首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
The static or declining supply of fish oil from industrial fisheries demands the search of alternatives, such as plant (vegetable) oils, for diets in expanding marine aquaculture. Vegetable oils are rich in C18 polyunsaturated fatty acids but devoid of the n-3 highly unsaturated fatty acids in fish oils. Previous studies, primarily with salmonids, have shown that including vegetable oils in their diets increased hepatocyte fatty acid desaturation. In the present study, we have investigated the effects of dietary partial substitution of fish oil (FO) with rapeseed oil (RO), linseed oil (LO) and olive oil (OO) on the desaturation /elongation and, -oxidation capacities of [1-14C]18:3n-3 in isolated hepatocytes from European sea bass (Dicentrarchus labrax L.), in a simultaneous combined assay. Fish were fed during 34 weeks with diets containing 100% FO, or RO, LO and OO, each included at 60% with the balance being met by FO, with no detrimental effect upon growth or survival. The highest total desaturation rates were found in hepatocytes of fish fed FO diet (0.52±0.08 pmol/h/mg protein) and OO diet (0.43±0.09 pmol/h/mg protein), which represented 3.2% and 2.7% of total [1-14C]18:3n-3 incorporated, respectively. In contrast, lowest desaturation rates were presented by hepatocytes of fish fed LO and RO diets (0.23±0.06 and 0.14±0.05 pmol/h/mg protein, respectively) represented 1.4% and 0.9% of total [1-14C]18:3n-3 incorporated, respectively. The rates of [1-14C]18:3n-3 β-oxidized were between 11-fold and 35-fold higher than desaturation. However, no significant differences were observed among β-oxidation activities in hepatocytes of fish fed any of the diets. The present study demonstrated that the European sea bass, as a carnivorous marine fish, presented a ‘marine’ fish pattern in the metabolism of 18:3n-3 to 20:5n-3 and 22:6n-3. This species appeared to have all the enzymic activities necessary to produce 22:6n-3 but presented only extremely low rates of fatty acid bioconversion. Furthermore, nutritional regulation of hepatocyte fatty acid desaturation was minimal, and dietary vegetable oils did not increase desaturase activities, and in RO and LO treatments the activity was significantly lower. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
The desaturation and elongation of [1-14C]18:3n-3 was investigated in hepatocytes of the tropical warm freshwater species, zebrafish (Danio rerio) and Nile tilapia (Oreochromis niloticus). The hepatocyte fatty acid desaturation/elongation pathway was assayed before and after the fish were fed two experimental diets, a control diet containing fish oil (FO) and a diet containing vegetable oil (VO; a blend of olive, linseed and high oleic acid sunflower oils) for 10 weeks. The VO diet was formulated to provide 1% each of 18:2n-6 and 18:3n-3, and so satisfy the possible EFA requirements of zebrafish and tilapia. At the end of the dietary trial, the lipid and fatty acid composition was determined in whole zebrafish, and liver, white muscle and brain of tilapia. Both zebrafish and tilapia expressed a hepatocyte fatty acid desaturation/elongation pattern consistent with them being freshwater and planktonivorous fish. The data also showed that hepatic fatty acid desaturation/elongation was nutritionally regulated with the activities being higher in fish fed the VO diet compared to fish fed the FO diet. In zebrafish, the main effect of the VO diet was increased fatty acid Δ6 desaturase activity resulting in the production of significantly more 18:4n-3 compared to fish fed the FO diet. In tilapia, all activities in the pathway were greater in fish fed the VO diet resulting in increased amounts of all fatty acids in the pathway, but primarily eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3). However, the fatty acid compositional data indicated that despite increased activity, desaturation of 18:3n-3 was insufficient to maintain tissue proportions of EPA and DHA in fish fed the VO diet at the same level as in fish fed the FO diet. Practically, these results indicate that manipulation of tilapia diets in commercial culture in response to the declining global fish oil market would have important consequences for fish fatty acid composition and the health of consumers. Scientifically, zebrafish and tilapia, both the subject of active genome mapping projects, could be useful models for studies of lipid and fatty acid metabolism at a molecular biological and genetic level. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
We hypothesized that replacing fish oil with 18:3n-3-rich linseed oil may enable salmon to maintain the levels of tissue n-3HUFA levels through a combination of increased desaturation activity and increased substrate fatty acid provision. To this end we investigated desaturation/elongation of [1-14C18:3n-3 in hepatocytes and intestinal enterocytes, and determined the extent to which 18:3n-3 was oxidized and desaturated by measuring both simultaneously in a combined assay. Salmon smolts were stocked randomly into five seawater pens and fed for 40 weeks on diets in which the fish oil was replaced in a graded manner by linseed oil. At the end of the trial, fatty acyl desaturation/elongation and oxidation activities were determined in isolated hepatocytes and intestinal enterocytes using [1-14C]18:3n-3 as substrate, and samples of liver and intestinal tissue were collected for analysis of lipid and fatty acid composition. The results showed that, despite increased desaturation of [1-14C]18:3n-3 in hepatocytes, provision of dietary 18:3n-3 did not prevent the decrease in tissue n-3HUFA in fish fed linseed oil. Intestinal enterocytes were a site of significant fatty acid desaturation but, in contrast to hepatocytes, the activity was not increased by feeding linseed oil and was generally lower in fish fed linseed oil compared to fish fed only fish oil. In contrast, oxidation of [1-14C]18:3n-3 in enterocytes was generally increased in fish fed linseed oil compared to fish fed the diet containing only fish oil. However, oxidation of [1-14C]18:3n-3 in hepatocytes was 4- to 8-fold lower than in enterocytes and was not affected by diet. Furthermore, oxidation of [1-14C]18:3n-3 in enterocytes exceeded desaturation irrespective of dietary treatment, whereas similar amounts of [1-14C]18:3n-3 were desaturated and oxidized in hepatocytes from fish fed only fish oil and desaturation exceeded oxidation by 3-fold in fish fed the diet containing 100% linseed oil. The molecular mechanisms underpinning these results were discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Duplicate groups of Atlantic salmon parr were fed diets containing either fish oil (FO), rapeseed oil (RO), linseed oil (LO) or linseed oil supplemented with arachidonic acid (20:4n-6; AA) (LOA) from October (week 0) to seawater transfer in March (week 19). From March to July (weeks 20–34) all fish were fed a fish oil-containing diet. Fatty acyl desaturation and elongation activity in isolated hepatocytes incubated with [1-14C]18:3n-3 increased in all dietary groups, peaking in early March about one month prior to seawater transfer. Desaturation activities at their peak were significantly greater in fish fed the vegetable oils, particularly RO, compared to fish fed FO. Docosahexaenoic acid (22:6n-3:DHA) and AA in liver and gill polar lipids (PL) increased in all dietary groups during the freshwater phase whereas eicosapentaenoic acid (20:5n-3; EPA) increased greatly in all groups after seawater transfer. The AA/EPA ratio in tissue PL increased up to seawater transfer and then decreased after transfer. AA levels and the AA/EPA ratio in gill PL were generally higher in the LOA group. The levels of 18:3n-3 in muscle total lipid were increased significantly in the LO, LOA and, to a lesser extent, RO groups prior to transfer but were reduced to initial levels by the termination of the experiment (week 34). In contrast, 18:2n-6 in muscle total lipid was significantly increased after 18 weeks in fish fed the diets supplemented with RO and LO, and was significantly greater in the FO and RO groups at the termination of the experiment. Gill PGF production showed a large peak about two months after transfer to seawater. The production of total PGF post-transfer was significantly lower in fish previously fed the LOA diet. However, plasma chloride concentrations in fish subjected to a seawater challenge at 18 weeks were all lower in fish fed the diets with vegetable oils. This effect was significant in the case of fish receiving the diet with LOA, compared to those fed the diet containing FO. The present study showed that during parr-smolt transformation in Atlantic salmon there is a pre-adaptive increase in hepatocyte fatty acyl desaturation/elongation activities that is controlled primarily by environmental factors such as photoperiod and temperature but that can also be significantly modulated by diet. Feeding salmon parr diets supplemented with rapeseed or linseed oils prevented inhibition of the desaturase activities that is induced by feeding parr diets with fish oils and thus influenced the smoltification process by altering tissue PL fatty acid compositions and eicosanoid production. These effects, in turn, had a beneficial effect on the ability of the fish to osmoregulate and thus adapt to salinity changes.  相似文献   

5.
Three practical-type diets utilizing fishmeal and casein as the protein sources and containing fish oil (FO), safflower oil (SO) or linseed oil (LO) were fed to duplicate groups of juvenile turbot (Scophthalmus maximus) of initial weight 1.2 g for a period of 12 weeks. No differences in final weight, mortality or development of pathological lesions were evident either between duplicate tanks or between dietary treatments over this period. Fish fed diets containing SO and LO contained significantly greater amounts of liver triacylglycerol compared to fish fed FO. The major C18 polyunsaturated fatty acids (PUFA) in SO and LO diets, 18:2(n-6) and 18:3(n-3) respectively, were readily incorporated into both total lipid and individual phospholipids of turbot tissues. There was no accumulation of the Δ6-desaturation products of these fatty acids, namely 18:3(n-6) and 18:4(n-3), in any of the tissues examined. The products of elongation of 18:2(n-6) and and 18:3(n-3), 20:2(n-6) and 20:3(n-3) respectively, accumulated in both total lipid and phospholipids with the highest levels of 20:2(n-6) in liver PC and 20:3(n-3) in liver PE. Eicosapentaenoic acid [EPA, 20:5(n-3)] levels exceeded those of arachidonic acid [AA, 20:4(n-6)] in phosphatidylinositol (PI) from liver and gill of fish fed LO. EPA levels in liver PI from fish fed LO were 3-fold and 2-fold greater than SO-fed and FO-fed fish, respectively. Fish fed diets containing SO and LO had significantly reduced levels of AA in liver and muscle total lipid and lower AA in individual phospholipid classes of liver and gill compared to FO-fed fish. The concentration of thromboxane B2 was significantly reduced in plasma and isolated gill cells stimulated with calcium ionophore A23187 of fish fed SO and LO compared to those fed FO. Prostaglandin E produced by isolated gill cells stimulated with A23187 was significantly reduced in fish fed both SO and LO compared to fish fed FO.  相似文献   

6.
The objective of this work was to determine whether highly unsaturated fatty acid (HUFA) synthesis and fatty-acid oxidation in Atlantic salmon (Salmo salar L.) intestine was under environmental and/or seasonal regulation. Triplicate groups of salmon were grown through a full two-year cycle on two diets containing either fish oil (FO) or a diet with 75% of the FO replaced by a vegetable oil (VO) blend containing rapeseed, palm, and linseed oils. At key points in the life cycle fatty acyl desaturation/elongation (HUFA synthesis) and oxidation activity were determined in enterocytes and hepatocytes using [1−14C]18:3n−3 as substrate. As observed previously, HUFA synthesis in hepatocytes reached a peak at seawater transfer and declined thereafter, with activity consistently greater in fish fed the VO diet. In fish fed FO, HUFA synthesis in enterocytes in the freshwater stage was at a level similar to that in hepatocytes. HUFA synthesis in enterocytes increased rapidly after seawater transfer, however, and remained high for some months after transfer before decreasing to levels that were again similar to those observed in hepatocytes. Enterocyte synthesis of HUFA was usually higher in fish fed the VO diet than in those fed the FO diet. Oxidation of [1−14C]18:3n−3 in hepatocytes from fish fed FO tended to decrease during the freshwater phase but then increased steeply, peaking just after transfer before decreasing during the remaining seawater phase. At the peak in oxidation activity around seawater transfer, activity was significantly lower in fish fed VO than in fish fed FO. In enterocytes, oxidation of [1−14C]18:3 in fish fed FO reached a peak in activity just before seawater transfer. In fish fed VO, except for high activity at nine months the pattern was similar to that obtained in enterocytes from fish fed FO, with high activity around seawater transfer and declining activity in seawater. In conclusion, fatty acid metabolism in intestinal cells seemed to be under dual nutritional and environmental or seasonal regulation. Temporal patterns of oxidation of fatty acids were usually similar in the two cell types, but HUFA synthesis in enterocytes peaked over the summer seawater phase rather than at transfer, as with hepatocytes, suggesting the possibility of different regulatory cues.  相似文献   

7.
8.
Three diets in which the lipid component was supplied either as fish oil (FO), linseed oil (LO) or olive oil (OO) were fed to duplicate groups of juvenile turbot (Scophthalmus maximus) of initial weight 1.2 g for a period of up to 12 weeks. The latter two diets resulted in a significant reduction in specific growth rate and an increased mortality compared to the FO (control) fed fish. A liver histopathology was evident in around half of the fish fed the LO and OO diets but was absent in fish fed FO. The lesion showed indications of cellular alterations consisting of foci of densely basophilic cells but without evidence of inflammatory activity. The total lipid fatty acid composition of the carcass from fish fed LO had increased percentages of 18:2n-6 and 18:3n-3, but decreased percentages of all other polyunsaturated fatty acids (PUFA) including the physiologically important 20:4n-6, 20:5n-3 and 22:6n-3, compared to fish fed FO. Almost 2/3 of the total fatty acids in the carcass of OO-fed fish were monounsaturated while the percentages of total saturated fatty acids and all other PUFA, except 18:2n-6, were significantly reduced compared to fish fed FO. Broadly similar effects on total lipid fatty acid composition were observed in liver. In the liver glycerophospholipid classes of fish fed LO, percentages of 18:2n-6, 18:3n-3 and 20:3n-3 were significantly increased whereas all C20 and C22 PUFA, with the exception of 20:5n-3 in PI, were significantly reduced compared to fish fed FO. The liver glycerophospholipids of fish fed OO all showed significantly increased total monounsaturates, 18:2n-6, 20:2n-6, 18:2n-9 and 20:2n-9 as well as reduced percentages of 20:4n-6 and 22:6n-3, compared to fish fed FO. The brain glycerophospholipids showed broadly similar changes in response to dietary treatment although the magnitude of fatty acid alterations was less than those observed in liver. The greater mortalities in the OO-fed fish compared to the LO-fed fish suggests that incorporation of 18:3n-3 into tissue phospholipids can offset losses of long-chain PUFA more effectively than incorporation of 18:1n-9. However, levels of dietary long-chain PUFA must be optimised to allow normal growth and development. We conclude that the very low flux through the fatty acid desaturase/elongase pathways in turbot is not up-regulated by diets deficient in 20:5n-3 and 22:6n-3.  相似文献   

9.
The desaturation of [1-14C]18:3n-3 to 20:5n-3 and 22:6n-3 is enhanced in an essential fatty acid deficient cell line (EPC-EFAD) in comparison with the parent cell line (EPC) from carp. In the present study, the effects of competing, unlabeled C18 polyunsaturated fatty acids (PUFA), linoleic (18:2n-6), -linolenic (18:3n-3), -linolenic (18:3n-6) and stearidonic (18:4n-3) acids, on the metabolism of [1-14C]18:3n-3 were investigated in EPC-EFAD cells in comparison with EPC cells. The incorporation of [1-14C]18:3n-3 in both cell lines was significantly reduced by competing C18 PUFA, with the rank order being 18:4n-3>18:3n-3 = 18:2n-6>18:3n-6. In the absence of competing PUFA, radioactivity from [1-14C]18:3n-3 in EPC cells was predominantly recovered in phosphatidylethanolamine followed by phosphatidylcholine. This pattern was unaffected by competing n-6PUFA, but n-3PUFA reversed this pattern as did essential fatty acid deficiency in the presence of all competing PUFA. The altered lipid class distribution was most pronounced in cells supplemented with 18:4n-3. Competing C18 PUFA significantly decreased the proportions of radioactivity recovered in 22:6n-3, pentaene and tetraene products, with the proportions of radioactivity recovered in 18:3n-3 and 20:3n-3 increased, in both cell lines. However, the inhibitory effect of competing C18 PUFA on the desaturation of [1-14C]18:3n-3 was significantly greater in EPC-EFAD cells. The magnitude of the inhibitory effects of C18 PUFA on [1-14C]18:3n-3 desaturation was dependent upon the specific fatty acid with the rank order being 18:4n-3>18:3n-3>18:2n-6, with 18:3n-6 having little inhibitory effect on the metabolism of [1-14C]18:3n-3 in EPC cells. The differential effects of the C18 PUFA on [1-14C]18:3n-3 metabolism were consistent with mass competition in combination with increased desaturation activity in EPC-EFAD cells and the known substrate fatty acid specificities of desaturase enzymes. However, the mechanism underpinning the greater efficacy with which the unlabeled C18PUFA competed with [1-14C]18:3n-3 in the desaturation pathway in EPC-EFAD cells was unclear.  相似文献   

10.
Proliferation of an essential fatty acid deficient cell line from carp (EPC-EFAD; epithelioma papillosum carp-essential fatty acid deficient) is stimulated by supplementing the cells with C20, but not C18 polyunsaturated fatty acids (PUFA). It is hypothesized that the differential ability of the PUFA to stimulate proliferation of the EPC-EFAD cells may be related to the extent of the cells' ability to desaturate and elongate C18 PUFA. In the present study, the metabolism of 14C-labeled C18 and C20 PUFA was investigated in EPC-EFAD cells in comparison with normal EPC cells. The incorporation of all the PUFA was significantly greater in EPC-EFAD cells but the rank order, 20:5n-3 > 18:3n-3 = 18:2n-6 >20:4n-6 was the same in both cell lines. The proportion of radioactivity from all labeled PUFA recovered in phosphatidylethanolamine and total polar lipids was significantly lower in EPC-EFAD cells compared to EPC cells, whereas the proportion of radioactivity recovered in all the other phospholipid classes and total neutral lipid was greater in EPC-EFAD cells. Both cell lines desaturated[1-14C]18:3n-3 and [1-14C]20:5n-3 to a greater extent than the corresponding (n-6) substrates but the desaturation of all the 14 C-labeled PUFA was significantly greater in EPC-EFAD cells compared to EPC cells. The results showed that, although essential fatty acid deficiency had several significant effects on PUFA metabolism in EPC cells, the fatty acid desaturation/elongation pathway was not impaired in EPC-EFAD cells and so they can desaturate 18:3n-3 to 20:5n-3 and 22:6n-3, and 18:2n-6 to 20:4n-6. However, 20:4n-3 and 20:3n-6, and not 20:4n-6 and 20:5n-3, were the predominant C20 PUFA produced by the elongation and desaturation of [1-14C]18:3n-3 and [1-14C]18:2n-6, respectively. Therefore, the previously reported inability of 18:3n-3 and 18:2n-6, compared to 20:5n-3 and 20:4n-6, to stimulate proliferation of the cells is apparently not due to a general deficiency in the fatty acid desaturation pathway in EPC-EFAD cells but may be related to potential differences in eicosanoid profiles in cells supplemented with C18 PUFA compared to C20 PUFA.  相似文献   

11.
Accumulation of docosahexaenoic acid (DHA; 22:6n-3) in brain and eyes during development has been demonstrated in fish but it is not clear whether liver or neural tissues themselves are of greater importance in the biosynthesis of DHA from dietary 18:3n-3. In the present study, we investigated the in vivo metabolism of intraperitoneally injected [1-14C]18:3n-3 in liver, brains and eyes of young juvenile fish. Metabolism was followed over a 48h time-course in order to obtain dynamic information that could aid the elucidation of the roles of the different tissues in the biosynthesis and provision of DHA from dietary 18:3n-3. The study was performed in both a freshwater fish, rainbow trout Oncorhynchus mykiss L and a marine fish, gilthead sea bream Sparus aurata L to determine the effect that low or limiting5-desaturase activity may have in this process. As expected, the results showed that although the sea bream incorporated more 18:3n-3 into its lipids, metabolism of the incorporated fatty acid by de saturation and elongation was generally greater in the trout. In liver, the percentages of radioactivity recovered in tetraene and pentaene products were greater in trout than in sea bream although there was no difference in hexaenes. In contrast, the re covery of radioactivity in DHA was significantly greater in brain in trout compared to sea bream. In both species, the percentage of radioactivity recovered in desaturated/elongated products was much lower in liver than in brains and eyes, but that percentage increased over the 48h time-course. In trout though, the highest percentages of desaturated products in brain and eye were observed after 12 and 24h, respectively. However in sea bream the highest percentages of desaturated products in the neural tissues were observed after 24-48h. Radioactivity was recovered in 24:5n-3 and 24:6n-3, intermediates in the 4-independent ("Sprecher shunt") pathway for the synthesis of DHA, in both species, especially in the brain and eyes. Overall, although the results cannot eliminate a role for liver in the biosynthesis and provision of DHA for developing neural tissues in fish, they suggest that DHA can be synthesised in fish brain and eye in vivo.  相似文献   

12.
Arctic charr,Salvelinus alpinus L. were fed five test diets containing 0% or 1% of different polyunsaturated fatty acids (PUFA) for 93 days. The fish were injected intraperitoneally with (1–14C)–18:2(n–6) or (1–14C)–18:3(n–3), and the bioconversion to longer chain PUFA studied. The conversion rate in neutral lipids was slow, with most label found as the fatty acid injected, while extensive modification took place prior to or during incorporation into polar lipids. Linolenic acid was preferred over linoleic acid as substrate for elongation and desaturation regardless of diet. In polar lipids, the predominant products of (1–14C)–18:2(n–6) metabolism were generally 20:3(n–6) and 20:4(n–6), while 18:4(n–3), 20:5(n–3) and 22:6(n–3) were the major products of (1–14C)–18:3(n–3) metabolism. The lack of radioactivity in 22:5(n–6) suggests that 4 desaturation is specific for (n–3) PUFA. Feeding the PUFA deficient diet reduced the 5 desaturation compared to fish maintained on PUFA supplemented diets. The 6 desaturation was only reduced in fish fed C18 PUFA and injected with (1–14C)–18:3(n–3). Longer chain C20 and C22 PUFA, particularly those of the (n–3) family, exerted some inhibition on the elongation and desaturation of injected fatty acids compared to those fed C18 PUFA. The incorporation of radiolabelled fatty acids into polar lipids of fish fed a commercial diet was very low, and the desaturation neglectible in both polar and neutral lipids, showing that Arctic charr under culture conditions do not convert short chain PUFA to longer chain metabolites.  相似文献   

13.
The effects of different lipids on tissue fatty acid profile and reproductive performance in female rice field eel were investigated in this study. Virgin female eels were fed with six diets containing different lipids (diets FO, LO, SO, PO and PL with fish oil, linseed oil, soybean oil, peanut oil and pork lard, respectively; diet APO with arachidonic acid and peanut oil). The results showed that there were positive correlations between the contents of 18:2n-6, 18:3n-3, arachidonic acid (ARA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in the tissues of eels and those of the corresponding fatty acids in their diets. The specific growth rate of eels fed with diet PO was the lowest and significantly lower than that of FO and SO. Gonad of eels fed with diets PO and PL showed hypogonadism. The long chain polyunsaturated fatty acids (LC-PUFA) can be synthesized by eels, but the quantity was not enough to meet their reproduction requirement completely. The fatty acid desaturation, rather than elongation probably was one of the limiting factors. Addition of proper amount of ARA in diet was favorable to the increase of the hatching rate of fertilized eggs, while EPA and DHA in diet were beneficial to the increase of the survival rate of larva. Both n-3PUFA and a suitable n-6/n-3PUFA ratio were necessary for growth and reproduction of eels.  相似文献   

14.
Triplicate groups of European sea bass (Dicentrarchus labrax L.), of initial weight 90 g, were fed four practical‐type diets in which the added oil was 1000 g kg?1 fish oil (FO) (control diet), 600 g kg?1 rapeseed oil (RO) and 400 g kg?1 FO, 600 g kg?1 linseed oil (LO) and 400 g kg?1 FO, and 600 g kg?1 olive oil (OO) and 400 g kg?1 FO for 34 weeks. After sampling, the remaining fish were switched to the 1000 g kg?1 FO diet for a further 14 weeks. Fatty acid composition of flesh total lipid was influenced by dietary fatty acid input but specific fatty acids were selectively retained or utilized. There was selective deposition and retention of docosahexaenoic acid (DHA; 22:6n‐3). Eicosapentaenoic acid (EPA; 20:5n‐3) and DHA were significantly reduced and linolenic (LNA; 18:3n‐3), linoleic (LA; 18:2n‐6) and oleic (OA; 18:1n‐9) acids significantly increased in flesh lipids following the inclusion of 600 g kg?1 RO, LO and OO in the diets. No significant differences were found among different treatments on plasma concentrations of prostaglandin E2 and prostaglandin F2α. Evaluation of non‐specific immune function, showed that the number of circulating leucocytes was significantly affected (P < 0.001), as was macrophage respiratory burst activity (P < 0.006) in fish fed vegetable oil diets. Accumulation of large amounts of lipid droplets were observed within the hepatocytes in relation to decreased levels of dietary n‐3 HUFA, although no signs of cellular necrosis was evident. After feeding a FO finishing diet for 14 weeks, DHA and total n‐3 HUFA levels were restored to values in control fish although EPA remained 18% higher in control than in the other treatments. This study suggests that vegetable oils such as RO, LO and OO can potentially be used as partial substitutes for dietary FO in European sea bass culture, during the grow out phase, without compromising growth rates but may alter some immune parameters.  相似文献   

15.
The effects of sub-lethal doses of dichlorvos and formalin, antimicrobial/parasitic agents used in aquaculture, on lipid composition and metabolism of rainbow trout skin cells in primary culture were investigated. [1-14C]Stearic (18:0), [1-14C]lin 18:2n-6) and [1-14C]linolenic (18:3n-3) acids were used as tracers to determine effects on fatty acid incorporation and metabolism. Formalin increased cell numbers and reduced the lipid content of the cells and the incorporation of radioactive fatty acids. The effects of dichlorvos were qualitatively similar but quantitatively less. Formalin induced relatively small but significant changes in lipid class composition including a decreased proportion of phosphatidycholine with increased proportions of sphatidylethanolamine and phosphatidylserine. Dichlorvos had no significant effect on lipid class compositions. The trout primary skin cells expressed substantial 9, 6 and 5 fatty acyl desaturase activities. Although, as expected, the cells were m active towards [1-14C]18:3n-3, the cells were unusually active towards [1-14C]18:2n-6. Both dichlorvos and, especially, formalin appeared to significantly inhibit 9 and 6 desaturation. Changes in the distribution of radioactivity between individual spholipid classes was also influenced by formalin and dichlorvos, and this may be related to changes in desaturase activity. This study has shown that topically active agents used in aquaculture, formalin and dichlorvos, had a range of effects on the rainbow trout skin cell cultures that may affect cell proliferation and lipid and fatty acid metabolism. Both agents significantly inhibited desaturation of fatty acids, particularly of 18:2n-6 to 20:4n-6 and, as 20:4n-6 is a major eicosanoid precursor ish and considering the importance of eicosanoids in the biochemistry of skin, it is suggested that these agents may have direct effects on fish skin that could have important consequences for fish health in general.  相似文献   

16.
The aim of this work was to study the fatty acid (FA) bioconversion ability in Eurasian perch fed with diets differing in their polyunsaturated fatty acids (PUFA) from n‐3 and n‐6 series content at two development stages: adults in exogenous vitellogenesis, and juveniles during the on‐growing phase. Duplicate groups of adults and juveniles were fed for 12 weeks with four diets: D1 and D2, two diets prepared with fish oil partially or totally as the lipid source, and so containing long‐chain PUFA (LC‐PUFA). Those two diets differed by their n‐3/n‐6 FA dietary ratio (0.2 and 7.0, respectively), D1 being characterized by a high n‐6 LC‐PUFA level, while D2 had a high level of n‐3 LC‐PUFA. D3 and D4 were constituted only with vegetable oils, and were therefore devoid of LC‐PUFA. D3 was characterized by a high level of 18:2 n‐6 (n‐6/n‐3 ratio of 0.3), while D4 was characterized by a high level of 18:3 n‐3 (n‐3/n‐6 ratio of 1.9). Both groups of fish were able to elongate and desaturate the 18:3 n‐3 precursor into eicosapentaenoic acid and docosahexaenoic acid, regarding the FA profile of livers. Furthermore, total elongation/desaturation from [1‐14C]18:3 n‐3 of LC‐PUFA was higher in fish fed with the high dietary 18:3 n‐3 level compared to the diet rich in n‐3 LC‐PUFA. By opposition, the bioconversion of 18:2 n‐6 into LC‐PUFA was limited, regarding the elongation/desaturation activity of LC‐PUFA from [1‐14C]18:2 n‐6. In view of the great ability for bioconversion of n‐3 FA, linseed oil is a promising alternative to fish oil in formulating feed for juveniles perch as there were no differences in terms of specific growth rate between the treatments, but adults undergoing maturation should have at least partially LC‐PUFA in their diet, particularly arachidonic acid (ARA) which is important during maturation, as breeders are not able to bioconvert 18:2 n‐6 into ARA.  相似文献   

17.
Tilapia (Oreochromis) nilotica were fed either a commercial diet containing 2.2% (n-3) and 0.5% (n-6) polyunsaturated fatty acids (PUFA), or a diet containing 1.0% methyl linoleate as the only PUFA. The fatty acid composition of tissue lipids generally reflected that of the diet. Fish from both dietary groups were injected intraperitoneally with 14C-labelled linoleic acid, 18:2 (n-6), or linolenic acid, 18:3 (n-3), and the distribution of radioactivity in tissue lipids examined. The conversion of both 18:2 (n-6) and 18:3 (n-3) to longer chain PUFA was lower in fish fed the commercial diet than in those fed the diet containing only 18:2 (n-6). Half of the radioactivity from both substrates recovered in liver polar lipids was present in C20 and C22 PUFA with fish maintained on the experimental diet. It is concluded that T. nilotica is capable of elongating and desaturating both 18:2 (n-6) and 18:3 (n-3), but that this conversion is suppressed by dietary longer chain PUFA. NERC Unit of Aquatic Biochemistry  相似文献   

18.
Despite the potential of vegetable oils as aquafeed ingredients, a major drawback associated with their utilization is the inferior level of beneficial n-3 long-chain polyunsaturated fatty acids (LC-PUFA). Echium oil (EO), which is rich in stearidonic acid (SDA, 18:4n-3), could potentially improve the deposition of n-3 LC-PUFA as the biosynthesis of LC-PUFA is enhanced through bypassing the rate-limiting ?6 desaturation step. We report for the first time an attempt to investigate whether the presence of a desaturase (Fads2) capable of ?4 desaturation activities and an elongase (Elovl5) will leverage the provision of dietary SDA to produce a higher rate of LC-PUFA bioconversion. Experimental diets were designed containing fish oil (FO), EO or linseed oil (LO) (100FO, 100EO, 100LO), and diets which comprised equal mixtures of the designated oils (50EOFO and 50EOLO) were evaluated in a 12-week feeding trial involving striped snakeheads (Channa striata). There was no significant difference in growth and feed conversion efficiency. The hepatic fatty acid composition and higher expression of fads2 and elovl5 genes in fish fed EO-based diets indicate the utilization of dietary SDA for LC-PUFA biosynthesis. Collectively, this resulted in a higher deposition of muscle eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) compared to LO-based diets. Dietary EO improved the ratio of n-3 LC-PUFA to n-6 LC-PUFA in fish muscle, which is desirable for human populations with excessive consumption of n-6 PUFA. This study validates the contribution of SDA in improving the content of n-3 LC-PUFA and the ratio of EPA to arachidonic acid (ARA, 20:4n-6) in a freshwater carnivorous species.  相似文献   

19.
To investigate the impact of different dietary lipid sources on fillet composition and lipid transport, we conducted a feeding trial and evaluated the proximate composition of muscle tissue, fatty acid profiles, total cholesterol (in muscle and plasma), triglycerides, and lipoprotein concentrations in Nile tilapia, Oreochromis niloticus. Five semi‐purified diets, containing different oils (soybean – SO, corn – CO, linseed – LO, fish – FO, and olive – OO), were supplied to tilapia for 160 d. Fish fed with LO and FO diets had a lower percentage of total lipids in muscle compared with the others (P < 0.05). The highest percentage of protein was found in fish fed with FO diet (P < 0.05). The muscle fatty acid profile was influenced differently by diets (P < 0.05). The group supplemented with SO and CO had a higher concentration of 18:2n‐6, whereas the fish fed with LO diet had a higher level of 18:3n‐3 and those that received the FO diet had more 22:6n‐3 in comparison with those supplemented with vegetable oils. Plasma lipid transport was also affected by the diets: the fish fed with FO diet had higher total cholesterol and high‐density lipoprotein and lower very‐low‐density lipoprotein concentrations (P < 0.05).  相似文献   

20.
Four isonitrogenous (300 g kg?1 crude protein), isoenergetic (21 kJ g?1) experimental diets were formulated to contain fish oil (FO), soybean oil (SBO), crude palm oil (CPO) and linseed oil (LO), respectively, as the lipid sources, added at 120 g kg?1 of crude lipid each. The diets were fed by hand to triplicate groups of Pangasius nasutus (Bleeker, 1863) juveniles (mean weight 10.66 ± 0.04 g), to apparent satiation twice daily for 12 weeks. Fish survival rate was 100% among all the treatments. Growth performance (DGR) was similar among fish fed the SBO, CPO and LO diets, but was significantly (P < 0.05) higher in the CPO compared to fish fed the control (FO) diet. Fish fed SBO and CPO diets also recorded significantly (P < 0.05) higher intraperitoneal fat compared to fish fed the control, whereas fish fed the LO diet did not significantly differ from the other treatments. Muscle and liver fatty acid profile of fish from all the treatments generally mirrored the composition of the diets fed and the major fatty acids recorded were 18:3n‐3 and 18:2n‐6 in the tissues of fish fed the LO and SBO treatments, respectively. Results of this study suggests that P. nasutus fed diets containing vegetable oils (especially CPO and SBO) produce better growth performance, without compromising fish survival and feed efficiency compared with those fed a diet containing only FO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号