首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Heterobranchus longifilis larvae were reared over a 35 d period to evaluate the effects of stocking densities and feeding regimes on growth and survival. In experiment 1, larvae (12.3?±?2.1 mg) were stocked into glass aquaria at densities of 1, 2, 5, 10, 15, 20, and 25 larvae L?1. Larvae were fed on Artemia nauplii ad libitum. Significant variations in terms of growth performance and feed utilization occurred at all levels of density treatments. Specific growth rate (SGR), body weight gain (BWG), and feed efficiency (FE) of the larvae decreased significantly as density increased. However, survival rate increased with the increase of stocking density. In experiment 2, larvae (13.4?±?1.1 mg) stocked at a density of 15 larvae L?1, in the same conditions as experiment 1, were fed on three different regimes: Artemia nauplii; 35%?protein beef brain; and 35%?protein commercial catfish feed (CN+). SGR, BWG, and coefficient of variation (CV) of larvae fed on Artemia nauplii were significantly higher than those fed on beef brain and CN+. The survival rate of larvae fed on beef brain was significantly higher (88.40?±?9.75%) than those of Artemia (69.21?±?6.69%) and CN+ (40.40?±?6.22%). The results of this study suggest that the optimum stocking density is 15 larvae L?1 and the beef brain can be used as alternative feed to Artemia in rearing H. longifilis larvae.  相似文献   

2.
Mulloway (Argyrosomus japonicus) is an emerging aquaculture species in Australia, but there is a need to improve the production technology and lower costs, including those associated with larval rearing and live feeds. Three experiments were conducted to determine appropriate weaning strategies from live feeds, rotifers (Brachionus plicatilis) and Artemia, to cheaper formulated pellet diets. Experiment 1 examined the effects of feeding Artemia at different levels [0%, 50% or 100% ration of Artemia fed from 18 days after hatching (dah); based on current hatchery protocols] and a pellet diet from two larval ages (14 or 23 dah). In addition, rotifers were supplied to larvae in all treatments for the duration of the experiment (14–29 dah), at which time all larvae were successfully weaned onto the pellet diet. No significant (P>0.05) differences existed between the growth of fish fed a 50% and 100% ration of Artemia; however, fish fed a 0% ration of Artemia had significantly (P<0.05) reduced growth. The time of pellet introduction had no significant (P>0.05) effects on the growth of larvae. Experiments 2 and 3 were designed to determine the size [total length (TL), mm] at which mulloway larvae selected Artemia equally or in preference to rotifers, and pellet (400 μm) equally or in preference to Artemia respectively. Each day, larvae were transferred from a holding tank to experimental vessels and provided with rotifers (2 mL?1), Artemia (2 mL?1) or a combination of rotifers (1 mL?1) and Artemia (1 mL?1) (Experiment 2), and Artemia (2 mL?1), a pellet diet or a combination of Artemia (1 mL?1) and a pellet diet that was broadcast every 15 min (Experiment 3). After 1 h, a sub‐sample of larvae was randomly selected from each replicate vessel (n=5) and the gut contents were examined under a light microscope. Mulloway larvae began selecting Artemia equally to rotifers at 5.2 ± 0.5 mm TL and selected pellets equally to Artemia at 10.6 ± 1.8 mm TL. Our results have led to the establishment of weaning protocols for larval mulloway, which optimize larval growth while reducing feed cost by minimizing the amount of Artemia used during production.  相似文献   

3.
Live food supply is a key factor contributing to the success of larval fish rearing. However, live food densities vary greatly between fish species and management protocols across fish hatcheries. The growth, survival, food selection and consumption of yellowtail kingfish larvae were examined at different regimes of live food supply in an attempt to identify a suitable live food feeding protocol for larval rearing in marine fish. This study was divided into two feeding phases: rotifer phase from 3 to 14 DPH (phase I) and Artemia nauplii phase from 15 to 22 DPH (phase II). In phase I, four rotifer densities (1, 10, 20 and 40 mL−1) were used. In phase II, Artemia started at 0.8 nauplii mL−1 on 15 DPH, and then the density of Artemia was daily incremented by 50%, 70%, 90% and 110%, respectively, in four treatments from 15 to 22 DPH. In phase I, rotifer density significantly affected larval growth, but not survival. By 7 DPH, the number of rotifers consumed by fish larvae reached 170–260 individuals, but did not significantly differ between rotifer densities. During cofeeding, fish larvae selected against Artemia nauplii by 10 DPH, but by 14 DPH Artemia nauplii became the preferred prey item by fish larvae exposed to the 10, 20 and 40 rotifers mL−1. In phase II, both fish growth and survival were affected by Artemia densities. Fish daily consumption on Artemia by 20 DPH reached 500–600 individuals but did not significantly differ between prey densities. The result suggests that rotifer densities be offered at 20–40 mL−1 before 6 DPH and 10–20 mL−1 afterwards to support larval fish growth and survival. Likewise, Artemia is recommended at a daily increment of 90–110% of 0.8 mL−1 from 15 to 22 DPH. This study proposes a management protocol to use appropriate type and quantity of live food to feed yellowtail kingfish larvae, which could be applicable to larval culture of other similar marine fish species.  相似文献   

4.
This work tested the effect of using different live and frozen feed on the growth performance of Syngnathus typhle. It was divided into two experiments. In Experiment I Artemia and Atlantic ditch shrimp (Palaemonetes varians) larvae were used as live diets, whilst in Experiment II frozen mysids Mesopodopsis slabberi and frozen P. varians were used. At the end of the first experiment juvenile pipefish grew significantly more when fed P. varians (P < 0.05) with an overall Weight Gain (WG) of 914.8 ± 79.3% bw day?1, compared to Artemia fed fish (WG = 683.2 ± 14.7%). Both mean Specific Growth Rate (SGR) and survival were similar between dietary treatments and did not vary significantly (P > 0.05). In Experiment II juveniles were weaned with frozen diets but no significant differences were found between the two tested diets in all parameters tested. Final WG was 516.5 ± 63.3% and 566 ± 17.6%, and Feed Conversion Ratio (FCR) was 30 ± 1.5% and 28.2 ± 1.2% for animals fed P. varians and M. slabberi respectively. Results indicate that P. varians is an adequate diet to use during initial stages of the S. typhle life cycle and should be considered as a frozen diet for subsequent life stages of this species as an alternative to currently known natural diets.  相似文献   

5.
Problems of limited number of dry feeds as supplement or replacement of live feeds have led to poor larval nutrition in many species of fish. Therefore, the suitability of co‐feeding 8‐day‐old African catfish (Clarias gariepinus) posthatch larvae using live feed (Artemia salina) and formulated dry diet containing freshwater atyid shrimp (Caridina nilotica) during weaning was investigated. The experiment ended after 21 days of culture and respective groups compared on the basis of growth performance, survival, feed utilization and nutrient utilization. Larvae co‐fed using 50%Artemia and 50% formulated dry diet resulted in significantly (P < 0.05) better growth performance, food gain ratio (FGR), protein efficiency ratio (PER) and productive protein values (PPV) than other treatments. The lowest growth performance occurred in larvae weaned using 100% formulated and commercial dry diets. Better survival of over 90% was obtained in larvae weaned using 50%Artemia and 50% dry diet, while abrupt weaning using 100% dry diets resulted in lower survival (<75%). These results support a recommendation of co‐feeding C. gariepinus larvae using a formulated dry diet containing C. nilotica and 50% live feed when weaning is performed after 8 days posthatching period.  相似文献   

6.
A 30‐day feeding experiment was conducted in blue tanks (70 × 50 × 60 cm, water volume 180 L) to determine the effects of dietary lipid levels on the survival, growth and body composition of large yellow croaker (Pseudosciaena crocea) larvae (12 days after hatchery, with initial average weight 1.93 ± 0.11 mg). Five practical microdiets, containing 83 g kg?1 (Diet 1), 126 g kg?1 (Diet 2), 164 g kg?1 (Diet 3), 204 g kg?1 (Diet 4) and 248 g kg?1 lipid (Diet 5), were formulated. Live feeds (Artemia sinicia nauplii and live copepods) were used as the control diet (Diet 6). Each diet was randomly assigned to triplicate groups of tanks, and each tank was stocked with 3500 larvae. During the experiment, water temperature was maintained at 23(±1) °C, pH 8.0 (±0.2) and salinity 25 (±2) g L?1. The results showed that dietary lipid significantly influenced the survival and growth of large yellow croaker larvae. Survival increased with the increase of dietary lipid from 83 to 164 g kg?1, and then decreased. The survival of larvae fed the diet with 83 g kg?1 lipid (16.1%) was significantly lower than that of larvae fed other diets. However, the survival in larvae fed the diet with 16.4 g kg?1 lipid was the highest compared with other artificial microdiets. Specific growth rate (SGR) significantly increased with increasing dietary lipid level from 83 to 164 g kg?1 (P < 0.05), and then decreased. The SGR in larvae fed the diet with 164 g kg?1 lipid (10.0% per day) was comparable with 204 g kg?1 lipid (9.6% per day), but were significantly higher than other microdiets (P < 0.05). On the basis of survival and SGR, the optimum dietary lipid level was estimated to be 172 and 177 g kg?1 of diet using second‐order polynomial regression analysis respectively.  相似文献   

7.
A large effort has been dedicated in the past years to the development of nutritional balanced inert diets for marine fish larvae in order to suppress the nutritional deficiencies of live feed. In this study growth performance, Artemia intake, protein digestibility and protein retention were measured for Senegalese sole (Solea senegalensis Kaup), in order to provide insight into how protein utilization affects growth performance. Three feeding regimes were tested: ST – standard live feed; ArtRL – live feed and 20%Artemia replacement with inert diet (dry matter basis) from mouth opening; ArtRH – live feed and 58%Artemia replacement with inert diet from mouth opening. Artemia intake and protein metabolism were determined at 6, 15 and 21 days after hatching using 14C‐labelled Artemia protein and subsequent incubation in metabolic chambers. At the end of the experiment, sole fed exclusively with live feed were significantly larger than sole from Artemia replacement treatments. Protein digestibility decreased during sole ontogeny, and more sharply in ArtRH sole. Concomitantly retention efficiency increased during ontogeny but with a slight delay in ArtRH sole. Senegalese sole larvae growth and protein utilization is depressed when co‐fed high levels of inert diet and Artemia, mostly during metamorphosis climax.  相似文献   

8.
One of the major challenges in marine fish culture is how to provide live food of adequate size and nutritional quality for first‐feeding larvae. Commonly used live food organisms, rotifers and brine shrimp, may not always be the best option. To determine the suitability of different zooplankton in the larviculture of Elacatinus figaro, three diets were tested: RE – rotifers Brachionus sp. (10 ind mL?1)+ciliate Euplotes sp. (10 ind mL?1), enriched with fatty acids; RC – enriched rotifers (10 ind mL?1)+wild copepod nauplii (10 ind mL?1); and R – enriched rotifers (20 ind mL?1). Survival rates were estimated 10 days after hatch (DAH) for the three test groups, and growth rates were evaluated for RE and R at 10 and 20 DAH. Although survival rate was numerically higher for the RC diet (41.1±14.2%), no significant difference was detected between groups fed RE (20.5±18.1%), RC or R (32.1±16.5%). At 10 DAH, the growth rate was significantly higher in RC (5.7±0.6 mm) than in R (4.6±0.5 mm), a trend that was also observed at 20 DAH for RC (8.6±0.5 mm) and R (5.8±0.7 mm) (P<0.05). E. figaro larvae fed on ciliates did not show satisfactory results, whereas feeding copepod nauplii enhanced growth.  相似文献   

9.
This study was carried out to investigate the suitability of Artemia enriched with docosahexaenoic acid (DHA) and choline as live food on the growth and survival rate of the Pacific bluefin tuna (PBT; Thunnus orientalis) larvae. The PBT larvae were fed either Artemia enriched with oleic acid (Diet 1), DHA (Diet 2), DHA+choline 1.0 mg L?1 (Diet 3) and DHA+choline 2.0 mg L?1 (Diet 4) or striped knifejaw larvae (Diet 5, reference diet), in duplicate for 12 days. Enrichment of Artemia with DHA significantly increased the DHA levels to 13.9, 13.8 and 12.5 mg g?1 on a dry matter basis in Diets 2, 3 and 4 respectively; however, the levels were significantly lower than the reference diet (26.9 mg g?1 dry matter basis; Diet 5). Although growth and survival rate were significantly improved by the enrichment of Artemia with DHA and choline, the improvement was negligible compared with the enhanced growth and survival rate of the fish larvae‐fed group (P<0.05). The results demonstrated that enriched Artemia does not seem to be the right choice to feed the PBT larvae perhaps because of the difficulties in achieving the correct balance of fatty acid with higher DHA/EPA from Artemia nauplii.  相似文献   

10.
Larvae of two caridean shrimp species, Macrobrachium rosenbergii (De Man) and Palaemon elegans Rathke, were fed live and artificial diets. P. elegans larvae fed exclusively live Artemia salina (15 nauplii mL?1) developed into first postlarval stage (PL1) within 12 days at a temperature of 25°C and salinity 32.5 g L?1. Their survival and mean total length at this stage were 88.5% and 6.7 mm respectively. M. rosenbergii larvae fed on 15 Artemia mL?1 started to metamorphose into PLl within 24 days at 29–30°C and 12 g L?1. Attempts to completely replace live Artemia for rearing P. elegans during early stages failed, and only a partial replacement was achieved for the larvae of both species. P. elegans larvae survived (49%) solely on a microgranulated diet (Frippak PL diet) from stage zoea (Z) 4–5 to PL1. Similarly, a microencapsulated diet (Frippak CD3) also sustained M. rosenbergii larvae from Z5–6 to PL1 with a 28% survival. Development of the larvae of both species was retarded by 2–3 days and their survivals were lower than those fed on the live diet. The inability of the early larvae of these caridean species to survive on artificial diets is attributed to their undeveloped guts and limited enzymatic capabilities. Trypsin activity in the larvae was determined for all larval stages. It was found that the highest trypsin activity, at stage Z4–5 in P. elegans and at stage Z5–6 in M. rosenbergii, coincides with a rapid increase in the volume of the hepatopancreas and the formation of the filter apparatus. These morphological changes in the gut structure appear to enable the larvae to utilize artificial diets after stage Z5–6. Low larval trypsin activities may be compensated by the easily digestible content of their live prey during early larval stages (Z1–Z4/5) and by longer gastroevacuation time (GET) and almost fully developed guts during later stages.  相似文献   

11.
Considerable progress has been achieved in the intensive culture of Atlantic cod (Gadus morhua). However, there is little information concerning optimum live-feed enrichments for cod larvae, since many of the techniques used during the larviculture have been borrowed from other fish species and adapted for the production of Atlantic cod. The present study compared four different protocols for the enrichment of Artemia to be used as live feed for cod larvae. The protocols tested were: (1) AlgaMac 2000, (2) AquaGrow Advantage, (3) Pavlova sp. + AlgaMac 2000, and (4) DC DHA Selco + AlgaMac 2000. Larvae were fed differently enriched Artemia between 37 and 59 days post hatch. At the end of the experiment, larvae from treatment 1 [specific growth rate (SGR) = 10.4 ± 0.4% day−1] grew faster than larvae from treatments 3 (SGR = 6.9 ± 0.2% day−1) and 4 (SGR = 4.9 ± 0.4% day−1, P < 0.0001). However, treatments 3 and 4 resulted in better larval survival at the end of the experimental period, estimated to be 3 on a scale from 1 to 5, whereas the survival estimates for the two other groups were 2. The treatments affected the fatty-acid composition of Artemia and of cod larvae. Larvae from treatment 1 had a higher percentage of AA (20:4ω6, P < 0.0001) and ω6DPA (22:5ω6, P < 0.0001) than the other larvae. Levels of DHA (22:6ω3) were similar in larvae from treatments 1 and 4, and higher than in the other larvae (P < 0.0001). Our results suggest that Artemia containing a DHA/EPA/AA ratio of 7/2/1 result in good larval performance. Joseph A. Brown—Deceased September 2005.  相似文献   

12.
Alligator gar, Atractosteus spatula, are a new aquaculture species with many aspects about rearing unknown. Alligator gar are cannibalistic during their larval stage and methods to minimize cannibalism should be developed to increase overall survival. Growth and survival were determined for larvae fed pelleted floating food only or fed pelleted floating food supplemented with live Artemia spp. nauplii for the first 7 d of exogenous feeding (5 d after hatching [d.a.h.] to 12 d.a.h.). Total length, weight, condition, and specific growth rate (SGR) was determined at 12 and 20 d.a.h. Fish supplemented with Artemia were larger by 12 d.a.h. and continued to be at 20 d.a.h. than fish fed only floating food. SGR was higher at both 12 and 20 d.a.h. for fish that received the Artemia supplement. Survival was higher for fish supplemented with Artemia (71%) than for the floating food only treatment (43%). Cannibalism was the primary cause of mortalities and was higher in fish fed floating food only (44%) compared to Artemia supplemented fish (19%). Artemia may elicit a stronger feeding response and improve acceptance of pelleted floating foods. Results suggest an improved feeding regime compared to previous feeding regimes used in rearing larval alligator gar.  相似文献   

13.
The present study evaluated the performance of two commercial diets: AgloNorse (AN) and BioKyowa (BK), and two experimental, formulated diets based on casein (C) or casein plus casein hydrolysates (CH) in rearing of pike‐perch larvae (Sander lucioperca L.). All fish were 5 day old and control group was fed live Artemia nauplii. Fish were sampled periodically for histological comparison of morphological changes in the digestive tracts. Survival of fish fed Artemia nauplii, BK and AN was similar: 54.4%, 50.8% and 52.4%, respectively, while the fish fed formulated diets C and CH showed considerably lower survival: 28.4% and 21.6% respectively. After 5 weeks of rearing, the average body mass of fish ranged from 212±32 mg in Artemia fed group to 53.8±6.8 mg in C diet fed group. A considerable vacuolization of supranuclear zone in enterocytes of posterior intestine was observed in the larvae fed commercial diets. No anomalies in liver development were found. Hepatocytes of fish fed BK diet showed larger glycogen storage areas, compared with those occupied by lipids. The highest zymogen accumulation of pancreatic cytoplasm was observed in fish fed Artemia. In fish fed C and CH diets, anomalies in digestive system development were indicated by lower and less numerous intestinal folds, smaller hepatocytes, retarded development of gastric glands, and in CH group – also local fatty degeneration of liver.  相似文献   

14.
Leopard coral grouper, Plectropomus leopardus are a heavily exploited, high-value fish commonly found in the Asian live reef food fish trade. In past decades, many attempts at the mass culture of various grouper species have been undertaken; however, their small mouth gape at first feed has resulted in very low survival when using traditional live feeds such as rotifers. The use of wild caught or extensively cultured copepods has yielded potentially promising increases in survival and growth, but overall survival to the juvenile stage remains low, making mass culture currently impractical. The current study sought to build on past developments in grouper culture and recent advancements in copepod culture technology by observing how growth and survival were influenced by the addition of intensively cultured copepods to the early diet of P. leopardus larvae. Six tanks of larvae, three replicates per treatment, were fed either eggs and nauplii of the calanoid copepod Parvocalanus crassirostris, at a starting density of 5 mL−1, and the rotifer Brachionus rotundiformis, at a starting density of 10 mL−1, or were fed only B. rotundiformis, at a density of 15 mL−1, starting on the evening of 2 days post-hatch (dph) and continuing until 9 dph. After this initial period, all larvae were fed the same diet of rotifers, Artemia, and dry feed until the cessation of the trial at 21 dph. Larvae fed P. crassirostris in addition to rotifers had a significantly higher survival, 9.9 versus 0.5%, than those fed only rotifers. Growth was also significantly enhanced in larvae offered copepods. Larvae only fed rotifers were, on average, 1.5 mm shorter at 21 dph than those that had been fed copepods. More rapid development and the earlier onset of flexion were also noted in the larvae that were offered copepods. The use of intensively cultured copepods, in this study, increased survival tenfold over previous studies, with P. leopardus larvae fed wild-caught copepods. The application of intensively cultured copepods to the early diet of P. leopardus, along with future research to evaluate late-stage mortality issues, may facilitate commercial production of this species.  相似文献   

15.
The relative contributions of live Artemia metanauplii and an inert diet for growth of Senegalese sole larvae and postlarvae were assessed through the analysis of carbon stable isotopes ratios (δ13C) in both diets and whole larval tissue. Larvae were reared on four dietary regimes: 100% live prey (rotifers and Artemia), 100% inert formulated diet and two co-feeding regimes of 70:30 and 30:70 ratios of Artemia and inert diet, respectively. Larvae from the live food regime and both co-feeding regimes showed a steep increase in δ13C from 10 days after hatching (DAH) as a result of the onset and continuation of Artemia consumption. From 12 DAH fish larvae from all the regimes showed significant isotopic differences as their δ13C increased to final asymptotic values of − 15.1, − 15.6 and − 16.3‰ in the live food, 70:30 and 30:70 regimes, respectively. Carbon turnover rates in larvae from both live food and co-feeding regimes were relatively high (0.071 to 0.116 d− 1) but more than 90% of the observed change in fish tissue isotopic values was accounted for by the retention of carbon in new tissue growth. A two-source, one-isotope mixing model was applied to estimate the nutritional contribution of Artemia and inert diet to postlarvae growth in the co-feeding regimes. At 23 DAH, the relative contribution of live and inert diets to tissue growth in larvae was respectively, 88 and 12% for the 70:30 co-feeding regime and 73 and 27% for the 30:70 co-feeding regime. At 17 DAH, the estimated proportion of tissue carbon derived from the inert diet was higher at 23 and 38% for the 70:30 and 30:70 regimes, respectively. The results suggest that co-feeding regimes in Solea senegalensis larvae may be adjusted to meet ontogenetic changes in the capacity for larvae to utilise inert diets. The contrasting levels of carbon isotope discrimination between diet and tissue in larvae reared on either 100% live feed or 100% inert diet indicate relatively poor utilization of nutrients from the inert diet. The use of isotopic discrimination factors as potential indicators of the digestive physiological performance of a consuming organism in regards to its diet is discussed.  相似文献   

16.
First feeding success is critical to larval marine finfish and optimization of live feed densities is important for larval performance and the economics of commercial hatchery production. This study investigated various rotifer feeding regimes on the prey consumption, growth and survival of yellowtail kingfish Seriola lalandi larvae over the first 12 days post hatch (dph). The common practice of maintaining high densities of rotifers (10–30 ind. mL?1) in the rearing tank was compared to a low density feeding technique, where 5–8 ind. mL?1 of rotifers were offered. A ‘hybrid’ feeding regime offered rotifers at the high density treatment until 5 dph and the lower feeding densities thereafter. There was no significant difference in larval survival (hybrid: 28.9 ± 7%, low density: 17.3 ± 5% and high density: 17.2 ± 9%) or growth (hybrid: 6.12 ± 0.18 mm, low density: 6.03 ± 0.10 mm and high density: 6.11 ± 0.23 mm) between treatments. Rotifer ingestion was independent of rotifer density throughout the trial and increased with larval age, with larvae at 4 dph ingesting 22 ± 1.5 rotifers larvae?1 h?1 and by 11 dph ingesting 59 ± 1.6 rotifers larvae?1 h?1. These data demonstrate that from first feeding, yellowtail kingfish larvae are efficient at capturing prey at the densities presented here and consequently significant savings in rotifer production costs as well as other potential benefits such as facilitation of early weaning and improved rotifer nutritional value may be obtained by utilizing lower density rotifer feeding regimes.  相似文献   

17.
Uptake of five chemical forms of erythromycin by adult Artemia salina (L.) (erythromycin phosphate – EP, erythromycin stearate – ES, erythromycin estolate – EE, erythromycin hydrate – EH and crystalline erythromycin – CE) was investigated in two trials. In each trial, final erythromycin concentration in Artemia tissue and survival after a 12‐h bioencapsulation period were determined. In the first trial, Artemia tissue concentration after a 12‐h bioencapsulation period was significantly (P < 0.05) affected by erythromycin form with ES (68.5 ± 3.3 μg mL?1, mean ± SEM) ≈ EH (61.2 ± 3.4 μg mL?1) > CE (37.1 ± 10.7 μg mL?1) > EP (16.4 ± 7.7 μg mL?1) > control. In trial 2, Artemia tissue concentration was also significantly (P < 0.05) affected by erythromycin form with EE (111.4 ± 9.6 μg mL?1) > CE (89.1 ± 1.7 μg mL?1) > ES (78.9 ± 1.6 μg mL?1) > EP (33.4 ± 5.2 μg mL?1) > control. Survival was significantly affected by erythromycin form in trial 1 with EP=control (100 ± 0.0%) > ES (74.4 ± 2.0%) > CE (32.2 ± 0.3%) > EH (8.8 ± 4.4%). In trial 2, survival was also significantly affected by erythromycin form with EP=control (100 ± 0.0%) > ES (67.1 ±3.7%) > CE (52.5 ± 7.7%) > EE (5.0 ± 2.5%). Based on both uptake and survival, EP and ES appear to be appropriate compounds for bioencapsulation of erythromycin using live adult Artemia.  相似文献   

18.
In the present study, the growth and survival of early life stages (ELS) of Chitala chitala were studied in nylon hapa for 28 days, followed by rearing in fibreglass reinforcement plastic (FRP) tanks for a period of 30 days. Ten‐day‐old ELS of C. chitala reared in hapa were fed with three different diets namely Indian Major Carp (IMC) spawn (<8 mm), live tubifex and fresh fish eggs. In the second phase, 28‐day‐old ELS were stocked in 200‐lit FRP tank and supplied four different live diets namely live tubifex worm, chironomous larvae, zooplanktons and mosquito larvae. Fish accepted all types of diets in the experimental rearing period in both the systems. The experiments conducted in hapa showed a higher specific growth rate (SGR), weight gain per cent and survival rate in larvae fed with live tubifex (SGR=1.76±0.02) than fish eggs (0.77±0.31) and IMC spawn (0.46±0.12). The study carried out in FRP tanks revealed that SGR was higher in ELS fed on chironomous larvae (4.44±0.61), followed by mosquito larvae (3.29±0.40) and live tubifex (3.28±0.36), whereas minimum SGR was recorded with zooplanktons (2.84±0.66). A significant difference (P<0.05) in SGR, final mean weight and weight gain (%) was also recorded. The highest mean survival rate (100%) of ELS in an FRP tank was observed in chironomous larvae and zooplanktons, whereas with live tubifex and mosquito larvae the same survival rate (80%) was recorded. The rate of survival of the ELS reared in hapa varied from 65% to 85%. The experiments showed that ELS of C. chitala could be reared successfully in hapas and fibreglass reinforcement tanks for attaining better survivability and growth.  相似文献   

19.
Because of high costs and labour requirements along with the highly variable nutritional value of live feeds, we investigated the possibility of early weaning for barramundi (Lates calcarifer Bloch) larvae aimed at reducing the use of Artemia. Two commercial microdiets, Gemma Micro (Skretting, Australia) and Proton (INVE, Belgium) were compared for growth and survival of larvae using three weaning protocols, until 33 days posthatch (dph). Enriched rotifers were fed to larvae in all protocols through mouth opening until 21, 18 and 30 dph (protocols 1, 2 and 3, respectively). At 13 dph, enriched Artemia metanauplii were introduced to weaning protocols 1 and 2, and continued until 29 and 24 dph, respectively, whereas protocol 3 did not receive Artemia. Microdiet was initiated at 20, 16 and 13 dph in protocols 1, 2 and 3, respectively. Barramundi larvae grew successfully to 33 dph when co‐fed rotifers and microdiet, and significantly larger larvae resulted from feeding Gemma Micro rather than Proton, when Artemia were not used. However, larvae weaned onto Proton using a longer period of Artemia provision were significantly larger than larvae reared according to all other protocols. Survival was significantly higher in all Gemma Micro protocols when compared with Proton protocols. This was in part due to higher cannibalism when using Proton compared with Gemma Micro (22.8 ± 0.9% and 9.2 ± 0.6%, respectively). Cannibalism became more noticeable in all protocols when the larvae reached 7–8 mm standard length and further increased after the cessation of live feed. Tank biomass production was the highest when larvae were weaned onto Gemma Micro including a short period of Artemia provision as a result of a combination of high growth and survival. However, similar biomass production resulted when larvae were weaned directly from rotifers onto Gemma Micro and/or from a prolonged Artemia period onto proton. The success of weaning barramundi larvae directly to microdiet from rotifers, thus eliminating the need for Artemia, was influenced by the microdiet. Relatively higher levels of free amino acids and lipids were believed to contribute to increasing larval growth and survival. Larvae that were fed Gemma Micro showed higher growth when Artemia were utilized for a shorter period, while Proton‐fed larvae benefited from an extended Artemia feeding period.  相似文献   

20.
The effects of weaning strategies of cobia (Rachycentron canadum L.) larvae to commercial microdiets, either from rotifers or from Artemia, on growth, survival and enzymatic digestive capacity, were investigated. In the first experiment, cobia larvae were weaned from rotifers by co-feeding with a microdiet (Otohime) from 8, 13 or 20 days post-hatching (dph). The larvae in the control treatment were fed rotifers (2–12 dph), Artemia nauplii from 7 dph, and co-fed with the microdiet from 20 dph. In the second experiment, the larvae were weaned from Artemia, which was fed to the larvae from 7 dph, by co-feeding with a microdiet (NRD) from 8, 13 or 18 dph. The larvae in control treatment were fed rotifers, then Artemia to the end of the experiment (28 dph). Weaning of cobia larvae onto a microdiet directly from rotifers significantly reduced growth, survival and digestive capacity of the larvae and did not lead to larval acceptance of the microdiet, compared to those weaned from Artemia in the first experiment. Early weaning of cobia larvae onto NRD microdiet (on 8 or 13 dph) from Artemia in the second experiment also reduced growth, survival rate and gut maturation index, compared to those fed live feed. With available microdiets, weaning of cobia larvae could start from Artemia at around 18 dph in order to obtain comparable growth, survival and gut maturation to larvae fed live feed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号