首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 747 毫秒
1.
Zinc micronutrient is the second most abundant trace element in the animal body, as it could not be stored in the body; hence, regular dietary zinc is required for animals. With this backdrops a 60 days feeding trial was conducted to study the effect of dietary zinc on the thermal tolerance and cellular metabolic stress of Pangasius hypophthalmus reared under Pb (1/21th of LC50, 4 ppm) and elevated temperature (34°C). Three isocaloric and isonitrogenous diets with Zn‐0, 10 and 20 mg/kg were prepared. Two hundred seventy‐three fish were randomly distributed into seven treatments in triplicate in completely randomized forms. Dietary zinc supplementation had remarkable (p < .01) changes on thermal tolerance of P. hypophthalmus viz. CTmin (critical temperature minima) and LTmin (lethal temperature minima), CTmax (critical temperature maxima) and LTmax (lethal temperature maxima). The positive correlations were also observed between CTmin and LTmin (Y = ?0.707 + 6.59x, R2, 0.875) and CTmax and LTmax (Y = ?0.923 + 2.45x, R2, 0.960). The oxidative stress (catalase, superoxide dismutase and glutathione‐s‐transferase) and lipid peroxidation were significantly reduced and neurotransmitter enzyme (AChE) was significantly enhanced with zinc supplementation at the end of the thermal tolerance. The present study concluded that thermal tolerance of P. hypophthalmus enhanced by zinc supplementation through CTmax LTmax and CTmin LTmin and also by strengthening the antioxidative status along with neurotransmitter enzymes.  相似文献   

2.
Commercially valuable sea cucumbers are potential co‐culture species in tropical lagoon environments, where they may be integrated into established aquaculture areas used for seaweed farming. In the current study, wild‐caught juvenile sea cucumbers, Holothuria scabra, and red seaweed Kappaphycus striatum were co‐cultured on Zanzibar, United Republic of Tanzania. Sea cucumbers (97 g ± 31 SD,= 52) were cultured in mesh enclosures at initial cage stocking densities of 124 ± 21 SD and 218 ± 16 SD g m?2 under seaweed culture lines. Over 83 days, individual growth rate (1.6 g d?1 ± 0.2 SD) of sea cucumbers at low stocking density was significantly higher (χ2 = 8.292, d.f. 1, P = 0.004) than at high‐stocking density (0.9 g d?1 ± 0.1 SD). Seaweed individual growth rates [6.27 (±0.3 SE) g d?1] were highest in co‐culture with sea cucumber at low density but did not differ significantly from high sea cucumber density or seaweed monoculture treatments (χ2 = 3.0885, d.f. = 2, = 0.2135). Seaweed growth varied significantly (χ2 = 35.6, d.f. = 2, < 0.0001) with sampling period, with the final sampling period resulting in the highest growth rate. Growth performance for seaweed and sea cucumbers (χ2 = 3.089, d.f. = 2, = 0.21 and χ2 = 0.08, d.f. = 1, = 0.777 respectively), did not differ significantly between monoculture and co‐culture treatments, yet growth in co‐culture was comparable with that reported for existing commercial monoculture. Results indicate H. scabra is a highly viable candidate species for lagoon co‐culture with seaweed. Co‐culture offers a more efficient use of limited coastal space over monoculture and is recommended as a potential coastal livelihood option for lagoon farmers in tropical regions.  相似文献   

3.
The feasibility of co‐culturing the sea cucumber Holothuria leucospilota Brandt in a subtropical fish farm was investigated in a field study. Sea cucumbers were cultured in the fish farm in cages suspended at 4 m deep (suspended culture) and directly on the seafloor (bottom culture). The survival and growth of the sea cucumbers were monitored twice during the 3‐month, summer experimental period (May 26–August 14, 2010). Results showed that the suspension‐cultured sea cucumbers exhibited excellent survival rate (100%) during the whole study period. There also occurred no mortality in the bottom‐cultured sea cucumbers during the first culture period (May 26–July 13); but all these died from anoxia caused by water column stratification during the second culture period (July 14–August 14). The specific growth rate of the bottom‐cultured sea cucumbers (1.05 ± 0.21 % day?1) was nearly double that of the suspended culture animals (0.57 ± 0.21 % day?1) during the first culture period, and the growth rates of the suspended culture sea cucumbers in the second culture periods (0.46 ± 0.24 % day?1) was only a little lower than that of the first period. The sea cucumbers H. leucospilota could ingest and assimilate sediment with high organic matter content with an average assimilation efficiency of 14.9 ± 3.9%. This study indicated that fish farm detritus can be effectively used as a food source for the sea cucumber and that it can be turned into a valuable secondary crop in the form of the sea cucumber biomass.  相似文献   

4.
We evaluated the effect of four densities (940, 1880, 3760, 7520 eggs cm?2 and 0.5, 1, 2, 4 ind mL?1 of embryos and larvae, respectively) and four temperatures (8, 11, 14, 17°C) on early growth and survival of the sea urchin Strongylocentrotus purpuratus. Prism‐stage length was significantly greater in embryos initially held at 940 and 1880 eggs cm?2 than in those held at 3760 and 7520 eggs cm?2. Larvae grew significantly faster and had significantly greater survival when reared at 0.5 or 1 ind mL?1 than when held at 2 or 4 ind mL?1. Embryos had greater survival at 11 and 14°C than at 8 and 17°C, whereas embryo length was significantly smaller at 8°C than at 11, 14 or 17°C. Larvae grew significantly slower at 8°C than at 11, 14 or 17°C, whereas survival was significantly reduced at 8 and 17°C compared with 11 and 14°C. Per cent survival from prism to metamorphic competency in the best treatments was 48.9 ± 2.2% and 50.0 ± 3.6% (mean ± SE) for the 1 ind mL?1 and 11°C treatments, respectively. On the basis of these results, for rearing of S. purpuratus under static conditions, we recommend that fertilized eggs and larvae be held at ≤1880 eggs cm?2 and ≤1 ind mL?1, respectively, and at 11–14°C.  相似文献   

5.
An 8‐week feeding trial was conducted to investigate the effects of dietary chitosan oligosaccharide complex with cerium (Ce IV) (COS‐Ce) on growth performance, nonspecific immunity and disease resistance of sea cucumber, Apostichopus japonicas. Five isonitrogenous (18.6%) and isolipidic (1.1%) practical diets were formulated with graded level of COS‐Ce (0, 150, 300, 600 and 1200 mg kg?1 dry feed), which were named as COS‐Ce/0, COS‐Ce/150, COS‐Ce/300, COS‐Ce/600, COS‐Ce/1200 respectively. Each diet was allocated to four replicates of sea cucumbers (Initial weight: 6.72 ± 0.02 g). Sea cucumbers were fed to apparent satiation once daily (19:00 hours) for 56 days. During the experiment, water temperature was kept at 16 ± 0.5°C, pH 7.8–8.2, dissolved oxygen beyond 5 mg L?1, ammonia nitrogen below 0.5 mg L?1 and salinity from 30‰ to 31‰. Results showed that the specific growth rate of sea cucumbers was significantly higher in COS‐Ce/600 than that in other four treatments. Activities of phagocytosis, respiratory burst, acid phosphatase and alkaline phosphatase in COS‐Ce/600 were significantly higher than that in COS‐Ce/0 (P < 0.05) respectively. On the contrary, cumulative mortality was the lowest in COS‐Ce/600 following 14 days exposure to Vibrio splendidus (P < 0.05). In conclusion, these results confirmed that dietary COS‐Ce had beneficial effects on growth performance, nonspecific immunity and disease resistance of sea cucumber.  相似文献   

6.
The bottom culture of southward‐transplanted sea cucumber Apostichopus japonicus in a subtropical fish farm was investigated in a field study at Dapeng Cove, Daya Bay, from January 5–August 5 2011, with the aim of finding the ideal period for culturing A. japonicus in fish farms, and developing an integrated multi‐trophic aquaculture (IMTA) in southern China. Results showed that the bottom‐cultured sea cucumbers survived well (100%) before summer, survival rates decreased to 65.00 ± 21.21% in July, and all animals had died at the end of the study. Specific growth rates of the sea cucumbers were high during winter (1.05 ± 0.03% d?1), decreased in early spring (0.44 ± 0.11% d?1) and became negative in the following months. Growth rate was mainly influenced by water temperature, dissolved oxygen and sulphide content; the anoxia caused by water column stratification at the seafloor in the summer were the main causes of mass mortality. Our results indicate that bottom culture in the temperate season (winter and spring, optimally from late November to early April) is a viable way to rear the deposit feeder A. japonicus underneath a subtropical fish farm.  相似文献   

7.
The effects of thermal amplitudes of diel fluctuating temperature on growth and oxygen consumption of the juvenile sea cucumber Apostichopus japonicus (Selenka) were studied at the average temperatures of 15 and 18°C with three diel different fluctuating amplitudes of ±2, ±4 and ±6°C. The optimum thermal amplitudes for growth of the juvenile sea cucumber at the sizes of this experiment, at average temperatures of 15 and 18°C, were estimated to be ±1.38 and ±1.67°C respectively. In the constant temperature regimes, the growth rate at 15°C was higher than that at 18°C. However, the growth rate at 18±2°C was higher than that at 15±2°C. The results from this study suggested that fluctuating temperatures enhanced the optimum temperature for the growth of sea cucumbers compared with that at constant temperatures. Therefore, accurate predictions of the optimum temperature of sea cucumbers in the natural environment, in which water temperatures fluctuate daily and seasonally, should be made from data obtained at fluctuating temperatures.  相似文献   

8.
A feeding trial aimed to determine the effects of dietary lipid level on growth performance, body composition and digestive enzymes activity of juvenile sea cucumber, Apostichopus japonicus. Diets with six crude lipid levels (1.9, 13.8, 29.1, 43.6, 59.6 and 71.6 g kg?1) were fed to sea cucumbers (initial weights 0.65 ± 0.01 g) at a density of 30 juveniles, once a day. After 60 days, body weight gain (BWG), specific growth rate (SGR), feed intake (FI) and protein efficiency ratio (PER) decreased with increasing dietary lipid levels. The sea cucumbers fed 1.9 g kg?1 crude lipid showed significantly higher (P < 0.05) BWG than those of the sea cucumbers fed 59.6 and 71.6 g kg?1 crude lipid. Intestinal protease and lipase activities generally increased with increasing dietary lipid levels. Eicosapentaenoic acid (EPA) content of body walls generally increased with increasing dietary lipid levels. Docosahexaenoic acid (DHA) content of body walls reached the maximum value at a dietary lipid level of 13.8 g kg?1. N‐3 highly unsaturated fatty acid content followed the same pattern of DHA. According to the growth performance and body composition of sea cucumbers, it can be indicated that the optimum dietary lipid level for juvenile sea cucumbers is between 1.9 and 13.8 g kg?1.  相似文献   

9.
The sea cucumber Holothuria leucospilota is a good candidate for aquaculture, for large‐scale production of this sea cucumber, it is imperative to know the effects of salinity on its physiological performance. In this study, ingestion, oxygen consumption and ammonium excretion rates of the adult sea cucumber H.leucospilota (16.98 ± 1.14 g, wet weight) at various salinity levels (18, 23, 28, 33 and 38 PSU) were studied in the laboratory. The species were acclimated for 1 week at the desired salinity before testing, and were fed with sediment from their natural habitat during this period. Results showed that the minimum ingestion rate (0.02 ± 0.01 g g?1d?1) at a salinity of 18 PSU was significantly lower than those observed at salinities of 28, 33 and 38 PSU, and there was no significant difference among the values at 23, 28, 33 and 38 PSU. The maximum value of oxygen consumption rate recorded at a salinity of 28 PSU was significantly higher than the minimum at 18 PSU, no significant differences were observed among other treatments. The ammonium excretion rates of H. leucospilota also changed significantly in response to salinity variations, the maximum value observed at a salinity of 28 PSU (0.09 ± 0.03 μM g?1h?1) being nearly five times higher than the minimum value at a salinity of 38 PSU (0.02 ± 0.01 μM g?1h?1). The O:N ratio varied as a function of salinity. Lower O:N ratios (<11.0) at salinities below 23 PSU indicated protein‐dominated catabolism under hyposaline stress; the higher O:N ratio (46.5) at a salinity of 38 PSU indicated carbon‐based metabolism. Results of this study indicated that the sea cucumber H. leucospilota may have a wide tolerance of salinity variation. However, it is not a very suitable species for rearing in hyposaline water. This study provides useful information for improving aquaculture management in tropical and subtropical coastal areas.  相似文献   

10.
In this study, we aimed to investigate the effects of water temperature and stocking density on the survival, feeding and growth of the juveniles of the hybrid yellow catfish from Pelteobagrus fulvidraco (♀) × Pelteobagrus vachelli (♂) using the parameters as follows: survival rate (%), feeding rate (% day?1), feed conversion ratio, specific growth rate (% day?1), coefficient of variation (%), productivity (P, g m?3 day?1) and condition factor. We reared the juvenile fish (3.25 ± 0.21 g) at 12 water temperature levels and six stocking density levels (each level included three aquaria in two batches of experiments). The results showed that all groups survived at a temperature range of ≤35°C during a 46‐day experimental period, and they could achieve a high growth at a water temperature range of 26–32°C. The optimal temperature for growth was 29.8°C. Productivity peaked at a stocking density of 1.9 kg m?3. Our results indicated that the hybrid is very suitable for commercial aquaculture.  相似文献   

11.
The effect of water temperature on growth and food intake of juvenile peled Coregonus peled was tested with specimens of initial age 75 days and 230 days posthatching (dph). The 75‐day group (initial body weight 0.6 ± 0.04 g) were reared for 63 days and 230‐day group (initial body weight 13.75 ± 2.93 g) for 42 days at temperatures of 13, 16, 19, 22 and 25°C under 12:12 L:D photoperiod. The optimal temperature range for the 75 dph fish was found to be 19–22°C. The fish reached final mean weight of 9.7 ± 2.5 g at 19°C and 9.0 ± 2.7 g at 22°C. Final mean weight of 230 dph fish did not differ significantly among temperature groups. Mortality increased at higher temperatures, with the critical temperature of 25°C for both age groups. Maximum food intake (19.0 ± 4.7, 18.8 ± 5.2, 18.6 ± 4.6 g kg?1biomass) was observed in groups reared at temperatures of 19, 22 and 25°C with no significant differences among groups.  相似文献   

12.
A feeding trial was conducted to determine the adequate dietary ascorbic acid (AsA) levels and the effects on growth, meat quality and antioxidant status of sea cucumber (10.04 ± 0.06 g), Apostichopus japonicus. l ‐ascorbyl‐2‐polyphosphate (35% AsA equivalent) was supplemented separately to the basal diet to obtain five AsA levels, 0, 598, 1473, 4676 and 14340 mg kg?1 diet respectively. After 60‐day feeding trial, the sea cucumbers fed diets containing 598 and 1473 mg AsA kg?1 showed significantly higher (< 0.05) body weight gain and specific growth rate values than the sea cucumbers fed control diets. The sea cucumbers fed diets containing 1473 and 4676 mg AsA kg?1 showed significantly higher (< 0.05) hydroxyproline contents than those of the sea cucumbers fed diets containing 0 and 598 mg AsA kg?1. Antioxidant enzymes such as total antioxidant capacity, superoxide dismutase and glutathione peroxidase showed increasing trends with the increasing dietary AsA levels, but no significant differences (> 0.05) were observed when the sea cucumbers fed diets with high dietary AsA levels. The content of malondialdehyde had the opposite trend of antioxidant enzymes. In conclusion, the adequate dietary AsA level focusing on growth performance of sea cucumber is between 598 and 1473 mg kg?1 diet. Furthermore, high level of dietary AsA (between 598 and 4676 mg kg?1 diet) improved meat quality and antioxidant status.  相似文献   

13.
Experiments were conducted to identify suitable methods for broodstock rearing, induced breeding and grow‐out culture of Holothuria scabra in Sri Lanka. Two hundred and seventy‐two brooders (500–600 g) collected from off Mannar were individually packed in oxygen‐filled polythene bags with and without sea water and transported to a sea cucumber hatchery at Kalpitiya. Lagoon pens, sand‐filled fibreglass tanks and bare tanks were used in triplicates to maintain brooders. Spawning was initiated using air dry, water jet and thermal‐stimulation methods. Hatchery produced juveniles with an average weight of 11 ± 5 g were reared (2 individuals m?2) in lagoon pens, mud ponds and fibreglass tanks in triplicates. The significantly high evisceration rate was observed when brooders were transported without sea water (t‐test, P < 0.05). Brooders maintained in bare tanks showed a significant weight reduction than the brooders in sand‐filled tanks and lagoon pens (anova , P < 0.05, d.f. = 2). Thermal stimulation (ambient temperature ± 3–5°C) was found to be the most successful method of spawning initiation of H. scabra. The mean (±SD) percentage males and females participated for spawning per trial was 9.2 (±10) and 4.6 (±5.6) respectively. On an average, 1.16 millions of eggs (±1.03 SD, n = 5) were obtained per spawning trial. H. scabra juveniles reared in tanks showed significantly lower growth rate than the juveniles in pens and ponds (anova , P < 0.05). Lagoon pens and sand‐filled tanks are suitable to maintain brooders and lagoon pens can be successfully used for mass rearing of juveniles.  相似文献   

14.
The aim of the present study was to investigate cataract development in diploid (2N) and triploid (3N) Atlantic salmon smolts and post‐smolts at two water temperatures (10 and 16 °C) given diets with different histidine supplementation (LH, 10.4 and HH, 13.1 g kg?1) before and after seawater transfer. In freshwater, a severe cataract outbreak was recorded in both ploidies reared at 16 °C. The cataract score was significantly higher in triploids compared to diploids, and the severity was lower in both ploidies fed the HH diet. The cataract development at 10 °C was minor. Low gill Na+, K+‐ATPase activity in fish reared at 16 °C before seawater transfer was followed by osmoregulatory stress with elevated plasma electrolyte concentrations and high mortality in sea water. Both diploids and triploids reared at 10 °C developed cataracts during the seawater period, with higher severities in triploids than diploids and a reduced severity in the fish fed the HH diet. The findings of this study demonstrate the importance of environmental conditions in the husbandry of Atlantic salmon, and particularly triploids, with regard to smoltification and adjusted diets to mitigate cataract development in fresh and sea water.  相似文献   

15.
The combined effects of acute temperature and salinity on osmolality, expressions of heat shock proteins mRNA (hsp70, hsp90a and hsp90b) and superoxide dismutase mRNA (sod) were investigated in the sea cucumber Apostichopus japonicus Selenka. There were 12 treatments (combinations of temperature at 16, 20, 24 and 28 °C and salinity at 22, 27 and 32 ppt). In low salinity environments, the osmolality of the sea cucumber’s coelomic fluid decreased immediately and reached osmotic balance within 6 h. The decline of osmolality after 2 h of hypo-osmotic stress was faster at high temperatures (28 °C) than that at low temperatures (16 and 20 °C). Cellular level stress was indicated by up-regulation of hsp70, hsp90s and sod mRNA, and the maximal expression of all genes occurred at 6 h after stresses. The up-regulation of hsps and sod mRNA indicated the emergence of protein denaturation and oxidative damage and also suggested an increase in energy consumption at high temperature and low salinity. These results indicated that high temperature and low salinity could change biochemical pathways and energy budgets and then potentially impair the osmoregulation of the sea cucumber. Therefore, effective ways should be taken (e.g., draining off the upper freshwater, exchanging water and adding man-made sea water) to prevent the damage to sea cucumber culture caused by low salinity induced by rainstorms, especially at high temperature.  相似文献   

16.
A feeding trial was conducted to evaluate the efficacy of dietary heat‐killed Lactobacillus plantarum L‐137 (HK L‐137) on growth performance, digestive, non‐specific immune and phagocytosis of sea cucumber, Apostichopus japonicus. Sea cucumbers (initial body weight 1.35 ± 0.04 g) were fed diets supplemented with five levels of HK L‐137 (0, 0.005, 0.025, 0.05 and 0.25 g HK L‐137 kg?1 diets) for 60 days. Results indicated sea cucumbers fed with diets containing 0.05 and 0.25 g HK L‐137 kg?1 diets showed significantly (P < 0.05) higher body weight gain and specific growth rate than other groups. Sea cucumbers fed with diets containing 0.05 and 0.25 g HK L‐137 kg?1 diets showed significantly (P < 0.05) higher protease activity than control group. Higher amylase, lysozyme and phagocytic activities were found in 0.25 g HK L‐137 kg?1 diet group. Higher superoxide dismutase enzyme and alkaline phosphatase activity was found in 0.05 g HK L‐137 kg?1. While no significant differences (P > 0.05) were found in acid phosphatase activity. These results suggested that dietary supplementation of 0.05 g HK L‐137 kg?1 diets would have benefit on growth, digestive enzymes and several non‐specific immune parameters of sea cucumber.  相似文献   

17.
The effects of four modes of diel temperature-fluctuation with two designated fluctuating temperatures (15 ± 3°C and 18 ± 3°C) on the growth and energy budget of young sea cucumber, Apostichopus japonicus Selenka, were studied to develop a highly efficient temperature-control scheme for aquaculture of the species. Sea cucumbers with a mean wet body weight of 8.0 ± 1.2 g (mean ± SD) were allocated to each treatment randomly with five replicates. After a 38-day trial, specific growth rate (SGR) and food conversion efficiency (FCE) decreased with increasing temperature in constant-temperature treatments. Among the four modes of temperature fluctuation, SGR of sea cucumbers reared under a mode which simulated the natural fluctuation of the temperature (mode C) of seawater was significantly higher than that of sea cucumbers reared at the corresponding constant temperatures. This enhancement of growth rate by use of mode C was attributed to higher FCE and lower energy allocated to respiration and feces. In large-scale culture, a temperature-control mode designed based on mode C could enhance not only growth but also efficiency of food utilization by the young sea cucumber.  相似文献   

18.
Under controlled conditions of food density and temperature, larval performances (ingestion, growth, survival and settlement success) of the flat oyster, Ostrea edulis, were investigated using a flow‐through rearing system. In the first experiment, oyster larvae were reared at five different phytoplankton densities (70, 500, 1500, 2500 and 3500 μm3 μL?1: ≈1, 8, 25, 42 and 58 cells μL?1 equivalent TCg), and in the second, larvae were grown at four different temperatures (15, 20, 25 and 30°C). Overall, larvae survived a wide range of food density and temperature, with high survival recorded at the end of the experiments. Microalgae concentration and temperature both impacted significantly larval development and settlement success. A mixed diet of Chaetoceros neogracile and Tisochrysis lutea (1:1 cell volume) maintained throughout the whole larval life at a concentration of 1500 μm3 μL?1 allowed the best larval development of O. edulis at 25°C with high survival (98%), good growth (16 μm day?1) and high settlement success (68%). In addition, optimum larval development (survival ≥97%; growth ≥17 μm day?1) and settlement (≥78%) were achieved at 25 and 30°C, at microalgae concentrations of 1500 μm3 μL?1. In contrast, temperature of 20°C led to lower development (≤10 μm day?1) and weaker settlement (≤27%), whereas at 15°C, no settlement occurred. The design experiments allowed the estimation of the maximum surface‐area‐specific ingestion rate  = 120 ± 4 μm3 day?1 μm?2, the half saturation coefficient {XK} = 537 ± 142 μm3 μL?1 and the Arrhenius temperature TA = 8355 K. This contribution put a tangible basis for a future O. edulis Dynamic Energy Budget (DEB) larval growth model.  相似文献   

19.
Argyrosomus regius (3.0 ± 0.9 g) were exposed to different concentrations of ammonia in a series of acute toxicity tests by the static renewal method at three temperature levels (18, 22 and 26°C) at a pH of 8.2. Low temperature clearly increased the tolerance of the fish to total ammonia nitrogen (TAN) and unionized ammonia (NH3) (P < 0.05). While the 96‐h LC50 values of TAN were 19.79, 10.39 and 5.06 mg L?1, the 96‐h LC50 of NH3 were 1.00, 0.70 and 0.44 mg L?1 at 18, 22 and 26°C respectively. The safe levels of NH3 for A. regius was estimated to be 0.10, 0.07 and 0.04 mg L?1 at 18, 22 and 26°C respectively (P < 0.05). This study clearly indicates that A. regius is more sensitive to ammonia than other marine fish species cultured on the Mediterranean and Eastern Atlantic coasts.  相似文献   

20.
A feeding trial was conducted to determine the optimum dietary protein level of sea cucumber Apostichopus japonicus juvenile focusing on growth performance and non‐specific immune response. Diets with seven crude protein levels (42.0, 108.9, 155.2, 216.7, 258.0, 313.3 and 357.5 g kg?1) were fed to sea cucumber juveniles (1.05 ±0.01 g) once a day for 100 days. More than 70% survival was observed, and there was no significant difference among all treatments. The sea cucumbers fed diets containing 108.9 g kg?1 crude protein showed significantly (< 0.05) higher body weight gain than those of the sea cucumbers fed diets containing 42.0, 216.7, 258.0, 313.3 and 357.5 g kg?1 crude protein. No significantly differences (> 0.05) were observed in moisture, crude protein, crude lipid, ash and carbohydrate content of the body wall among all treatments. The coelomic fluid catalase activity of the sea cucumbers generally increased with increasing dietary protein levels. Therefore, the acid phosphatase, superoxide dismutase and lysozyme activity increased with increasing dietary protein levels at first and decreased subsequently. The relationship between dietary protein levels and body weight gain was analysed by a second‐order polynomial regression analysis model. The result indicates that the optimum dietary protein level for sea cucumber juveniles is 135.4 g kg?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号