首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Induction of triploidy in grass carp was accomplished by means of thermal shocks to eggs shortly after fertilization. Triploidy occurred most often with cold shocks at 5–7°C and at durations of 25–30 min starting 2.0–4.5 min after fertilization. Estimated percent triploid ranged from 50 to 100% on five occasions. With one exception, cold shocks of 5–7°C for less than 25 min did not induce triploidy, and cold shock durations of 30 min or longer generally resulted in 100% mortality. A heat shock of 40°C for 1 min, 4.75 min after activation, was the only heat treatment which produced triploidy (8%) with 81% surviving to the blastula stage. Fertilized eggs immersed in a solution of cytochalasin B (10 mg/l, 0.1% DMSO) for 10 min, 12 min after activation, resulted in 54% of the eggs surviving to the blastula stage with none found to be triploid.  相似文献   

2.
Triploidy in fertilized eggs of Penaeus semisulcatus was induced by temperature and chemical shocks. The eggs, which were obtained from the shrimp broodstock maintained at 29 C, were exposed to cold temperature (8, 10, 12, and 14 C) and 6‐dimetiloaminopurine (6‐DMAP) concentrations (100, 150, 200, and 250 μM) for different durations (4, 6, and 8 min) 9 min after spawning was detected. While the highest triploidy rate of 49.7 ± 4.5% was obtained with a 200 μM 6‐DMAP concentration for a duration of 8 min, the best mean triploidy rate of 45.5 ± 2.8% for cold shock was obtained at a temperature of 10 C for a duration of 8 min. Temperature and 6‐DMAP concentration did not have significant effect on triploidy rate (P > 0.05) but shock duration had significant effect on triploidy rate for individual cold temperature shock or 6‐DMAP chemical shock (P < 0.05). Although longer durations of shock agent increased the rates of triploid induction, they generally had an adverse effect on hatching rates in the study.  相似文献   

3.
Abstract.— Induction of triploidy and tetraploidy in Nile tilapia, Oreochromis niloticus , was investigated by heat shock, cold shock, hydrostatic pressure, and/or chemicals (cytochalasin A, B, and D). Additionally, efficacy of combined protocols was determined. Heat shock 10 min after fertilization induced triploidy when incubation temperature was 24 C but not when incubation temperature was 31 C. Heat shock of 40–41 C at 4–6 min after fertilization was effective in inducing up to 100% triploidy with hatchability similar to controls. Cold shock at 13 C for 45 min five min after fertilization induced 85–100% triploids. Heat shock and multiple heat shocking were the most effective treatments for the induction of tetraploidy. Two heat treatments of 41 C applied at 65 and 80 min after fertilization for 5 min each produced approximately 80% tetraploidy in hatched fry. Immersion of fertilized eggs in cytochalasin A, B, or D at concentrations up to 10 μg/L applied at various times and durations was ineffective in inducing triploidy or tetraploidy.  相似文献   

4.
Production of sterile triploid red tilapia [Oreochromis mossambicus (Mozambique tilapia); Peters, 1852 × Oreochromis niloticus (Nile tilapia); Linnaeus, 1758] is an effective strategy to overcome their prolific breeding. Optimal conditions for cold-shock induction of triploidy in red tilapia were investigated by experimentally examining two variables: appropriate temperature of the shock and duration of shock treatment. A constant time after insemination of 4 min was used to determine the best combination of temperature (6, 7, 8, 9, 11, 13, 15 °C) with different durations of shock (10, 20, 30, 40, 50 min) with resultant ploidy level verified karyotypically. Shock duration for 30 min at a temperature of 9 °C was found most effective in producing maximum triploidy (98.7 %) with higher rates of hatching (63.2 %) and survival up to yolk-sac stage (75.8 %). The chromosome count confirmed that triploid percentages were higher when cold shock was used for longer durations at each temperature; however, hatching rates were generally decreased. The maximum triploid yield (82.1 %) obtained was higher than the yield obtained using heat shock (72.7 %) in red tilapia previously. The application of the results of this study has the potential to greatly improve the production of triploid red tilapia in commercial aquaculture.  相似文献   

5.
Large yellow croaker, Pseudosciaena crocea, exhibit sexually dimorphic growth, with females growing faster and reaching larger adult sizes than males. Thus, development of techniques for preferentially producing females is necessary to optimize production of these species. We have established a protocol to produce all-female croaker P. crocea through induction of meiotic gynogenesis with homologous sperm. The first set of experiments investigated the ultra-violet (UV) irradiation on sperm motility and duration of sperm activity to determine the optimal UV dosage for genetic inactivation of sperm, yet retaining adequate motility for activation of eggs. Milt from several males was diluted 1:100 with Ringer’s solution and UV irradiated with doses ranging from 0–150 J cm−2. The results indicated that motility and duration of activity generally decreased with increased UV doses. At UV doses greater than 105 J cm−2, after fertilization, motility was <10% and fertilization rates were significantly lower. Highest hatching rate was obtained at 75 J cm−2. A second set of experiments was carried out to determine appropriate conditions of cold shock for retention of the 2nd polar body in P. crocea eggs after fertilization with UV-inactivated sperm by altering the timing, temperature and duration of shock. At 20°C, shock applied at 3 min after fertilization resulted in higher survival rate of larvae at 6 h after hatching. Results of different combinations of three shock temperatures (2°C, 3°C or 4°C) and five shock durations (4 min, 8 min, 12 min, 16 min or 20 min) at 3 min after fertilization demonstrated that shocks of 12 min gave highest production of diploid gynogens. Statistical analysis revealed that maximum production of diploid gynogens (44.55 ± 2.99%) were obtained at 3°C. The results of this study indicate that the use of UV-irradiated homologous sperm for activation of P. crocea eggs and cold shock for polar body retention is an effective method for producing gynogenetic offspring.  相似文献   

6.
Triploidy was induced in the turbot (Scophthalmus maximus, L.) by applying cold shocks shortly after fertilization. The combined effects of the timing of cold shock commencement after fertilization, cold shock duration and cold shock temperature were investigated. Ploidy was assessed by counting the number of nucleoli per nucleus (NOR) in larvae and also by measuring erythrocyte size in juveniles. A clear peak in triploidy induction was obtained when shocks were started between 6 and 7 min after fertilization at a pre-shock temperature of 13–14°C. With this timing, shocks of 20-min duration at 0°C gave >90% triploidy, with survival about 80% of the untreated controls. In order to ensure both high triploidy rates and high survival, it was necessary to carefully maintain the water temperature just below 0°C. Experiments with small and large volumes of eggs were performed in order to determine how changes in the relative volumes of eggs and chilled water could affect survival and triploidy induction. The best combination to induce triploidy in the turbot was as follows: shock commencement 6.5 min after fertilization, shock duration 25 min, and shock temperature between 0 and −1°C. With this combination, 100% triploidy could consistently be induced with survival 60% of the untreated control. This was successfully applied to a large volume of eggs (300 ml; 1 ml 800 eggs) in order to mass-produce triploid turbot. Triploids had lower survival rate than diploids at hatching but similar thereafter, with the ability to complete the different stages of larval rearing, indicating the viability to produce triploid turbot under farming conditions.  相似文献   

7.
Induction of triploidy and tetraploidy was attempted in Heteropneustes fossilis using heat shock. The optimal age of zygote, temperature level and duration of thermal shock required for effective induction of triploidy and tetraploidy was investigated in a series of experiments. A maximum of 82±7% triploids (3n=87) were obtained when fertilized eggs (2.5‐min old) were heat shocked at 40°C for 4‐min duration. A maximum of 40±8% tetraploids (4n=116) was obtained when the fertilized eggs (30‐min old) were heat shocked at 40°C for 4‐min duration. The triploid and tetraploid red blood cells (RBCs) nucleus volumes were 1.4 and 2.1 times greater, respectively, than that of the diploid RBC nucleus.  相似文献   

8.
Triploidy in fertilized eggs of Melicertus kerathurus was induced by cold (8, 10, 12°C) and heat (34, 36, 38°C) shock for different duration times (2, 4 and 8 min) after 10 min of post spawning. The best individual treatment produced 64.5% triploid nauplii in cold shock application at a temperature of 10°C for a duration of 8 min. Temperature did not have significant effect (P > 0.05) on triploid rate but duration time had a significant effect (P < 0.05) for individual cold or heat shock. This study demonstrates that because of a wide variety of effective parameters, it is essential to optimize shock conditions for each species strain at each location.  相似文献   

9.
The effects of thermal treatments on induction of triploidy in Atlantic cod have been investigated. Cold shock [−1.7±0.1°C at 20 min post fertilization (PF) for 2 h] was based on a previously developed protocol, and heat shocks, below the lethal threshold of 24°C, were at 16, 18 or 20°C applied 20, 30 or 40 min PF for 20 min. Cold shock did not affect larval survival and was ineffective for producing triploids (range 0–4%). A heat shock of 20°C at 20 min PF generated the highest percentages (range 66–100%) of triploid larvae at hatching, with survival ranging from 10% to 20% relative to the controls. Lower heat shock temperatures or delayed shocks increased survival but decreased the number of triploids, providing no net gain in triploid yield (range 1–9%). Heat shocks applied later than 20 min PF produced 2–4% tetraploid larvae at hatching. A thermal shock of 20°C initiated at 20 min PF and lasting 20 min proved to be the most generally efficient treatment for induction of triploidy in Atlantic cod.  相似文献   

10.
The present study was aimed at the identification of treatment optima to induce triploidy in ‘Labeo rohita (rohu) × Cirrhinus cirrhosus (mrigal)’ hybrid using heat shock treatment. The eggs were exposed at four different temperature regimes viz., 38, 39, 40 and 41°C for 1–3 min, applied 3–5 min after fertilization. After 4 min of fertilization, heat shock treatments for 1 and 1.5 min durations were found the best inducing triploidy up to 100% and 96% respectively. Survival rates upto yolk sac absorption were found to be 73% and 71% in rohu and mrigal, 68% and 67% in the reciprocal diploid hybrids and 61% and 60% in the reciprocal triploid hybrids (RTH). Triploidy was confirmed by chromosome counting that revealed the diploid chromosome number of rohu and mrigal at 2n = 50 and in their triploid hybrid chromosome number was found to be 3n = 75. Growth rate of the RTH showed a significant difference (P < 0.05) from the single species and the diploid hybrids. Triploids also showed higher survival rate over the diploids.  相似文献   

11.
Turbot Scophthalmus maximus exhibits sexually dimorphic growth, with females growing faster and reaching larger adult sizes than males. Thus, development of techniques for preferentially producing females is necessary to optimize production of these species. In this paper, gynogenetic diploids of turbot were induced by activating egg development with ultraviolet (UV)-irradiated left-eyed flounder Paralichthys olivaceus sperm combined with cold shock to prevent extrusion of the second polar body. The results of UV irradiation experiments showed that survival, motility, and duration of activity of P. olivaceus sperm generally decreased with increase in UV dose. The typical Hertwig’s effect was observed after fertilized turbot eggs with UV-irradiated P. olivaceus sperm and the optimal UV dose for gynogenetic haploid production was 36,000 erg mm−2. At 15°C, appropriate timing of cold shock for retention of the second polar body in turbot eggs was at 6 min after fertilization. Results of different combinations of two shock temperatures (1 or 3°C) and four shock durations (15, 25, 35 or 45 min) at 6 min after fertilization demonstrated that shock of 25 min at 1°C gave the highest production of diploid gynogens (39.58% relative to its diploid control). The results of this study reveal that the use of UV-irradiated P. olivaceus sperm for activation of turbot eggs and cold shock for polar body retention is an effective method to produce gynogenetic offspring.  相似文献   

12.
《水生生物资源》2003,16(2):90-94
In Eurasian perch (Perca fluviatilis), females grow significantly faster than males. Moreover, gonadal development has a significant negative impact on somatic growth and fillet yield. In order to induce sterility, triploidy induction was attempted by subjecting fertilised eggs to heat shocks. Different combinations of temperature (28, 30, 34, 35 and 36 °C), duration (2, 5, 10 and 25 min) and time of shock initiation (TI = 3, 5 and 7 min post-fertilisation) were tested. Flow cytometry analysis was used to assess ploidy level of control and heat-shocked larvae. Low intensity (28–30 °C) and long duration (10 and 25 min) shocks lead to significantly higher survival (44 ± 26%) and triploidisation (71 ± 26%) rates than high intensity (34–36 °C) and short duration (2 and 5 min) shocks (17 ± 19% and 21 ± 26%, respectively). The most effective conditions for efficient triploidy induction were low intensity shock of 30 °C, applied 5 min post-fertilisation for 25 min. This treatment led to the production of all-triploid populations (100%) with up to 43% survival rate.  相似文献   

13.
Abstract. Triploidy was induced in the zebrafish, Brachydanio rerio (Hamilton), by varying all possible combinations of the time after fertilization (AF) (1-3min after insemination), temperature (36-42°C) and shock duration (1-7min). A thermal shock of 41°C for 4min, 2.5min AF ensured 100% triploidy and maximum (51%) survival. Induction of triploidy was confirmed by measurement of erythrocyte nuclear volume and chromosome counting. There was no significant difference in the growth rate of triploid and diploid fishes. All surviving triploids developed into males, and produced a few spermatozoa unable to fertilize normal eggs. A study on thermal and other characteristics required to ensure 100% triploidy rate in fish indicates that these characteristics are species specific.  相似文献   

14.
Abstract Temperature and oxygen gradients exist in nearly every water body, but anthropogenic activities can subject fish to rapid changes in these important environmental variables. These rapid changes in temperature and oxygen (generally referred to as temperature or oxygen shock) may have sub‐lethal consequences depending upon the magnitude and the fish species. This study quantified physiological changes in largemouth bass, Micropterus salmoides (Lacepède), exposed to two levels of heat and cold shocks and to two levels of hypoxic and hyperoxic shocks. Following a cold shock from 20 °C to 8 °C, plasma cortisol and glucose increased after 1 h and lactate dehydrogenase activity increased after 6 h. Plasma glucose and K+ concentrations increased 1 h after a heat shock from 20 °C to 32 °C but not after 6 h. Bass subjected to a hypoxic shock from 8 to 2 mg O2 L?1 showed decreased plasma K+ and increased plasma glucose and white muscle lactate. No changes in physiological parameters were observed in bass subjected up to 18 mg O2 L?1 hyperoxia. Results from this study suggest that largemouth bass can tolerate a wide range of temperature and oxygen shocks, but temperature decreases of 20 to 8 °C and hypoxia as low as 4 mg O2 L?1 should be avoided to minimise physiological perturbations.  相似文献   

15.
Optimal conditions of 6‐dimethylaminopurine (6‐DMAP) for triploidy induction in the blacklip abalone Haliotis rubra (Leach, 1814) were investigated, targeting inhibition of second polar body (PB2) formation. Two experiments were conducted at a water temperature of 17.5–18.5°C where factorial combination of (1) four dosages (DSs) of 100, 150, 200 and 250 μM 6‐DMAP, four starting times (STs) of 15, 20, 25 and 30 min post fertilization, and two treatment durations (TDs) of 20 and 30 min and (2) three DSs of 50, 100 and 150 μM 6‐DMAP, three STs of 15, 20 and 25 min post fertilization, and three TDs of 10, 20 and 30 min, were applied respectively. Day 3 larvae were sampled for triploidy and survival. Percent triploidy was verified using flow cytometry (FCM). Results show that optimal inductions that combine both high rates of triploidy and reasonable survival were those treatments commenced 15 or 20 min post fertilization and continued for 20 or 30 min, using 100 μM 6‐DMAP. These conditions induced rates of triploidy and relative survival of 80.5–93.3% and 36.5–40.2%, respectively, in the first experiment, and corresponding rates were 79.1–93.6% and 20.7–43.0% in the second experiment. High percent triploidy were also obtained in a number of treatments using 150 μM 6‐DMAP, but with overall survival rates generally lower than those using 100 μM 6‐DMAP.  相似文献   

16.
Heat shocks, hydrostatic pressure shocks, and ultraviolet radiation were evaluated for their efficacy as methods of manipulating ploidy in yellow perch (Perca flavescens). The most effective methods of inducing triploidy were heat shocks of 28–30°C applied at a time of initiation (TI) of 5 min postfertilization for durations of 10 or 25 min, and hydrostatic pressure shocks of 9000 or 11 000 psi applied at a TI of 5 min for a duration of 12 min. These treatments resulted in triploidy induction rates that ranged from 54–100%, and embryonic survival rates of 16–80%. Cold shocks of 0°C had no effect on the ploidy or survival of embryos. For perch, hydrostatic pressure shock offered several advantages over heat shock as a method of manipulating ploidy. The most effective methods of inducing tetraploidy were hydrostatic pressure shocks of 9000 psi applied at a TI of 192 min for durations of 16 or 24 min. Ultraviolet radiation of perch sperm with doses of 3240–6480 ergs/mm2 resulted in 100% inactivation of paternal chromosomes, and perch eggs fertilized with inactivated sperm had survival rates of > 50%, thereby establishing methods for producing gynogenetic perch. Studies comparing the growth and performance of diploid vs. triploid perch are underway. Tetraploid perch are being reared to sexual maturity to evaluate their potential as brood fish.  相似文献   

17.
The effectiveness of cytochalasin B (CB) treatments for inducing triploidy was evaluated in the blacklip abalone Haliotis rubra (Leach, 1814) in two orthogonal design experiments. The first experiment employed three dosages (DSs) of 0.25, 0.5 and 1.0 mg CB L?1, three starting times (STs) of 5, 15 and25 min post fertilization and three treatment durations (TDs) of 10, 20 and 40 min, for a total of 27 treatments. The second experiment comprised of two DSs of 0.25 and 0.5 mg CB L?1, five STs of 5, 15, 20, 25and 30 min post fertilization, and three TDs of 10, 20 and 40 min, for a total of 30 treatments. Water temperature was held at 17.5–18.5°C. Day 3 larvae were sampled for triploidy using flow cytometry (FCM) and survival. Optimal inductions were treatments starting at 15 or 20 min post fertilization and continuing for 40 min, and those initiated 25 or 30 min post fertilization for 20 or 40 min, using 0.5 mg CB L?1. These treatments were all targeted at inhibition of the second polar body (PB2) formation and yielded triploidy rates of 84.8–89.5% coupled with (relative) survival rates of 20.1–52.1% in the first experiment, and corresponding rates of 86.5–96.5% and 33.0–74.1%, respectively, in the second experiment. A common and essential feature of these optimal conditions is that treatment must fully span the period of time for most of the eggs to extrude PB2. Treatments that resulted in suppression of the first polar body (PB1) formation induced triploidy levels below 71.5% and 57.6% in experiments 1 and 2 respectively. Treatments that had overlapping effects on both PB1 and PB2 extrusion led to triploidy rates above 80% but very low survival rates of 1.8% and 5.4% in experiments 1 and 2 respectively.  相似文献   

18.
The precociously sexual maturation in large yellow crocker Pseudosciaena crocea has become a serious problem. In an attempt to solve this problem, the production of sterile triploids could be an effective strategy. In this study, triploid P. crocea was obtained by subjecting fertilized eggs to pressure shock. Flow‐cytometry analysis was used to assess ploidy level. In terms of triploid rate and hatching rate, the optimal conditions of pressure shock for triploidy induction in P. crocea were 7500 psi for 3 min shock at 3 min after fertilization at 20 °C. With the application of these parameters, 100% triploid fish were produced. During the first rearing year, triploid P. crocea had a similar growth performance compared with its diploid counterpart before the age of 8 months and showed a significant advantage at the age of 10 and 12 months in body weight and body length (P<0.05). At the age of 12 months, the carcass weight of triploids was markedly higher than that of diploid control, and gonadal somatic index was significantly lower than that of their diploid control. During the first rearing year, survival in triploid group was 76.44%, inferior to its diploid control (83.21%).  相似文献   

19.
Tetraploid induction has been conducted on temperate oysters but not on tropical oysters. In this study, different heat shocks (32, 35 and 38°C) and cold shocks (1, 4 and 7°C) were used to induce tetraploidy in two tropical oyster species, Crassostrea belcheri and Crassostrea iredalei, through meiosis I inhibition. Temperature shocks were applied on the newly fertilized eggs at 8–10 min post fertilization and terminated when second polar bodies began to form in the control eggs. The ploidy of the larvae and spat was determined via direct chromosome count. The percentage of larval survival until Day 20 was low (between 0.4% and 42.9%) for both temperature shocks and oyster species. No surviving larva was recorded for induction at 1, 4 and 38°C. Tetraploid spat was only recorded in C. iredalei but the percentage is low through heat shock induction of 32 and 35°C. This study shows that the tetraploid induction success rate was slightly higher in C. iredalei compared to C. belcheri. No surviving tetraploid spat were recorded for both oyster species through the cold shock method. This study shows that heat shock can be used to inhibit meiosis for the production of tetraploids but more experiments need to be conducted to determine the optimum temperature when dealing with tropical oysters.  相似文献   

20.
Heat shock was applied to fertilized eggs of European catfish, Silurus glanis L., for the induction of triploidy. A heat shock of 40. 5°C lasting 1 min and starting 9 min after gamete activation gave the best results with 88.93% of hatched viable fry (92.41% in control group). Yields of hatched viable triploid fry reached 63.14% or 50.60%, when expressed as percentage of the absolute number of viable fry or number of living eggs in eye-bud stage, respectively (P < 0.05).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号