首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 614 毫秒
1.
To investigate the effects of dietary reduced glutathione (GSH) on the growth performance and antioxidant capacity of juvenile Atlantic salmon (Salmo salar), 396 juvenile fish with initial body weight of 143.07 ± 6.56 g were randomly distributed into four groups fed four diets with graded supplementation levels of GSH (0, 100, 200 and 400 mg/kg diet) for 83 days. The results showed that the appropriate GSH supplementation (100 and 200 mg/kg diet) significantly increased the growth performance, activities and gene mRNA expression levels of glutathione peroxidase (GPx) and glutathione transferase (GST), and the content of GSH and total antioxidant capacity (TAOC), whereas it significantly decreased activities and gene mRNA expression levels of superoxide dismutase (SOD) and catalase (CAT), and the content of malondialdehyde (MDA; p < 0.05). However, the excess dietary GSH (400 mg/kg diet) had an adverse effect on the all above indexes. Interestingly, the dietary GSH had the opposite effect on GSH‐related antioxidant enzymes (GPx and GST) and other antioxidant enzymes (SOD and CAT). The results showed that the diet with 200 mg/kg GSH supplementation was optimal for the juvenile Atlantic salmon, which had a measured GSH content of 209.54 mg/kg.  相似文献   

2.
Six semipurified diets of graded histidine levels (from 4.1 to 14.2 g/kg) were fed to fish for 8 weeks. The results showed that the intestinal content of malondialdehyde (MDA), activities of total superoxide dismutase (T‐SOD) and glutathione peroxidase (GPx) were noticeably lower in 8.0 g/kg diet compared to control group. While the lowest activities of copper–zinc superoxide dismutase (Cu/Zn‐SOD) and manganese superoxide dismutase (Mn‐SOD) were observed in 9.9 g/kg diet, the intestinal activities of total antioxidant capacity (T‐AOC) and catalase (CAT) in 14.2 g/kg diet were noticeably higher than those in 8.0 and 9.9 g/kg diets. Plasma biochemical indexes were not significantly affected by dietary histidine levels. In the intestine, the Kelch‐like ECH‐associated protein 1 (Keap1) mRNA levels were increased in 8.0 g/kg diet, which suppressed the nuclear translocation of nuclear factor E2‐related factor 2 (Nrf2), and subsequently decreased CAT, GPx1, Cu/Zn‐SOD and Mn‐SOD expression levels. The lowest mRNA levels of interleukin 8 (IL‐8) and tumour necrosis factor‐α (TNF‐α) were observed in 8.0 g/kg diet, whereas the highest mRNA levels of transforming growth factor‐β (TGF‐β) and interleukin 10 (IL‐10) were observed in 8.0 g/kg diet. These results indicated that dietary histidine plays a major role in maintaining intestinal health in juvenile blunt snout bream.  相似文献   

3.
This study was conducted to investigate the effect of dietary phosphorus on the intestine and hepatopancreas antioxidant capacity of juvenile Jian carp (Cyprinus carpio var. Jian). Jian carp, with an average initial weight of 7.17 ± 0.01 g, were fed with diets containing graded concentrations of available phosphorus, namely 1.7 (control), 3.6, 5.5, 7.3, 9.2 and 11.0 g kg?1 diet for 9 weeks. Results showed that, in intestine and hepatopancreas, content of malondialdehyde (MDA), protein carbonyl (PC) and glutathione (GSH), capacity of anti‐superoxide anion (ASA) and anti‐hydroxyl radical (AHR), and glutathione reductase (GR), catalase (CAT), glutathione S‐transferase (GST), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities were significantly affected by dietary phosphorus levels (P < 0.05). Regression analysis showed that significant quadratic responses occurred in MDA content and ASA, GST, GPx and AHR activities in intestine, GSH content and CAT and SOD activities in hepatopancreas (P < 0.05). These results indicate that optimal level of dietary phosphorus prevented oxidative damage and increased antioxidant enzyme activities in the intestine and hepatopancreas of juvenile Jian carp. The phosphorus requirement estimated from MDA using quadratic regression analysis was 5.7 g kg?1 diet.  相似文献   

4.
This study was conducted to study the effects of dietary zinc on lipid peroxidation, protein oxidation and antioxidant defence of juvenile Jian carp (Cyprinus carpio var. Jian) by feeding fish with increasing levels of zinc (15.3, 26.9, 40.8, 58.2, 68.9 and 92.5 mg Zn kg?1) for 6 weeks. Results indicated that malondialdehyde (MDA) content and protein carbonyls (PC) in serum were the highest in fish fed diet containing 15.3 mg zinc kg?1 diet (P < 0.05). Serum antisuperoxide anion (ASA), superoxide dismutase (SOD), glutathione peroxidase (GSH‐Px), glutathione reductase (GR) activities and glutathione (GSH) content were improved with increasing dietary zinc levels up to 40.8 mg zinc kg?1 diet (P < 0.05) and levelled off (P > 0.05). Serum antihydroxy radical (AHR), catalase (CAT) and glutathione‐S‐transferase (GST) activities followed the similar pattern to that observed in ASA. The MDA and PC levels, ASA, AHR, SOD, CAT, GPx, GR, GST activities and GSH content in intestine, hepatosomatic and muscle tissue followed the similar pattern to that observed in serum. The present results indicated that zinc decreased lipid peroxidation and protein oxidation and improved antioxidant defence in fish.  相似文献   

5.
Rainbow trout (Oncorhynchus mykiss) was reared under low (LD) and high (HD) stocking densities for 70 days, during which they were fed with diets supplemented with 0, 5 and 10 g tryptophan (Trp) per kg. At the end of the experiment, there were significant interaction effects of the stocking density and Trp levels on plasma Trp, globulin, lysozyme, catalase (CAT), malondialdehyde (MDA), and bactericidal activity and blood leucocyte count. However, there was no difference in plasma complement (ACH50), total immunoglobulin (Ig), total antioxidant capacity (TAC), superoxide dismutase (SOD) and blood differential leucocyte count. Trp at 5 g per kg diet significantly increased lysozyme and bactericidal activity, and decreased MDA under both the LD and HD conditions. Moreover, it significantly increased plasma CAT and blood leucocyte under the LD and HD conditions respectively. Trp at 10 g per kg diet significantly increased blood leucocyte and plasma bactericidal activity under the LD condition, but significantly decreased plasma globulin and bactericidal activity under the HD condition. In conclusion, the present results showed that the effects of Trp on immune and antioxidant systems depend on Trp levels and stressful conditions. As 5 g Trp per kg diet is beneficial for rainbow trout well‐being under both the LD and HD conditions, higher level of Trp (10 g/kg) is not beneficial and even causes some negative effects under the HD condition.  相似文献   

6.
7.
The aim of the present study was to investigate the effects of thyme extract (TE) and oxytetracycline (OTC) on rainbow trout (Oncorhynchus mykiss) stress response, immune parameters, oxidative stress and enzymatic changes. The fish were assigned into eight treatments receiving diets with OTC (0 and 2.5 g/kg) and TE (0, 5, 10 and 20 g/kg) for 2 weeks. Thereafter, serum characteristics and gut oxidative status were evaluated. OTC significantly increased serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities, and cortisol and glucose levels; however, TE significantly suppressed these changes. OTC significantly decreased, but TE significantly increased gut catalase (CAT) and glutathione peroxidase (GPx) activities. OTC significantly decreased gut superoxide dismutase (SOD) and increased gut glutathione‐s‐transferase (GST) activities, malondialdehyde (MDA) content and blood monocyte percentage; TE significantly mitigated these changes. TE significantly increased serum total protein, total Ig, lysozyme and ACH50, and blood WBC; however, OTC significantly decreased serum lysozyme and ACH50 activities and blood WBC and neutrophil percentage. In conclusion, OTC administration causes immunosuppression, which might be related to deterioration of fish health. TE augments trout innate immune and antioxidant status and is capable to counteract OTC‐induced health and immune deterioration.  相似文献   

8.
This study was conducted to investigate graded levels of dietary zinc on the growth, flesh quality, and the relationship between flesh quality and muscle antioxidant status in young grass carp (Ctenopharyngodon idella Val.). Per cent weight gain (PWG), special growth rate (SGR), feed intake (FI), feed conversion ratio (FCR), anti‐hydroxy radical (AHR), superoxide dismutase (SOD), catalase (CAT), glutathione reducase (GR) activities and glutathione (GSH) content were significantly increased with increasing levels of Zn up to a point, and thereafter declined (P < 0.05). Serum zinc, alkaline phosphatase (AKP), muscle anti‐superoxide anion (ASA), glutathione peroxidase (GPx), glutathione‐S‐transferase (GST) activities and collagen content were significantly enhanced with dietary zinc levels up to a point (P < 0.05), beyond which it plateaued. Cooking loss, shear force and malondialdehyde (MDA) were significantly reduced with increasing level of zinc up to a point, and thereafter increased (P < 0.05). The pH value significantly increased with the increasing zinc levels, whereas the trend of protein carbonyl content was opposite. Flesh quality was positively related to the antioxidant enzymes activities in muscle of young grass carp. These results indicated that optimum zinc could improve growth, and improve flesh quality partly through improving muscle antioxidant status of young grass carp.  相似文献   

9.
Oxidative damage and antioxidant status of intestine and hepatopancreas for juvenile Jian carp (Cyprinus carpio var. Jian) fed graded levels of methionine hydroxy analogue (MHA: 0, 5.1, 7.6, 10.2, 12.7, 15.3 g kg?1 diet) for 60 days were studied. Radical scavenging ability, antioxidant enzymes activities such as superoxide dismutase (SOD), catalase (CAT), glutathione‐S‐transferase (GST), glutathione peroxidase (GPX) and glutathione reducase (GR), as well as glutathione (GSH), protein carbonyl (PC) and malondialdehyde (MDA) contents were assayed in these tissues. Results indicated that anti‐superoxide anion capacity in intestine and anti‐hydroxyl radical capacity in hepatopancreas significantly improved with dietary MHA levels up to 7.6 and 10.2 g kg?1 diet respectively, whereupon they decreased (P < 0.05). SOD, CAT, GST, GPX, GR activities in intestine and hepatopancreas, as well as GSH content in hepatopancreas significantly increased with optimal MHA levels which were in the range of 5.1–10.2 g kg?1 diet, and thereafter decreased (P < 0.05). Meanwhile, MDA and PC contents in these tissues together with GOT and GPT activities in plasma significantly decreased with optimal MHA levels which were in the range of 5.1–7.6 g kg?1 diet, and thereafter increased (P < 0.05). These results suggested that MHA improved antioxidant status and depressed lipid and protein oxidation in intestine and hepatopancreas.  相似文献   

10.
The present study assessed the effects of dietary turmeric on Cyprinus carpio resistance and responses to copper exposure. First, the fish were assigned to four treatments received diets supplemented with 0 (control), 5, 10 and 20 g/kg turmeric for 3 weeks. Thereafter, the fish were exposed to lethal concentration (3.5 mg/L) of ambient copper for 24 hr and mortality was 65.3%, 41.8%, 22.7% and 20.6%, respectively. In the second experiment, the fish were fed with the aforementioned diets and simultaneously exposed to sub‐lethal concentration (0.25 mg/L) of ambient copper for 3 weeks. Copper exposure led to increases in plasma cortisol, glucose, malondialdehyde (MDA), alanine transaminase (ALT) and aspartate transaminase (AST), and decrease in plasma T4, T3, lysozyme, alternative complement haemolytic (ACH50), bactericidal activities, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and blood red blood cell count (RBC) and haemoglobin. Moreover, copper exposure led to significant upregulation of tumour necrosis factor‐alpha (TNF‐a) and interleukin 1‐beta (IL1‐b), and significant downregulation of interleukin 10 (IL10) gene expressions in the fish liver. Turmeric administration at 10 g/kg significantly mitigated/inhibited the copper‐induced negative effects, which seems to be due to the augmenting of the antioxidant defence.  相似文献   

11.
An 8‐week feeding experiment was implemented to study the effect of dietary vitamin C (VC) on growth, immunity, oxidation resistance and relevant gene expressions in juvenile Ssihama (2.33 ± 0.02 g). Fish were fed six diets containing VC level of 5, 16, 27, 65, 122 and 233 mg/kg, respectively. VC‐deficient signs including ascites syndrome, skin decay and haemorrhage were found in the fish fed basal diets. Appropriate VC supplement in diets (a) increased weight gain (WG), specific growth rate (SGR), feed intake (FI) and protein efficiency ratio (PER); (b) increased contents of hepatic total immunoglobulin (IgM), complement 3 (C3) and complement 4 (C4) and activity of alkaline phosphatase (AKP); (c) increased hepatic and intestinal copper–zinc superoxide dismutase (CuZnSOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione S‐transferase (GST) activities, but decreased hepatic MDA content; and (d) up‐regulated gene expressions of NF‐E2‐related factor 2 (Nrf2), Kelch‐like ECH‐associated protein 1 (Keap1), CAT, GST, GPx, glutathione reductase (GR), CuZnSOD and manganese superoxide dismutase (MnSOD) in liver and intestine. These results indicated that dietary VC significantly influenced the growth, immunity and oxidation resistance at enzymatic and genic levels. Based on regression analysis for PER, IgM, intestinal CuZnSOD and hepatic VC concentration, the optimal requirement of dietary VC in juvenile Ssihama was estimated to be 98.33, 139.03, 104.23 and 143.69 mg/kg.  相似文献   

12.
还原型谷胱甘肽对大菱鲆生长及抗氧化能力的影响   总被引:1,自引:0,他引:1  
在基础饲料中添加不同剂量的还原型谷胱甘肽,添加量分别为0、100、200、400、600 mg/kg,投喂初始体质量为(23.08±0.09) g的大菱鲆,8周后测定还原型谷胱甘肽对大菱鲆生长及抗氧化能力的影响。试验结果表明,饲料中还原型谷胱甘肽添加量为200 mg/kg时,大菱鲆的质量增加率和特定生长率显著高于其他组(P<0.05)。饲料中添加还原型谷胱甘肽对大菱鲆肝脏中丙二醛含量、总抗氧化能力、超氧化物歧化酶活力、谷胱甘肽过氧化物酶活力均无显著影响(P>0.05)。随着还原型谷胱甘肽添加量的增加,大菱鲆肝脏中丙二醛含量呈先降后升的趋势,对照组最高,200 mg/kg试验组最低;大菱鲆肝脏中总抗氧化能力、超氧化物歧化酶活力和谷胱甘肽过氧化物酶活力均呈先升后降的趋势,200 mg/kg试验组最高。200 mg/kg试验组和400 mg/kg试验组大菱鲆肝脏中还原型谷胱甘肽含量显著高于对照组(P<0.05)。200 mg/kg试验组大菱鲆肝脏中谷胱甘肽硫转移酶活力和谷胱甘肽还原酶活力显著低于对照组(P<0.05)。根据回归分析,确定大菱鲆饲料中还原型谷胱甘肽的最适添加量为189.70 mg/kg。  相似文献   

13.
Novel study was performed to evaluate the efficacy of ginger (GN) and its nanoparticles (GNNP) on growth, cognition, immunity and prevention of motile Aeromonas septicaemia (MAS) in Cyprinus carpio fingerlings. Fish were divided into five groups fed diet 1 (control; no additives), diet 2 (0.5 g of GN), 3 (1 g of GN), 4 (0.5 g of GNNP) and 5 (1 g of GNNP) per kg feed for 30 days. In the behavioural test, fish were individually placed in a foraging maze to evaluate their cognition capability and feeding behaviour. At the end of feeding period, fish fed GN and GNNP showed significant better final weight than the controls. GN and GNNP significantly increased total protein, globulin and lysozyme, whereas 1 g GNNP group was the highest. One gram of GN, 0.5 g and 1 g GNNP enhanced cognition capability, while GN and GNNP increased percentage of fish fed in the maze. Brain acetylcholinesterase was significantly decreased than control in 1 g GN group. GNNP succeeded in the prevention of MAS more than GN, because no mortalities and 100% relative percentage survival (RPS) were detected in 1 and 0.5 g GNNP and 1 g GN per kg feed, while fish fed 0.5 g GN showed 20% mortalities and 71.4 RPS.  相似文献   

14.
Diludine is used as an effective agent reducing mutagenic effects of environmental pollutants, increasing productivity and protecting reproductive system of parental individuals and quality of their offspring. A 10‐week study was conducted to evaluate potential effects of diludine on rainbow trout (Oncorhynchus mykiss) juveniles growth performance, feed utilization, survival rate, liver antioxidant enzyme activities (superoxide dismutase, SOD, EC1.15.1.1 ; catalase, CAT, EC1.11.1.16 ; glutathione peroxidase, GPx, EC 1.11.1.9 ; glutathione reductase, GR, EC1.6.4.2 ; glucose‐6‐phosphate dehydrogenase, G6PD, EC1.1.1.49 and glutathione S‐transferase, GST, EC1.5.1.18 ), the levels of malondialdehyde (MDA) as a lipid peroxidation marker and muscular trace elements at a low water temperature (9 °C). Diludine was added at 0.2, 0.5 and 1 g kg?1 to a fish meal–based control diet, and each diet was fed to triplicate groups of rainbow trout juveniles. After 10 weeks, there were no differences in survival rate between fish fed experimental diets (P > 0.05). It was observed that a significant improvability existed for both growth and feed utilization in fish fed diets supplemented with diludine (P < 0.05). Antioxidant enzymes showed significantly increased activity in liver tissues (P < 0.05) and then a decrease to initial activity levels during the experimental time. (GPx activity was not determined in the juvenile livers.) SOD and GST activities in liver of fish fed the diets with diludine tended to be higher and GR activity tended to be lower than that in fish fed the basal diet. However, in general, it was determined that different concentration of diludine did not affect the studied antioxidant enzyme activities except G6PD in the liver of juveniles fed the diet with 1 g kg?1 diludine. On the other hand, the significant reduction was found in MDA levels in the fish fed the diets with diludine compared with basal diet on the 14th and 28th days of experiment. It was also observed that Cu, Fe, Mg, Zn and Se levels were significantly higher in the juveniles fed the diet with 1 g kg?1 diludine than those fed the basal diet. In conclusion, the results of this trial indicate that 1 g kg?1 dietary supplementation with diludine seems to be most positive for rainbow trout production in cold‐water adaptation.  相似文献   

15.
An 8‐week feeding trial was conducted to determine the effects of dietary taurine supplementation on growth performance, activities of digestive enzymes, antioxidant status and the target of rapamycin (TOR) gene expression in black carp (initial body weight 5.94 ± 0.02 g) fed with low fish meal diet. Six isonitrogen and isolipidic diets were formulated. High fish meal–based diet (HFM) contained 20% fish meal and 24% soybean meal as a positive control. Fifty per cent of fish meal in HFM was replaced by soybean meal and were supplemented with 0, 0.05%, 0.1%, 0.2% and 0.4% dietary taurine respectively (designated as T0.00 (a negative control), T0.05, T0.1, T0.2 and T0.4). The results showed that the partial replacement of fish meal by soybean meal without taurine supplementation resulted in a significant reduction in weight gain (WG), activities of amylase and lipase in intestine, superoxide dismutase (SOD) and glutathione peroxidase (GSH‐px) in serum, with a significant increase in feed conversion rate (FCR), the content of malonaldehyde (MDA), triglyceride (TG) and total cholesterol (TC) in serum. WG in groups supplemented with equal or above to 0.1% dietary taurine was significantly higher compared with T0 group. With increasing levels of dietary taurine, the activities of amylase, lipase, GSH‐px and SOD and glutataione (GSH) content significantly increased (p < 0.05). FCR, the content of MDA, TG and TC in serum and crude lipid content in whole body were significantly reduced after taurine treatment (p < 0.05). In liver, TOR mRNA expression in groups with equal or above to 0.1% taurine was significantly higher than T0 group (p < 0.05).  相似文献   

16.
Studies were conducted to evaluate polysaccharides from mycelia of Cordyceps sinensis (PMCS) as a feed additive for pacific white shrimp (Litopenaeus vannamei). Shrimps were randomly divided into two groups. One group received the PMCS‐supplemented diet for 52 days, and the other group received no treatment. The data showed that shrimps given PMCS gained more body weight compared with the control group (< 0.05). Haemolymph immunity indicators, including phenoloxidase (PO), alkaline phosphatase (ALP), acid phosphatase (ACP) and lysozyme (LSZ), were remarkably greater in the PMCS group (< 0.05). In addition, antioxidant parameters, including superoxide dismutase (SOD), glutathione reduced form (GSH), reactive oxygen species (ROS) and total antioxidant capacity (TAC), were significantly greater in the treatment group. However, there were no significant differences in malondialdehyde (MDA) levels and glutathione peroxidase (GSH‐PX) activity between the control and treatment groups. Moreover, the number of Vibrio ichthyoenteri was less in the group treated with PMCS (< 0.05). In conclusion, PMCS can be used to improve the growth performance and health of pacific white shrimp.  相似文献   

17.
Five diets (D1, D2, D3, D4 and D5) containing 0, 50, 100, 150 and 200 g starch per kg diet were formulated to investigate the effects of starch level on largemouth bass, Micropterus salmoides. Fish (initial weight: 22.00 ± 0.02 g) were fed the five diets for 90 days. Results indicated that weight gain, specific growth rate and survival of fish fed higher dietary starch level (200 g/kg) were lower than those of fish fed the lower dietary starch levels (0–50 g/kg). Higher dietary starch levels (150–200 g/kg) have a negative effect on antioxidant ability (total superoxide dismutase: T‐SOD; malonyldialdehyde: MDA; total antioxidant capacity: T‐AOC; glutathione peroxidase: GSH‐Px) and liver health (cellular contents leaked, nucleus deformed, endoplasmic reticulum and golgi body disappeared) of largemouth bass. Lower dietary starch levels (0–50 g/kg) modified intestinal microbiota of largemouth bass represented by increasing the relative abundance of beneficial bacterial such as Bacilli, Lactobacillales and Bacteroidales. These results indicated that dietary starch level above 50 g/kg had a negative effect on growth performance and antioxidant status of largemouth bass. Moreover, high dietary starch levels are potentially associated with negative alterations in liver structure and function, and decrease of beneficial gut microbes.  相似文献   

18.
An 8‐week feeding trial was conducted to estimate the optimum dietary manganese (Mn) requirement for juvenile hybrid grouper, Epinephelus lanceolatus × E. fuscoguttatus. The basal diet was formulated to contain 520 g/kg crude protein from casein and fishmeal. Manganese methionine was added to the basal diet at 0 (control group), 2.5, 5, 10, 20 and 40 mg Mn/kg diet providing 7.48, 10.34, 13.76, 19.72, 31.00 and 53.91 mg Mn/kg diet, respectively. Each diet was randomly fed to triplicate groups of juveniles, and each tank was stocked with 20 fish (initial weight, 60.06 ± 0.68 g). The manganese content in rearing water was monitored and kept below 0.01 mg/L. Results showed that the weight gain ratio (WGR), protein efficiency ratio (PER), specific growth rate (SGR), Mn contents in whole body, liver and vertebra, and activities of hepatic Mn superoxide dismutase (Mn‐SOD), total SOD (T‐SOD) and glutathione peroxidase (GSH‐PX) were significantly improved by dietary Mn supplementation (< .05). However, dietary Mn did not affect arginase (DArg) activity. The highest feed conversion ratio (FCR) was observed in fish fed the basal diet (< .05). No significant differences were found on the Cu and Zn contents in whole body by supplementing dietary Mn. Supplemented Mn in diets had significantly effect on liver and vertebral trace element deposition (< .05). Fish fed the basal diet had the highest Fe and Zn contents in vertebra (< .05). There were no significant differences on hepatic pyruvate decarboxylase (PDC) activity with supplemented Mn levels below 13.76 mg/kg. As biomarker of oxidative stress, malondialdehyde (MDA) content in liver was significantly higher in fish fed the basal diet (< .05). Using the broken‐line models based on SGR, dietary Mn requirement of the juvenile hybrid grouper was estimated to be 12.70 mg/kg diet.  相似文献   

19.
A 56‐day growth trial was performed to dietary vitamin A (VA) requirement of Sillago sihama Forsskál (S. sihama) with an initial weight of 2.05 ± 0.15 g (mean ± SE). Quadruplicate groups of 40 juveniles per tank were fed with diets containing 362, 751, 1,141, 2,202, 4,335, 8,230, and 18,932 IU VA/kg diet respectively. Haemorrhages, erosion, greater mortality, and sluggish movement were found in fish of the control, whereas fish fed the 18,932 IU VA/kg diet appeared poor appetite. The weight gain rate (WG), specific growth rate (SGR) were highest at the level of 2,202 IU VA/kg diet, and the feed conversion ratio (FCR) showed the minimum at the same level. Compared with the control, groups 1,141–18,932 IU VA/kg showed significantly higher hepatic lysozyme (LZM) activity. Superoxide dismutase (SOD) at level of 751–4,335 IU VA/kg increased significantly than it in the control and reached a plateau after 4,335 IU VA/kg. Alkaline phosphatase (AKP) decreased significantly at level of 8,230–18,932 IU VA/kg diet than it in the control. Total antioxidation capability (T‐AOC), catalase (CAT), and glutathione peroxidase (GSH‐Px) in liver tended to increase and kept stable at level of 8,230 and 18,932 IU VA/kg diet. Fish fed 2,202 IU VA/kg diet showed significantly higher intestinal Na+‐K+ ATPase activity than it in other groups. The broken‐line model based on WG and maximum liver VA concentration indicated that the VA requirement was of 2,516 and 4,334 IU VA/kg respectively.  相似文献   

20.
In this study was evaluated potential protective effect of organic selenium (Se) on heavy metal stress induced by lead (Pb) in Cyprinus carpio. For this reason, C. carpio was exposed to sublethal concentration of Pb (1.5 mg/L Pb(NO3)2) for 14 days. The fish were fed a basal (control; measured 0.55 mg/kg Se) diet or a basal diet supplemented with 2.50 mg/kg (measured 2.92 mg/kg Se) organic Se (Sel-Plex®) during the experiment period. The variations in glutathione peroxidase (GSH-Px), glutathione S-transferase (GST) activities, and levels of reduced glutathione (GSH) with malondialdehyde (MDA) in liver and brain tissues of C. carpio were investigated in experimental groups. GSH levels in liver and brain tissues were significantly decreased by exposure to Pb. GST activity was significantly increased (p < 0.05) in liver tissue, but decreased in brain of treated fish by exposure to Pb. Also, GSH-Px activity was significantly increased in liver tissue, but decreased in brain of Pb-treated fish. Levels of MDA were increased in liver and brain of Pb-treated fish. The organic Se treatment for Pb-intoxicated animals improved activities of GSH-Px, GST and levels of MDA within normal limits. Supplemented Se could be able to improve Pb-induced oxidative stress by decreasing lipid peroxidation and regulating antioxidant defense system in tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号