首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The system nitrogen (N), phosphorous (P) budget, N/P utilization rate and the physiological response mechanism of the abalone Haliotis discus hannai (body weight: 12.87 ± 0.82 g) and the sea cucumber Apostichopus japonicus (body weight: 10.85 ± 1.16 g) to different co‐culture environment conditions were examined. Animals were kept in a multilayer, cubic recirculating aquaculture system at different polyculture densities (abalones at 400 ind/m2in monoculture [Group C] and abalones at 400 ind/m2with sea cucumbers at 10 ind/m2 [AS1] or 20 ind/m2 [AS2]). Each treatment was replicated four times, and the experimental cycle was 90 days. No significant difference in survival rate of abalones was detected when the stocking density of sea cucumbers increased from 10 to 20 ind/m2, but the concentrations of total ammonia nitrogen and nitrite nitrogen in the water were significantly higher in AS2 than in AS1. Survival rate, specific growth rate (SGR) of body weight of sea cucumbers and SGR of body weight of abalones were significantly lower in AS2 than in AS1. No significant difference in protease (PES), lipase, amylase and cellulase activities of abalones was identified between Group C and AS1, but the PES and amylase activities of abalones and sea cucumbers in AS1 were significantly higher than those in AS2. In AS1, the N/P output from harvesting of abalones and sea cucumbers and the N/P utilization rates were significantly higher than those in AS2. Although the N/P output from faeces was significantly lower in AS2 than in Group C and AS1, the N/P output from the water layer was significantly higher than that in AS1. The expression levels of Cu/Zn superoxide dismutase (Cu/Zn‐SOD) and heat shock protein 70 (HSP70) of both abalones and sea cucumbers in AS2 were significantly higher than those in AS1. No significant difference in expression of catalase (CAT) and HSP90of abalones was identified among these groups, but the expression levels of CAT and HSP90of sea cucumbers in AS2 were significantly higher than those in AS1. These results indicate that stocking sea cucumbers at 10 ind/m2 in the polyculture system will relieve the organic load on the system and improve the N/P utilization rate. It will also increase aquaculture production and improve the ecological and economic benefits of the system.  相似文献   

2.
The clamworm Perinereis aibuhitensis is a commercially important polychaete in China, but knowledge about the nutritional demands of this species is limited. In this study, the effects of five lipid sources in the diet, namely fish oil (FO), soyabean oil (SO), rapeseed oil (RO), cottonseed oil (CO) and mixed vegetable oil (MO), on growth, whole‐body composition and antioxidant parameters of juvenile P. aibuhitensis were evaluated. The results showed that clamworms fed the CO diet had higher specific growth rate (SGR) and protein efficiency ratio (PER) than the other treatments. The accumulation of longer‐chain polyunsaturated fatty acids (PUFAs) was observed in P. aibuhitensis, suggesting that P. aibuhitensis had the ability to elongate and desaturate PUFAs with 18C to form longer‐chain PUFAs. The values of n‐3/n‐6 in clamworms fed vegetable oil diets (ranged from 0.20 to 0.31) were much closer to the recommended values for human food compared with FO diet (2.47). Analysis of the antioxidant parameters revealed that clamworms fed the CO diet suffered lower peroxidation burden than those fed FO diet. These results suggested that cottonseed oil is a suitable lipid source for P. aibuhitensis feeds.  相似文献   

3.
Stocking density is an important factor affecting growth in aquaculture. The main objectives of this study are to evaluate the effects of different stocking densities on Holothuria arguinensis and Holothuria mammata's growth and determine the optimal density. Four different stocking densities were selected for H. arguinensis (1, 3, 5 and 7 ind/0.2 m2) and three for H. mammata (6, 10 and 12 ind/0.5 m2). Growth (specific growth rate (SGR) and growth rate (GR)), weight change, coefficient of variation and productivity were estimated, additionally the feeding rate on H. mammata. Growth on H. arguinensis decreased as the stocking density increased, showing the higher growth at the stocking density of 1 ind/0.2 m2 (SGR: 1.24%/day ± 0.16 and GR: 0.94 g/day ± 0.05), with a 104.65% (±9.98) of weight change. The best H. mammata growth was registered at 10 ind/m2 (SGR: 0.56% ± 0.04%/day and GR: 0.48 ± 0.04 g/day) and 25.48% (±1.52) of weight change. H. mammata feeding rate decreased as stocking density increased. Crowding stress could be considered the main factor affecting the sea cucumbers growth and performance on our study. The optimal stocking density for H. arguinensis and H. mammata under tank‐based conditions were established as 1 ind/0.2 m2 and 5 ind/0.5 m2 respectively. The critic biomass for H. arguinensis (471.65 g/m2) and for H. mammata (988.11 g/m2) were reached during the experiment at the fourth and fifth weeks respectively. Therefore, to ensure and increase growth of these species under tank, their biomass should be maintained under those thresholds.  相似文献   

4.
An energetic method was used to investigate the effects of stocking density and dissolved oxygen (DO) concentration on the growth of juvenile Paralichthys olivaceus. Fish, with initial weights of 14±2.1 g, were exposed to a normal and a high DO of 5.5±0.5 and 14±2 mg L?1, as well as four stocking densities per DO concentration (100, 200, 300 and 400 ind m?2 for the normal DO and 200, 400, 600 and 800 ind m?2 for the high DO). The feed efficiency (FEW) decreased significantly with increasing stocking density and increased significantly with increasing DO concentration. The maximum weight was achieved at 400 ind m?2 under a high DO depending on our rearing conditions. The stocking density and DO concentration change energy ingestion and its allocation for respiration, growth and excretion lost in nitrogen excretion, but do not affect the energy loss through faeces. The results of the body composition of fish indicated that the stocking density and DO concentration had no significant effects on the moisture, lipid content and gross energy, but are affected by the same. Energetic analysis demonstrated that high DO concentrations could alleviate the growth depression caused by high stocking densities, decrease energy loss in respiration and nitrogen excretion and increase the energy proportion allocated to growth.  相似文献   

5.
The objective of this study was to assess zootechnical and physiological performance of Litopenaeus vannamei postlarvae (PL) reared in three environments (CW, clear water; B, biofloc; BS, biofloc with artificial substrates) at three stocking densities (300, 600, 900 PL/m3) for 8 weeks. At the end of experimentation, shrimp were subjected to hypoxia, and physiological response was again assessed. During rearing, low levels of total ammonia nitrogen, nitrite (NO2?) and nitrate (NO3?) were observed in B and BS for 600 and 900 PL/m3. For 300 PL/m3, a slight accumulation of NO2? and NO3? was detected. For the same stocking density, shrimp reared in B and BS showed significantly higher weights than those grown in CW, except for final weight. No significant differences were observed in survival. The use of biofloc and artificial substrates permitted doubling density from 300 to 600 PL/m3 without affecting growth, survival, feed conversion rate and obtaining twice the biomass. Shrimp grown in B and BS stored a surplus of glycogen and carbohydrates in their hepatopancreas, which probably gave them a better physiological capacity to counteract high‐stocking densities and hypoxia. A tendency of a higher adenylate energetic charge was observed in shrimp maintained in B and BS.  相似文献   

6.
Recent advances in intensive rearing of astacid juvenile crayfish have greatly improved the results. This challenges the current application possibilities of the studies performed previously, and new research on density is required. A 100-day experiment was carried out under controlled conditions to evaluate density effects on survival and growth rates of juvenile crayfish in optimal conditions of feeding. Juvenile stage 2 Pacifastacus leniusculus were stocked in fibreglass tanks (1 m2, 200 l water) at 20 ± 1°C and fed a dry diet for salmonids supplemented with restricted amounts of Artemia nauplii. Stocking densities were 100, 300, 600 and 1,000 crayfish m−2. Mean survival rate was reduced significantly with increased stocking density, ranging from 86.33% (100 m−2) to 39.13% (1,000 m−2). All checks showed that at the lowest initial density (100 m−2) animals grew significantly faster those at higher densities, recording a final carapace length of 15.28 mm and weight of 1.08 g. Among the treatments of 300, 600 and 1,000 m−2 no differences were found either in carapace length or in weight throughout the experimental period, with a final mean growth of 14 mm carapace length and 0.72 g weight. The final proportion of animals with chelae autotomy rose significantly with increasing stocking density, ranging from 14.44% (100 m−2) to 41.45% (1,000 m−2). This study shows that diet is a decisive factor for stocking successfully high densities under controlled conditions and provides useful information to set adequate densities in accordance with the production objectives.  相似文献   

7.
In this study, effects of stocking density on the growth performance and physiological responses of blunt snout bream, Megalobrama amblycephala juveniles were evaluated. The fish (average body weight, 25.76 ± 2.25 g) were randomly stocked at densities of 30F (30 fish/m3), 60F, 90F and 120F in 12 cages (1 m × 1 m × 1 m) in a concrete pond, with three cages for each density, for a period of 6 weeks. The higher stocking densities had a negative effect on individual growth performance. The results indicated that serum cortisol, triglyceride, alanine aminotransferase, aspartate transaminase, alkaline phosphatase and malondialdehyde activities; and Acinetobacter, Aeromonas, Pseudomonas and Vibrio numbers in the intestinal microflora increased significantly as the stocking density increased. In contrast, the viscerosomatic index, hepatosomatic index survival rate; serum glucose, total cholesterol, lipase, protease, glutathione peroxidase and superoxide dismutase activities; and Clostridium, Bacteroides, Lactococcus, Lactobacillus and Bacillus numbers in the intestinal microflora decreased significantly. The 90F and 120F groups showed obvious enlargement of the lamina propria and goblet cell damage, indicating that the gut showed inflammatory responses. The specific growth rate and weight gain rate increased significantly as the stocking density increased from 30 to 60 fish/m3, but decreased significantly when the stocking density was over 60 fish/m3.  相似文献   

8.
Growth parameters of whiteleg shrimp Litopenaeus vannamei and red seaweed Gracilaria corticata were measured using integrated culturing method under zero‐water exchange system in a 45‐day period. A 2 × 3 factorial design was used with two levels of shrimp stocking densities and three levels of seaweed weight densities. G. corticata was cultured on a net tied to a round polyethylene frame. Culture tanks were filled with 750‐L filtered seawater. A 40‐W compact fluorescent lamp was hung over each tank to provide adequate and sufficient light for seaweed growth. Growth parameters of shrimp and seaweed such as specific growth rate (SGR), weight gained (WG) and average daily growth (ADG) were computed based on the initial and final weight of shrimp and seaweed. The maximum and minimum SGR of L. vannamei (1.97 and 1.69%/day) were observed in treatment S1A3 (25 shrimp/m2 and 400 g seaweed/m2) and S2A1 (50 shrimp/m2 without seaweed) respectively. The best survival rate (94.67 ± 1.33%), WG (129.9 ± 2.9%) and feed conversion ratio (1.67 ± 0.04) were also observed in treatment S1A3. The SGR of G.corticata in the treatment S1A3 (1.97 ± 0.00%/day) was significantly higher, compared to others. Strong positive correlations were obtained between the density of G. corticata and the growth parameters of L. vannamei. The red seaweed G. corticata could boost the growth parameters, survival rate and total production of L. vannamei under zero‐water exchange system.  相似文献   

9.
The development of sustainable methods for sea urchin juvenile production is currently constrained by high mortality rates during larval growth and the high costs of larval rearing systems management. With the aim of developing a method for the production of juveniles of the purple sea urchin Paracentrotus lividus in a medium‐scale recirculating system, the present study focused on the effects of high stocking densities on larval growth. Plutei larvae were reared at three different densities (up to 7 ind/ml) in a semi‐static culture system. Larval survival and metamorphosis success were evaluated in order to identify the most effective density range. The highest metamorphosis rates (80%–95%) were obtained at 4 and 7 larvae/ml. These results are comparable with (and in some cases higher than) those reported for the same species at much lower larval densities. In conclusion, the rearing conditions tested here show for the first time that a significantly higher (4 ind/ml) stocking density than those of traditional P. lividus rearing methods (based on large volumes and low densities) can be adopted, thus supporting the feasibility of an increase in the final output of competent larvae with no increase in rearing volumes.  相似文献   

10.
Stocking density is a biotic factor affecting the production of cultivated animals in aquaculture. Herein, a rearing trial was conducted to investigate the impact of stocking density on the survival, growth performance and physical injury of Marsupenaeus japonicus juveniles in a flowing water aquaculture system. Five stocking densities were examined in this study, that is, 10, 20, 40, 80 and 160 individuals/m2. Throughout the experiment, ammonia nitrogen and nitrite concentrations ranged from 0.02 ± 0.006 mg/L to 0.08 ± 0.035 mg/L and 0.002 ± 0.001 mg/L to 0.076 ± 0.021 mg/L respectively. The survival rate, specific growth rate (SGR), weight gain (WG), absolute growth rate (AGR) and coefficient of variation for weight (CV) across the stocking densities ranged from 90.38 ± 3.20% to 94.33 ± 4.73%, 1.42 ± 0.16%/day to 1.53 ± 0.05%/day, 1.09 ± 0.19 g to 1.15 ± 0.16 g, 0.018 ± 0.003 g/day to 0.019 ± 0.004 g/day and 16.21 ± 5.78% to 35.09 ± 10.68% respectively. Within the investigated densities, the survival rate and the abovementioned growth parameters were not significantly (p > .05) affected by the stocking density, consequently, a higher stocking density resulted in a significantly (p < .05) greater final biomass. The results regarding physical injury showed that the antennal breakage rate displayed a tendency of a positive correlation with the stocking density. Overall, the current study provides basic data for establishing a viable intensive farming system for Mjaponicus and a promising indicator for easily assessing the crowding stress status of Mjaponicus.  相似文献   

11.
Stock density is one among the most important factors in aquaculture that directly influences the growth of organisms; however, there is limited information about the effects of stocking density on growth performance of sea cucumber Holothuria tubulosa (Gmelin, 1788) that has a commercial potential and represents a new species for aquaculture. In this study, we investigated the effect of stocking densities on the growth performance of juvenile H. tubulosa (40.3 ± 3.34 g) in laboratory conditions. Stocking densities were selected as 6, 15 and 30 ind m?2 with total biomass 253.3 ± 0.18, 601.2 ± 0.11 and 1201.4 ± 0.15 g m?2 respectively. We monitored the growth by wet weights and calculated the growth performance through weight gain, growth rate, specific growth rate, relative weight gain, coefficients of variation and survival rate during 8 weeks of research period. We found that individual mean weight gain in 6 ind m?2 group was approximately 29.53 g while it was 3.03 g and ?4.36 g for 15 ind and 30 ind m?2 groups respectively. Results have shown that the specific growth rate tends to decrease as the number of individuals in unit area increases. The final mean weight, growth rate, specific growth rate, relative weight gain and coefficients of variation were significantly different among treatment groups. In conclusion, a density of 6 ind m?2 is recommended for stocking juvenile H. tubulosa under rearing conditions. Stocking density of 15 ind m?2 is not favourable for long term as the growth rate is negligible where 30 ind m?2 should be avoided in tank‐based rearing units.  相似文献   

12.
With recent advances in aquaculture techniques, captive‐breeding of the endangered white‐clawed crayfish Austropotamobius pallipes for restocking is becoming a widespread conservation method. Establishing optimal stocking densities for aquaculture is essential in maximizing productivity, and increases the likelihood of crayfish survival when released. A 240‐day experiment took place using 2‐month‐old juvenile, captive‐born, A. pallipes, within a small‐scale, closed‐circuit hatchery to investigate survival, growth and aggression at three treatment densities, low (100/m2), medium (200/m2) and high (300/m2). Crayfish were counted and measured every 60 days between August 2015 and April 2016. Mean survival rates were high across all three densities (87.7% ± 2.8%). Carapace length was significantly longer at low density than at medium and high densities. While growth rate was not significantly different between treatments, it was significantly higher in the first 2 months, across all three treatments (47.1% ± 6.6%) than in subsequent periods (14.1% ± 5.8%). Size variation within groups increased with density, suggesting that social dominance hierarchies are established with increasing stocking density: dominant individuals are larger and competitively exclude smaller individuals from food resources. Males were significantly larger than females from 6 months of age, (when they could be reliably sexed), in all three treatments. The larger male size suggests that sexual dimorphism begins prior to sexual maturity, with males growing faster and being more dominant and aggressive than females. In conclusion, young‐of‐the‐year A. pallipes can be reared at high densities without compromising survival; however, the optimal stocking density that maximizes growth and health is 100/m2.  相似文献   

13.
Growing of Pyropia haitanensis, a commercially farmed macroalga, usually increases their densities greatly during cultivation in natural habitats. To explore how the increased algal densities affect their photosynthetic responses to rising CO2, we compared the growth, cell components and photosynthesis of the thalli of P. haitanensis under a matrix of pCO2 levels (ambient CO2, 400 ppm; elevated CO2, 1,000 ppm) and biomass densities [low, 1.0 g fresh weight (FW) L?1; medium, 2.0 g FW L?1; high, 4.0 g FW L?1]. Under ambient CO2, the relative growth rate (RGR) was 5.87% d?1, 2.32% d?1 and 1.51% d?1 in low, medium and high densities, and elevated CO2 reduced the RGR by 27%, 25% and 12% respectively. Maximal photochemical quantum yield of photosystem II (FV/FM) was higher in low than in high densities, so were the light‐utilized efficiency (α), saturation irradiance (EK) and maximum relative electron transfer rate (rETRmax). Elevated CO2 enhanced the FV/FM in low density but not in higher densities, as well as the α, EK and rETRmax. In addition, elevated CO2 reduced the content of chlorophyll a and enhanced that of carotenoids, but unaffected phycoerythrin, phycocyanin and soluble proteins. Our results indicate that the increased algal densities reduced both the growth and the photosynthesis of P. haitanensis and alleviated the elevated CO2‐induced negative impact on growth and positive impact on photosynthesis. Moreover, the elevated CO2‐induced reduction on growth and promotion on photosynthesis indicates that rising CO2 may enhance the loss of photosynthetic products of P. haitanensis through releasing organic matters.  相似文献   

14.
The effects and commercial implications of aquatic plant addition, and variable prawn stocking density and supply of commercial aquafeed on water quality, prawn production and economic benefit, are investigated in a prawn (Macrobrachium rosenbergii) + plant (Hydrilla verticillata) co‐culture system. Our experimental design includes a control (PM, prawn monoculture without H. verticillata, with 30 prawns/m2) and four treatments with 15% plant cover of total pond area in each replicate. Dissolved oxygen, pH, N, P, total ammoniacal nitrogen, nitrite and nitrate in this co‐culture system were significantly lower than those of PM. Prawn survival (96.2 ± 14.9%), average final weight (68.5 ± 4.9 g) and yield (879.1 ± 102.4 kg/ha) in treatment 20W80%A (20 prawns/m2, 80% of control aquafeed) were obviously greater than in PM and other treatments. Despite small males (SM) and immature females (IF) being predominant in prawn + plant cultures, more than 77.2% of prawns reached or exceeded 40 g on completion of trials, and by six months were of appropriate size for market. We report culture of M. rosenbergii with H. verticillata to be both feasible and profitable. The optimal treatment, a stocking density of 20 prawns/m2 with these plants, enabled reduction of commercial aquafeed to 20% conventional culture levels. For this optimal treatment, we estimate total gross revenue, profit and internal rate of return to be US$ 6,593.3 ± 103.3 ha?1, US$ 3,095.5 ± 42.6 ha?1 and 127.5 ± 20.7% for 20W80%A respectively; we estimate U.S. Dollar (US$) invested generates 3.87 times conventional culture revenue. Co‐culture of M. rosenbergii and plants renders prawn production ecologically and economically feasible on larger farms.  相似文献   

15.
In this study, we have tested the effect of seaweed stocking density in an experimental seaweed biofilter using the economically important red seaweed Hydropuntia cornea integrated with the cultivation of the pink shrimp Farfantepenaeus brasiliensis. Nutrient removal efficiency was evaluated in relation to seaweed stocking density (2.5, 4, 6 and 8 g fw L?1). Total ammonia nitrogen (TAN) was the main nitrogen source excreted by F. brasiliensis, with concentrations ranging from 41.6 to 65 μM of NH4+‐N. H. cornea specific growth rates ranged from 0.8 ± 0.2 to 1.4 ± 0.5% day?1 with lowest growth rates at higher seaweed stocking density (8 g fw L?1). Nutrient removal was positively correlated with the cultivation densities in the system. TAN removal efficiency increased from 61 to 88.5% with increasing seaweed stocking density. Changes in the chemical composition of the seaweed were analysed and correlated with nutrient enrichment from shrimp effluent. The red seaweed H. cornea can be cultured and used to remove nutrients from shrimp effluents in an integrated multi‐trophic aquaculture system applied to a closed recirculation system. Recirculation through seaweed biofilters in land‐based intensive aquaculture farms can also be a tool to increase recirculation practices and establish full recirculation aquaculture systems (RAS) with all their known associated benefits.  相似文献   

16.

The shellfishery of the smooth Venus clam Chionista fluctifraga is not regulated in Mexico. Therefore, information on the ecology of this species and the effects of the fishery on its populations is necessary to inform management. We present results from a comparative analysis of the density, biomass, and size structure of smooth Venus clam populations in an area not subjected to harvest (UH) and two areas under harvest (H1 and H2) in Bahía de San Jorge (Gulf of California). The UH population had a density of 20.8?±?1.4 ind m?2 and a biomass of 392?±?39.7 g m?2 on average; the size range was 3.1–55.5 mm (average 28?±?15.2 mm), and the predominant size class was 40–50 mm. The H1 and H2 populations had, respectively, densities of 14.5?±?9.5 and 7?±?6.8 ind m?2 and biomass of 123.4?±?20.4 and 123.6?±?22.6 g m?2; the size ranges were 2.1–49 and 4.3–48.7 mm (averages 24.5?±?14.3 and 30.1?±?13.2 mm), and the predominant size classes were 0–10 mm and 40–50 mm. Clams in the three populations show an aggregated distribution and live in medium-fine sands (no significant differences in grain size among sites) with oligotrophic water. Although the densities observed in the harvested sites are relatively high, negative effects of the shellfishery are detected. For example, all clam sizes are being harvested, and clams are no longer found in the uppermost zone in harvested sites, with potential impacts on other species. This poses various threats that, together, may decrease the stability of the intertidal ecosystem and affect productivity.

  相似文献   

17.
Three different live diets, Eucyclops serrulatus, Ceriodaphnia quadrangula and equal combination of E. serrulatus copepodid and C. quadrangula, were offered to angelfish (Pterophyllum scalare) larvae viz 1‐week, 2‐week and 3‐week old at prey densities of 2, 5 and 10 individuals mL?1. Results showed that 1‐week‐old P. scalare larvae consumed Eserrulatus copepodid at a rate of 31.3–56.7 ind. h?1, C. quadrangula at 8.0–12.0 ind. h?1, and mixture of E. serrulatus and C. quadrangula at 20.7–40.7 ind. h?1. For 2‐week‐ and 3‐week‐old larvae, consumption rate increased accordingly. The electivity indices (E) of P. scalare (1‐week‐old larvae) for E. serrulatus copepodid were +0.18, +0.23 and +0.22 at prey densities of 2, 5 and 10 ind. mL?1 respectively. Tendency towards E. serrulatus copepodid consumption reduced by aging P. scalare as indicated by the E values for 2‐ and 3‐week‐old larvae. However, growth and survival of P. scalare larvae was greatest when fed on combination of copepod E. serrulatus and C. quadrangula.  相似文献   

18.
The purpoase of this research was to test the effects of three culture densities on the growth and survival of Octopus vulgaris. A total of 141 sub-adult octopuses (1,175.4 ± 194.9 g) were randomly distributed in nine tanks of 2,000 l each (3.6 m × 1.1 m, and 50 cm water depth). Three tanks were stocked with a low initial density of 4 kg/m3, while three other tanks were stocked with an initial density of 8 kg/m3, and the remaining three tanks were stocked at an initial density of 15 kg/m3. Octopuses were all fed frozen squid (Loligo gahi) at 5% body weight per day (%BW/day). The experiment lasted for 70 days. Water temperature varied between 20 ± 2°C, and salinity varied between 36 ± 1 ppt. During the entire experiment, dissolved oxygen was always >75%, and ammonia was always lower than 0.1 mg/l. No differences in growth or growth rates (between 0.9 and 1.1%BW/day for the three densities) were found. Nevertheless, mortality was significantly lower for the low density compared to the other two densities tested. Maximum densities in the culture tanks (>25 kg/m3) were attained in the higher culture densities after 56 days of the experiment.  相似文献   

19.
This work compared the effects of different densities of Mugil curema integrated in the rearing of Litopenaeus vannamei in a biofloc system on the yield and ecological performance of the system. For that, an experiment lasting 55 days was conducted. Four groups were evaluated as follows: (a) T0: shrimp reared without mullet, (b) T10: shrimp reared with 22 fish per tank, (c) T20: shrimp reared with 43 fish per tank, and (d) T30: shrimp reared with 65 fish per tank, each treatment with four replicates. The sludge:biomass ratio was higher in the T0 treatment, while the T10–T20 treatments were more efficient, producing more biomass and less sludge. The use of water was 17% more efficient in all treatments with mullet. Mullet survival was higher in the T10 and T20 treatments (mean: 84 ± 8%) than in the T30 (61 ± 5%) treatment. The fish final biomass and yield limits of the system were 0.37 kg and 3.7 kg/m3 respectively. Finally, there was no increase in the total nitrogen output of the system up to the T10 density. In conclusion, it is possible to integrate mullet up to 3.7 kg/m3, increasing the yield in 20% and decreasing water use.  相似文献   

20.
The understanding of the biological responses of copepods under crowding conditions contributes to establish their stable cultures at high densities for aquaculture industry, which are preferred live feeds for fish larvae. The present study investigated survivorship, fecundity, hatching success and respiration rate, of Acartia steueri raised under five densities, from 100 to 2,000 ind. L?1, to clarify the biological responses of the copepod under dense culture. There were no significant differences in survival, fecundity and hatching success among all density conditions, whereas the respiration rate at 2,000 ind. L?1 decreased by 80% as compared with a condition at 100 ind. L?1. The female copepods raised under a copepod density of >500 ind. L?1 probably invested a larger proportion of energy in reproduction in relation to total assimilated energy as compared with females under lower copepod densities. This change of energy allocation may allow A. steueri under high densities to maintain high fecundity. Acartia steueri might be a promising species for dense culture because its mortality and fecundity were independent of the effect of crowding, and the density‐dependent reduction in the metabolic rate might increase reproductive investment to maintain a constant rate of reproduction even under high densities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号