相似文献   

3.
正水体中的污染物主要来自有机物。水体中的有机物来源于两个方面:一是外界向水体中排放有机物;二是生长在水体中的生物群体产生的有机物以及水体底泥释放的有机物。在养殖水体中,有机污染物主要包括氮、碳、磷、硫4种,氮的分子氨态及亚硝酸氮态存在形式对水生动物产生很强的神经性毒害。高密度养殖模式加大了水体有机氮物质分解转化的负荷,微生物分解环节严重受阻,从而制约了水体系统循环  相似文献   

4.
珠江三角洲基塘氮磷的含量分布及与水质关系初步探讨   总被引:1,自引:0,他引:1  
采集珠江三角洲顺德基塘水和底泥样,测定NH4+-N、NO3-N、NO2——N以及水体中的TOC、DO、BOD,研究基塘水体中氮的形态分布及其水化学影响因素.测定结果表明,氮几种形态在水体中的垂直分布变化不明显,但在水体和底泥中的分布差别很大.水体中的硝酸盐氮含量比亚硝酸盐氮含量高,底泥中硝酸盐氮含量大幅度降低,亚硝酸盐氮和氨氮含量升高,表明底泥对硝酸盐氮释放通量较大.氮和水化学指标之间的关系:DO与硝酸盐氮呈负相关;TOC与总氮呈负相关,与亚硝酸盐氮呈正相关,总有机碳与氮相关性显著;回归方程显示水体环境中的氮主要和BOD关系密切.总氮与硝酸盐氮呈正相关,与亚硝酸盐氮呈负相关;基塘水体有效态无机氮的变化主要是由硝酸盐氮决定.磷和水化学因子之间的关系:DO与正磷酸盐呈正相关,BOD与正磷酸盐呈负相关;COD与总磷呈正相关.  相似文献   

5.
养殖水体沉积物中氮的形态、分布及环境效应   总被引:8,自引:1,他引:8  
养殖水体沉积物中的氮可分为有机态氮和无机态氮,以有机态氮为主(70%~90%)。无机态氮主要有NO3--N、NO2--N和NH4 -N,其中以NH4 -N为主。各形态的氮含量在水平方向上的分布随距污染源的远近而有小到大变化;垂直方向上的分布则是:NH4 -N随沉积深度的增加含量增大,NO3--N随沉积深度的增加含量减小,而NO2--N随沉积深度的变化不明显。  相似文献   

6.
在褐菖鲉(Sebastiscusmarmoratus)室内养殖条件下,以不换水作为对照组,设置2个石莼(Ulva lactuca)养殖密度梯度,研究了石莼对褐菖鲉养殖水体的生态作用。试验结果表明,石莼对褐菖鲉养殖水体中氮、磷营养盐的清除效果明显。在褐菖鲉养殖水体中分别加入石莼534和801g·m13共9d不换水,与对照组相比,养殖密度为534g·m-3的石莼组对硝态氮(NO3-N)、氨态氮(NH4-N)和无机磷(PO4-P)的清除率分别为83.7%、90.7%和86.5%;养殖密度为801g·m^-3的石莼组对NO3-N、NH4-N和PO4-P的清除率分别为90.1%、96.9%和92.7%。  相似文献   

7.
中华绒螯蟹有机和常规养殖池塘底泥氮磷溶出特性研究   总被引:1,自引:1,他引:0  
采用室内模拟研究的方法,研究中华绒螯蟹(Eriocheir sinensis)有机和常规养殖底泥中氮、磷的溶出规律。结果显示:有机组氨态氮溶出总量明显高于常规组,覆水前期,底泥厚度是决定氨态氮溶出总量的主要因子,中后期底泥类型成为主要因素。相同厚度底泥中有机组硝态氮的污染负荷明显低于常规组。常规组较有机组更容易在短时间内溶出硝态氮和亚硝态氮。5 cm和10 cm底泥厚度下有机组溶出总磷量分别高于常规组60.5%和56.5%,但在前4 d有机组的溶出速率低于常规组,应提早换水以有效控制总磷浓度。  相似文献   

8.
基于15N稳定同位素技术的斜生栅藻对硝氮和氨氮吸收研究   总被引:2,自引:0,他引:2  
硝氮(NO3--N)和氨氮(NH4+-N)是水体中无机氮的主要形态。利用15N稳定同位素技术研究了斜生栅藻(Scendesmus obliquus)对NO3--N和NH4+-N的吸收特征。结果显示,在相同浓度条件下,斜生栅藻对NH4+-N的吸收速率显著高于对NO3--N的吸收率,在180min的试验中,对15NH4+-N的吸收速率为0.62~1.15μmol/(g·min);对15NO3--N的吸收速率为0.08~0.15μmol/(g·min)。在NO3--N和NH4+-N2种形态氮源同时存在的混合组中,斜生栅藻对NO3--N的吸收速率[0.12~1.00μmol/(g·min)]显著低于NO3--N作为唯一氮源的单一组[0.78~1.23μmol/(g·min)],表明NH4+-N的存在对藻类吸收NO3--N有抑制作用。在14NO3--N和15NO3--N同时存在时,斜生栅藻优先吸收14NO3--N,产生同位素分馏效应,但不同形态氮对藻类氮吸收的影响远远大于同位素的影响。  相似文献   

9.
《淡水渔业》2021,51(3)
为了研究生态基对大口黑鲈(Micropterus salmoides)养殖池塘氮,磷累积的影响,对大口黑鲈进行了6个月的室外池塘养殖试验。养殖期间不同时间段内分别对养殖水体亚硝态氮(NO_2-N)、硝态氮(NO_3-N)、铵态氮(NH~+_4-N)、磷酸盐(PO_4~(3-)-P)、总氮(TN)、总磷(TP)、总有机碳(TOC)含量以及养殖池塘底泥的TN、 TP、TOC含量进行了测定。结果显示:养殖水体氮相关指标中,生态基处理组TN、NO~-_3-N、NH~+_4-N含量极显著低于对照组,N累积显著低于对照组;生态基处理组TP含量极显著低于对照组,水体P累积显著低于对照组。池塘底泥中碳、氮、磷相关指标中,生态基处理组池塘底泥TOC、TN、TP含量与对照组无显著差异。实验结果表明,挂设生态基对降低大口黑鲈养殖池塘水体氮、磷含量有显著效果。  相似文献   

10.
<正>在集约化养殖条件下,由于大量投饵的残料、生物排泄物和尸体等长期积累及泥沙沉积,使池塘底部形成了一定厚度的底泥。池塘保持适当的底泥是必要的,因为底泥中含有大量营养物质。这些营养物质,一部分通过细菌分解使氮、磷等元素不断向水中溶解、释放;另一部分通过离子交换作用向水体释放。通过这些过  相似文献   

11.
为探究印度小竹节草的生物修复潜力,本研究采用实验生态学方法研究了印度小竹节草对铜绿微囊藻的抑制作用和富营养化水体氮磷的去除效果。实验通过分别设置4个栽培密度(1,2,3和4 g/L),3个营养盐梯度(中营养,富营养和极富营养),跟踪检测了培养液中硝氮(NO3-N)、亚硝氮(NO2-N)、氨氮(NH4-N)、总氮(TN)和总磷(TP)的浓度变化;并对印度小竹节草与铜绿微囊藻共培养下铜绿微囊藻的生长状况及营养盐的衰减状况进行了初步研究。结果表明,印度小竹节草具有很强的营养盐去除能力,栽培密度为4 g/L时,TN和TP去除率最高,分别为99.50%和93.45%,各处理组间的TN和TP去除率差异性不显著。营养程度对印度小竹节草N、P吸收速率具有极显著性影响,N、P吸收速率随着各组 N、P 浓度的升高而增加,极富营养处理组TN、TP吸收速率达到最高,分别为1.11和0.15 μmol/(g ? h)。同时,极富营养处理组TN、TP去除率也显著高于其他处理组,分别高达99.46%和90.75%。共培养实验表明,印度小竹节草对铜绿微囊藻具有较好的抑制效果,抑藻率高达99.89%。实验组TP浓度后期大幅度下降,与对照组存在极显著差异性,且NH4-N浓度极显著低于对照组。综合以上实验结果,印度小竹节草可考虑作为生物修复物种在富营养化水体进行种植,同时在铜绿微囊藻水华预防方面也具有一定的应用潜力。  相似文献   

12.
监测苦草生长过程中根系及沉积物中磷含量和形态的时空变化,探讨苦草根系在生长过程中对沉积物磷时空分布的影响。聚乙烯塑料桶中铺设沉积物为暴发水华水体的底泥,厚度10cm,干重4 821.00g,底泥铺设完毕后缓慢注入100L水(TP 0.02mg/L)。试验桶种植2g苦草休眠芽。沉积物样品磷形态分析采用国际通用的SMT法,在采集沉积物同时采集苦草样品,测定根系生长情况及根系在沉积物中的分布。结果表明:苦草在生长过程中能降低沉积物各层总磷(TP)、NaOH提取磷(NaOH-P)、HCl提取磷(HCl-P)、无机磷(IP)和有机磷(OP)的含量,沉积物各形态磷含量的下降速率为:NaOH-PHCl-PIP=OP;随着苦草根系的生长,在苦草根系分布区沉积物中各形态磷的含量明显低于非根系分布区。苦草根系通过对环境因子氧化还原电位和pH的改变从而影响根系周围沉积物磷的含量,沉积物中各形态磷含量随着苦草根系面积的增加而减小。  相似文献   

13.
海水养殖池塘底泥异养硝化作用的研究   总被引:1,自引:0,他引:1  
王李宝  万夕和  许璞  朱彬 《海洋渔业》2006,28(2):147-151
以两种不同养殖对象池塘中的浅层底泥为样品,研究其在外加有机碳源(乙酸钠)的情况下硝化作用所受的影响,包括了NO2--N累积量的变化和培养液pH值的变化。结果表明,在外加有机碳源(乙酸钠)的情况下,供试底泥的硝化作用虽然受到了一定的影响,但仍然存在,且保持了较高的硝化能力。并进一步考察了上述两种底泥对水体中有机质、氨态氮和亚硝酸盐的去除能力,探寻了利用异养硝化作用改善水质环境的潜力。  相似文献   

14.
小球藻与芽孢杆菌对对虾养殖水质调控作用的研究   总被引:2,自引:0,他引:2  
通过在凡纳滨对虾养殖水体中添加小球藻和芽孢杆菌,研究其对养殖水质的调控作用。结果表明,小球藻和芽孢杆菌联合处理组对水质的调控效果优于只添加芽孢杆菌组或小球藻组。菌-藻联合处理组能很好地降低水体中氮、磷的含量,对氨氮的作用尤为明显;实验进行的第5天内,NH4 -N含量显著低于对照组(P<0·05),降低率为32·94%,NO2--N降低率为10·29%,PO34--P降低率为36·02%。小球藻 芽孢杆菌组NH4 -N含量平均为0·277mg/L,日均积累速率0·0135mg/L·d,而对照组为0·0472mg/L·d;NO2--N平均含量为0·334mg/L,日均积累速率为0·0617mg/L·d。小球藻在调控水质的同时也向水体释放有机物,从而引起水体COD的上升。  相似文献   

15.
波吉卵囊藻对养殖水体溶解态氮吸收规律的研究   总被引:1,自引:0,他引:1  
利用15N稳定同位素标记物,研究在不同盐度下波吉卵囊藻(Oocystis borgei)对溶解态氮的吸收速率和选择性。结果表明:盐度对波吉卵囊藻氮吸收速率影响显著(P<0.05)。当盐度为15时,波吉卵囊藻对氨氮(NH4+-N)、亚硝酸盐氮(NO2--N)、硝酸盐氮(NO3--N)等均有较大的吸收速率,分别为1.69、0.112、0.028μgN/(g.h);盐度为30时,对尿素氮(Urea-N)有较大的吸收速率,为0.074μg N/(g.h)。不同盐度下,波吉卵囊藻对4种溶解性氮的选择性吸收的先后顺序为:氨氮>亚硝酸盐氮>尿素氮>硝酸盐氮。因此,可通过在对虾养殖环境中接种波吉卵囊藻,以吸收水体中过高浓度的氨氮和亚硝酸盐氮,改善虾池养殖水质,促进健康生态养殖。  相似文献   

16.
针对目前循环养殖废水水质处理过程中存在脱氮碳源不足的问题,本文以高NO3--N降解能力和低NO2--N积累量为碳源优化指标,研究了乙醇、丙三醇、葡萄糖、蔗糖、乙酸钠和酒石酸钾钠6种碳源及不同碳氮比(C/N)对复合菌群净化循环养殖废水效果的影响。试验结果显示,不同碳源及C/N对养殖废水的NH4 -N去除率并无显著差异,且各处理组的NH4 -N去除率高达98%左右,显著地高于对照组(p<0.05);当以葡萄糖、蔗糖等糖类物质为外加碳源时,试验过程中有明显的NO2--N积累现象;当以醇类物质为外加碳源时,NO2--N积累量几乎为零,且NO3--N去除率高达90%左右,显著地高于对照组(58.96%);特别是以乙醇为外加碳源且C/N为3.0时,复合菌群对养殖废水的TN、NH4 -N和NO3--N去除率分别高达93.28%、98.90%和91.82%。虽然外加碳源短期内会引起水体CODMn含量大幅升高,但可被反硝化细菌迅速降解;此外,外加碳源还能改善水体pH值,经处理组净化后的水体pH值维持在7.5左右。试验结果表明,循环养殖废水水质净化过程中添加相应的碳源及并适当控制C/N比能显著改善池水水质,提高生物脱氮效率。  相似文献   

17.
长江中游地下水水位变化对氮输出的影响研究   总被引:2,自引:0,他引:2  
河岸带地下水水位的变化将使河岸带土壤、水文条件与化学物质迁移之间的关系发生变化.通过模拟长江洪湖河岸带水位变化情况,研究不同地下水水位变化对氮输出的影响,考虑因素为潜水埋深,试验作物为牛精草(Eleusine indica),共设4个处理,研究不同地下水埋深条件下的水质情况.结果表明,不同处理条件下各形态氮的浓度均有不同程度升高,以处理Ⅲ的氨态氮增加最多,为0.30mg/L;处理Ⅱ硝态氮增加最为显著,为0.37mg/L;干湿交替能够引起氨化的突然加强,同时伴随着硝化的骤然加强和NO3--N的暂时积累.相同植被条件下,地下水埋深越浅,NO3--N更易造成地下水环境的污染.在湿润地区,尤其是渔业养殖较多的区域,氨态氮也是地下水污染中的重要贡献者.  相似文献   

18.
水产养殖中使用的氮肥根据氮的种类大致可以分为三类:即氨态与铵态氮(如硫酸铵、氯化铵、碳酸氢铵等),硝态氮(硝酸钙、硝酸钠等)以及酰胺态氮,尿素属于酰胺态氮肥。一般来说,养殖水体的藻类都能直接吸收利用氨态与铵态氮和硝态氮,虽然许多藻类也能吸收利用尿素,但是据研究,当水体中氨态与铵态氮的浓度在7微克/升时,藻类利用尿素的能力就会受到抑制。养殖水体内这样浓度的氨态与铵态氮通常都可以遇见,特别是在现在高密度的养殖模式下。  相似文献   

19.
李奕雯 《海洋与渔业》2010,(10):40-40,52
水体中氮元素的存在形式主要有硝酸氮(NO3)亚硝酸氮(NO2)、总氨氮(包括分子态NH3和离子态NH4)和氮气(N2)。一般认为,硝酸氮、氮气对水生生物是无毒的。在养殖水体中,亚硝酸氮对养殖动物有较大的毒性,通常是衡量水质好坏的重要指标,也是养殖者重点关注的对象。  相似文献   

20.
亚硝态氮对鲤鱼种血液SOD及GSH-Px的影响   总被引:5,自引:0,他引:5  
韩英  张辉  王琨 《淡水渔业》2007,37(1):66-68
研究了不同浓度的亚硝态氮对鲤(Cyprinus carpio)鱼种抗氧化能力的影响。试验鱼为体重130~250 g的鲤鱼种,按水体NO2--N浓度设3组共9个处理进行试验,其中对照组NO2--N浓度低于0.01 mg/L,低浓度组为0.2 mg/L、0.4 mg/L、0.6 mg/L、0.8 mg/L,高浓度组为1.5 mg/L、2.5 mg/L、3.5 mg/L、4.5 mg/L,试验期30 d。结果显示:低浓度组的平均超氧化物歧化酶(SOD)活力在150~175 U/mL之间;高浓度组的SOD酶活力在70~90 U/mL之间,明显低于低浓度组(P<0.05);不同NO2--N浓度对鲤鱼种血液中谷胱甘肽过氧化物酶(GSH-Px)活力的影响没有显著差异(P≥0.05),其平均活性在250~350 U/mL之间。结论:水体中NO2--N含量超过1.5 mg/L时,鲤鱼种的抗氧化能力受到一定影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号